
Shukla et al. Boundary Value Problems         (2023) 2023:59 
https://doi.org/10.1186/s13661-023-01748-9

R E S E A R C H Open Access

A relation-theoretic set-valued version of
Prešić-Ćirić theorem and applications
Satish Shukla1, Shweta Rai2 and Rahul Shukla3*

*Correspondence:
rshukla@wsu.ac.za
3Department of Mathematical
Sciences and Computing, Walter
Sisulu University, Mthatha 5117,
South Africa
Full list of author information is
available at the end of the article

Abstract
In this paper, we establish a relation-theoretic set-valued version of the fixed point
result of Ćirić and Prešić (Acta Math. Univ. Comen. LXXVI(2):143–147, 2007) on metric
spaces endowed with an arbitrary binary relation. The results of this paper, generalize
and unify the fixed point results of Ćirić and Prešić (Acta Math. Univ. Comen.
LXXVI(2):143–147, 2007), Shukla and López (Quaest. Math. 45(3):1–16, 2019), and
Shukla and Radenović (An. Ştiinţ. Univ. ‘Al.I. Cuza’ Iaşi, Mat. 63(2):339–350, 2017) in
product spaces. Some examples are provided that justify and establish the
importance of our results. As applications of our main result, we have established the
existence of solutions to differential inclusion problems and the weak asymptotical
stability and a global attractivity of the equilibrium point of a difference inclusion
problem. The use of arbitrary binary relations in our results permits us to apply the
results to the differential inclusion problems and difference inclusion problems with
weaker assumptions than those used in the papers mentioned above.

Keywords: Binary relation; Prešić-Ćirić operator; Fixed point; Differential inclusion;
Difference inclusion

1 Introduction
Throughout the paper, ℵ and � will stand for the set of natural numbers and real numbers,
respectively, while k will stand for a fixed natural number. For a nonempty set ß, by P(ß)
we will denote the collection of all nonempty subsets of ß.

Let (ß, d) be a metric space and ϒ : ßk → ß be a mapping. A point � ∈ ß is said to be a
fixed point of ϒ if ϒ(�, �, . . . , �) = �. Consider the following nonlinear difference equation
of kth order:

�n+k = ϒ(�n, �n+1, . . . , �n+k–1), where �n ∈ ß for all n ∈ ℵ. (1)

A point � ∈ ß is called an equilibrium point of (1) if it is a fixed point of ϒ (see, [3]).
In 1965, when considering the problem of convergence of the sequence {�n} defined by

(1), Prešić [4, 5] generalized the famous Banach contraction principle on product spaces by
proving a fixed point result for the mapping ϒ : ßk → ß and proved the convergence of the
sequence {�n}. He established that if the mapping ϒ satisfies some particular conditions
and ß is complete, then such a sequence is convergent and its limit is a fixed point of ϒ .
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The mapping ϒ is called a Prešić operator if there exist constants ςi ∈ [0, 1) such that
∑k

i=1 ςi < 1 and

d
(
ϒ(�1, �2, . . . , �k),ϒ(�2, �3, . . . , �k+1)

) ≤
k∑

i=1

ςid(�i, �i+1) (2)

for all �i ∈ ß, i = 1, 2, . . . , k + 1. If ß is complete, then ϒ has a unique fixed point which is an
equilibrium point of difference equation (1) (see, [4, 5]).

The mapping ϒ is called a Prešić-Ćirić operator if there exists a constant � ∈ [0, 1) such
that � < 1 and

d
(
ϒ(�1, �2, . . . , �k),ϒ(�2, �3, . . . , �k+1)

) ≤ � max
{

d(�i, �i+1) : i = 1, 2, . . . , k
}

(3)

for all �i ∈ ß, i = 1, 2, . . . , k + 1. Ćirić and Prešić [1] showed that every Prešić-Ćirić operator
on a complete metric space has at least one fixed point. The result of Prešić is a gener-
alization of famous Banach contraction principle in product spaces and has theoretical
importance as well as several applications (see, e.g., [3, 6–9] and the references therein).

On the other hand, Nadler [10] considered the set-valued mappings and gave a set-
valued version of Banach contraction principle. Shukla et al. [11] generalized and unified
the results of Prešić and Nadler and proved some common fixed point results. The study
of fixed point theorems on metric spaces equipped with binary relations was introduced
by Alam and Imdad [12]. They established a relation-theoretic version of Banach contrac-
tion principle. Shukla and López [2] extended the result of Alam and Imdad for set-valued
mappings and proved a relation-theoretic version of the result of Nadler [10].

Initial and boundary value problems are an essential part of the study of physical sys-
tems, e.g., in the study of solid mechanics, thermoelasticity, exponential decay, theory of
elastic bodies etc. (see, e.g., [13–18] and the references therein). On the other hand, dif-
ferential inclusion problems are considered as an interpretation of discontinuous initial
and boundary value problems which occurs in the study of mechanical systems, power
electronics, and in the theory of heat conduction in metals, etc. (see, e.g., [19, 20] and the
references therein). The fixed point results in the spaces equipped with binary relations
are very useful in solving a verity of initial value and boundary value problems. While, the
relation-theoretic version of result of Nadler may be useful in solving the differential in-
clusion problems and not investigated yet in the product spaces, which is the motivation
for the work presented here. In addition, the relation-theoretic version of result of Nadler
makes us able to find the equilibrium point of a difference inclusion as well.

The purpose of this work is to prove a relation-theoretic set-valued version of the re-
sult of Ćirić and Prešić [1], which generalizes and extends the results of Ćirić and Prešić
[1], Shukla and López [2], Shukla and Radenović [3], Nadler [10], Shukla et al. [11], Alam
and Imdad [12] and several other fixed point results in metric spaces equipped with an
arbitrary binary relation. The existence of solution of a differential inclusion problem is
considered and with relation theoretic approach the existence of solution is established.
The new approach provides freedom to use Shukla and López’s method with a weaker
contractive condition. Another application of the main result to the existence of equilib-
rium point of difference inclusions has been established and the nature of the equilibrium
point has been determined. Specifically, the results proved here can be used in the prob-
lems where the solutions are in form of the fixed point of a mapping, which satisfies the
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contractive condition governed by the relational structure associated with a suitable space.
The contractive condition we have used is different and weaker than that used by Shukla
and Radenović [3]. We point out that the results of [2] are applicable in establishing the
existence of differential inclusion problems, while the results of [3] establish the equilib-
rium point and its globally asymptotically stability of a difference equation, and the results
proved here can be used for both such problems with weaker conditions. In particular, our
results are a unification of both these results. For illustration and justification of new re-
sults and concepts some examples are presented.

2 Preliminaries
We first state some known definitions and results, which will be used throughout the pa-
per.

Let (ß, d) be a metric space and CB(ß) denotes the set of all nonempty closed and
bounded subsets of ß. The distance between a point � ∈ ß and a set P ⊆ ß is de-
fined by d(�, P) = inf{d(�, p) : p ∈ P}. A function H : CB(ß) × CB(ß) → [0,∞) defined by
H(P, Q) = max{D(P, Q), D(Q, P)}, where D(P, Q) = supp∈P d(p, Q), D(Q, P) = supq∈Q d(q, P)
for all P, Q ∈ CB(ß) is called the Pompeiu-Hausdorff metric on CB(ß). Note that H is in-
deed a metric on CB(ß).

Remark 1 (Ali and Kamran [21]) Let P, Q ∈ CB(ß) and h ∈ (1,∞) be given. Then for p ∈ P
there exists q ∈ Q such that d(p, q) ≤ hH(P, Q).

Definition 2.1 (See, [22]) Let ß be a nonempty set. A subset R of ß × ß is called a binary
relation on ß. Notice that, for each pair �1, �2 ∈ ß, one of the following conditions holds:

(i) (�1, �2) ∈R, which amounts to saying that “�1 is R-related to �2” or “�1 relates to �2

under R”. Sometimes we write �1R�2 instead of (�1, �2) ∈R.
(ii) (�1, �2) /∈R, which means that “�1 is not R-related to �2” or “�1 does not relate to �2

under R”.
Trivially, ß × ß and ∅, being subsets of ß × ß, are binary relations on ß, which are re-
spectively called the universal relation (or full relation) and the empty relation. Another
important relation of this kind is the relation 
ß = {(�, �) : � ∈ ß} called the identity relation
or the diagonal relation on ß.

Throughout this paper, R stands for a nonempty binary relation, but for the sake of
simplicity we write only “binary relation” instead of “nonempty binary relation.”

Definition 2.2 Let ß be a nonempty set and R be a binary relation on ß. A sequence {�n}
in ß is called termwise related (R-preserving) if (�n, �n+1) ∈R for all n ∈ ℵ.

Definition 2.3 (Alam and Imdad [12]) Let ß be a nonempty set, R be a binary relation on
ß, l ∈ ℵ and �1, �2 ∈ ß. We say that there is a path {ν i}l+1

i=1 of length l from �1 to �2 if there
exist νi ∈ ß, i = 1, 2, . . . , l + 1 such that ν1 = �1, ν l+1 = �2 and (νi,νi+1) ∈R, i = 1, 2, . . . , l. The
element �2 ∈ ß is called l-connected to �1 ∈ ß, if there exists a path of length l from �1 to
�2. Denote by P(�1, l) the set of all �2 ∈ ß such that there exists a path of length l from �1 to
�2, i.e.

P(�1, l) = {�2 ∈ ß : there exists a path of length l from �1 to �2}.

We now discuss our main results.
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3 Main results
We first establish concepts and some definitions and results, which will be needed in fur-
ther discussion.

Definition 3.1 Let ß be a nonempty set and ϒ : ßk → P(ß) be a mapping. A se-
quence {�n} in ß is called a trajectory of ϒ with initial points �i, i = 1, 2, . . . , k, if �n+k ∈
ϒ(�n, �n+1, . . . , �n+k–1) for all n ∈ ℵ.

Definition 3.2 Consider a metric space (ß, d), a mapping ϒ : ßk → P(ß) and a binary
relation R on ß. The set of all Cauchy sequences in ß is denoted by �C and the set of all
termwise related sequences in ß is denoted by �R, while the set of all trajectories of ϒ

with initial points in ß is denoted by �ϒ . Then, ß is complete if every sequence in �C is
convergent to some point in ß. We say that ß is R-complete if every sequence in �C ∩ �R

is convergent to some point in ß. While, ß is said to be R-ϒ-complete if every sequence
in �C ∩ �R ∩ �ϒ is convergent to some point in ß.

We denote the set of all fixed points of ϒ by Fix(ϒ), i.e., Fix(ϒ) = {� ∈ ß: � ∈
ϒ(�, �, . . . , �)}.

Definition 3.3 Let R be a binary relation on a nonempty set ß, d be a metric on
ß and ϒ : ßk → CB(ß) be a set-valued mapping then the mapping ϒ is called a set-
valued relation-theoretic Prešić-Ćirić operator (set-valued RPC-operator) if for every
path {�i}k+1

i=1 in R the following conditions hold:
(RPC1) there exists � ∈ [0, 1) such that

H
(
ϒ(�1, �2, . . . , �k),ϒ(�2, �3, . . . , �k+1)

) ≤ � max
1≤i≤k

{
d(�i, �i+1)

}
;

(RPC2) if �k+1 ∈ ϒ(�1, �2, . . . , �k) and �k+2 ∈ ϒ(�2, �3, . . . , �k+1) are such that d(�k+1, �k+2) <
max1≤i≤k{d(�i, �i+1)}, then (�k+1, �k+2) ∈R.

The constant � is called the contractive constant of ϒ .

Theorem 3.1 Consider a metric space (ß, d) equipped with a binary relation R and a
mapping ϒ : ßk → CB(ß) such that (ß, d) is R-ϒ-complete. If ϒ is an RPC-operator with
contractive constant � and the following assertions hold:

(A) there exist �i ∈ ß, i = 1, 2, . . . , k + 1 such that (�i, �i+1) ∈R for all i = 1, 2, . . . , k and
�k+1 ∈ ϒ(�1, �2, . . . , �k);

(B) if a termwise related trajectory {�n} ⊆ ß of ϒ converges to � ∈ ß, then (�n, �) ∈R for
all n ∈ ℵ.

Then, there exists a termwise related trajectory {�n} ⊆ ß of ϒ such that limn→∞ �n = �∗ ∈ ß
and �∗ ∈ ϒ(�∗, �∗, . . . , �∗).

Proof Suppose, �i ∈ ß, i = 1, 2, . . . , k +1 such that (�i, �i+1) ∈R for all i = 1, 2, . . . , k and �k+1 ∈
ϒ(�1, �2, . . . , �k). As, ϒ : ßk → CB(ß), we have ϒ(�2, �3, . . . , �k+1) ∈ CB(ß) and by Remark 1,
for h = 1√

�
> 1 there exists �k+2 ∈ ϒ(�2, �3, . . . , �k+1) such that

d(�k+1, �k+2) ≤ 1√
�

H
(
ϒ(�1, �2, . . . , �k),ϒ(�2, �3, . . . , �k+1)

)
.
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As (�i, �i+1) ∈ R for i = 1, 2, . . . , k and ϒ is a set-valued RPC-operator with contractive
constant �, it follows from (RPC1) and the above inequality that

d(�k+1, �k+2) ≤ √
� max

1≤i≤k

{
d(�i, �i+1)

}
.

As � < 1, it follows from the above inequality that

d(�k+1, �k+2) < max
1≤i≤k

{
d(�i, �i+1)

}
.

By (RPC2) and the above inequality we have (�k+1, �k+2) ∈ R. Thus, (�i, �i+1) ∈ R for all
i = 1, 2, . . . , k, k + 1. Again, since ϒ(�3, �4, . . . , �k+2) ∈ CB(ß) by Remark 1, for h = 1√

�
> 1

there exists �k+3 ∈ ϒ(�3, �4, . . . , �k+2) such that

d(�k+2, �k+3) ≤ 1√
�

H
(
ϒ(�2, �3, . . . , �k+1),ϒ(�3, �4, . . . , �k+2)

)
.

As (�i, �i+1) ∈ R for all i = 1, 2, . . . , k, k + 1 and ϒ is a set-valued RPC-operator with con-
tractive constant �, it follows from (RPC1) and the above inequality that

d(�k+2, �k+3) ≤ √
� max

2≤i≤k+1

{
d(�i, �i+1)

}
.

As � < 1, it follows from the above inequality that

d(�k+2, �k+3) < max
2≤i≤k+1

{
d(�i, �i+1)

}
.

By (RPC2) and the above inequality we have (�k+2, �k+3) ∈R.
The above process yields a termwise related trajectory {�n} of ϒ with initial points

�1, �2, . . . , �k ∈ ß such that

d(�n+k , �n+k+1) ≤ √
� max

n≤i≤k+n–1

{
d(�i, �i+1)

}
for all n ∈ ℵ. (4)

We now prove that the trajectory {�n} of ϒ with initial points �1, �2, . . . , �k ∈ ß, is a Cauchy
sequence.

We define a number ℘ as follows:

℘ = max

{
d(�i, �i+1)

j i : i = 1, 2, . . . , k
}

,

where j = �1/2k . By using the mathematical induction we prove the following inequality:

d(�n, �n+1) ≤ ℘jn for all n ∈ ℵ. (5)

Then, by the definition of ℘ it is clear that the inequality (5) is true for n = 1, 2, . . . , k. Let
the k inequalities d(�n, �n+1) ≤ ℘jn, d(�n+1, �n+2) ≤ ℘jn+1, . . . , d(�n+k–1, �n+k) ≤ ℘jn+k–1 be
the induction hypothesis. For every n ∈ ℵ, it follows from (4) that

d(�n+k , �n+k+1) ≤ √
� max

n≤i≤k+n–1

{
d(�i, �i+1)

}
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≤ √
� max

{
℘j i+n–1 : i = 1, 2, . . . , k

}

=
√

�℘jn

= ℘jn+k (
as j = �1/2k < 1

)
.

Hence, the mathematical induction is complete. Now, for n, m ∈ ℵ, m > n, using (5), we
obtain

d(�n, �m) ≤ d(�n, �n+1) + d(�n+1, �n+2) + · · · + d(�m–1, �m)

≤ ℘jn + ℘jn+1 + · · · + ℘jm–1

≤ ℘jn(1 + j + j 2 + · · · )

=
℘jn

1 – j
.

As j = �1/2k < 1, the above inequality yields that

lim
n,m→∞ d(�n, �m) = 0.

Therefore, the trajectory {�n} of ϒ is termwise related Cauchy sequence in ß. Thus, {�n} ∈
�C ∩ �R ∩ �ϒ .

By R-ϒ-completeness of ß, there exists �∗ ∈ ß such that

lim
n→∞ d

(
�n, �∗) = 0.

Thus, we have obtain the termwise related trajectory {�n} ⊆ ß of ϒ such that limn→∞ �n =
�∗ ∈ ß. We shall show that �∗ ∈ ϒ(�∗, �∗, . . . , �∗), i.e. �∗ is a fixed point of ϒ .

Since (B) holds, we have (�n, �∗) ∈ R for all j ∈ ℵ. Because, for each n ∈ ℵ we have
(�n, �n+1) ∈R and �n+k ∈ ϒ(�n, �n+1, . . . , �n+k–1), hence

d
(
�∗, T

(
�∗, . . . , �∗)) ≤ d

(
�∗, �n+k

)
+ d

(
�n+k ,ϒ

(
�∗, . . . , �∗))

≤ d
(
�∗, �n+k

)
+ H

(
ϒ(�n, �n+1, . . . , �n+k–1),ϒ

(
�∗, . . . , �∗))

≤ d
(
�∗, �n+k

)
+ H

(
ϒ(�n, �n+1, . . . , �n+k–1),ϒ

(
�n+1, . . . , �n+k–1, �∗))

+ H
(
ϒ

(
�n+1, . . . , �n+k–1, �∗),ϒ

(
�n+2, . . . , �n+k–1, �∗, �∗))

+ · · · + H
(
ϒ

(
�n+k–1, �∗, . . . , �∗),ϒ

(
�∗, . . . , �∗))

≤ d
(
�∗, �n+k

)
+ � max

{
d(�n, �n+1), . . . , d(�n+k–2, �n+k–1),

d
(
�n+k–1, �∗)} + � max

{
d(�n+1, �n+2), . . . , d(�n+k–2, �n+k–1),

d
(
�n+k–1, �∗)} + · · · + �d

(
�n+k–1, �∗).

Letting n → ∞ in the above inequality and using the fact that limn→∞ �n = �∗, we obtain
d(�∗,ϒ(�∗, . . . , �∗)) = 0, that is, �∗ ∈ ϒ(�∗, . . . , �∗). Thus, �∗ is a fixed point of ϒ . �

Remark 2 In the case k = 1, condition (B) of Theorem 3.1 can be replaced by the following
weaker condition:
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(B′) if a termwise related trajectory {�n} ⊆ ß of ϒ converges to � ∈ ß, then there exist a
subsequence {�nj} and j0 ∈ ℵ such that (�nj , �) ∈R for all j > j0.

Example 1 Consider ß = [0,∞) with the usual metric d(�1, �2) = |�1 – �2| for all �1, �2 ∈ ß.
Denote by Q+ the set of all nonnegative rational numbers and L

Q+

0 the class of all nonin-
creasing sequences of nonnegative rational numbers converging to zero, i.e.,

L
Q+

0 =
{{�n} ⊆Q+ : �n+1 ≤ �n for all n ∈ ℵ, �n → 0 as n → ∞}

.

Obviously L
Q+

0 �= ∅. Let R be the binary relation defined on ß by

R =
{

(�n, �n+1), (0, �n) : {�n} ∈ L
Q+

0
}

.

Then, it is clear that R is nonempty. For a fixed a > 1 define a mapping ϒ : ß2 → CB(ß) by

ϒ(�1, �2) =

⎧
⎨

⎩

{0, max{�1,�2}
a2 }, if �1, �2 ∈Q+;

{0, max{�1,�2}
|max{�1,�2}2–1| }, otherwise.

Then, we observe that for k = 2 all the conditions of Theorem 3.1 are satisfied. We have
the following:

(I) (RPC1) is satisfied with 1
a2 ≤ � < 1. Let �1, �2, �3 ∈ ß are such that (�1, �2), (�2, �3) ∈R.

Then, the following cases are possible:
Case (i): Suppose �1, �2, �3 ∈Q+ and �1 ≥ �2 ≥ �3 ≥ 0, then:

H
(
ϒ(�1, �2),ϒ(�2, �3)

)
= H

({

0,
max{�1, �2}

a2

}

,
{

0,
max{�2, �3}

a2

})

= H
({

0,
�1

a2

}

,
{

0,
�2

a2

})

= max

{

sup

{

min

{

0,
�2

a2

}

, min

{
�1

a2 ,
1
a2 |�1 – �2|

}}

,

sup

{

min

{

0,
�1

a2

}

, min

{
�2

a2 ,
1
a2 |�1 – �2|

}}}

=
1
a2 max

{
sup

{
0, min{�1, �1 – �2}

}
,

sup
{

0, min{�2, �1 – �2}
}}

=
1
a2 max

{
�1 – �2, min{�2, �1 – �2}

}

=
1
a2 (�1 – �2)

=
1
a2 d(�1, �2)

≤ � max
{

d(�1, �2), d(�2, �3)
}

,

where 1
a2 ≤ � < 1.

Case (ii): If �1, �2, �3 ∈Q+ and �2 = 0, then:

H
(
ϒ(�1, �2),ϒ(�2, �3)

)
= H

(
ϒ(�1, 0),ϒ(0, �3)

)
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= H
({

0,
max{�1, 0}

a2

}

,
{

0,
max{0, �3}

a2

})

= H
({

0,
�1

a2

}

,
{

0,
�3

a2

})

= max

{

sup

{

min

{

0,
�3

a2

}

, min

{
�1

a2 ,
1
a2 |�1 – �3|

}}

,

sup

{

min

{

0,
�1

a2

}

, min

{
�3

a2 ,
1
a2 |�1 – �3|

}}}

=
1
a2 max

{
sup

{
0, min

{
�1, |�1 – �3|

}}
,

sup
{

0, min
{
�3, |�1 – �3|

}}}

=
1
a2 max

{
min

{
�1, |�1 – �3|

}
, min

{
�3, |�1 – �3|

}}

≤ � max{�1, �3}
= � max

{
d(�1, �2), d(�2, �3)

}
,

where 1
a2 ≤ � < 1.

Case (iii): If �1, �2, �3 ∈Q+ and �2 �= 0, then two subcases are possible: (a) �1 = 0, �2 ≥ b3 >
0; (b) �1 = 0, �2 ≥ b3 = 0. In both subcases, the left-hand side of desired inequality becomes
zero, hence the inequalities hold trivially.

Hence, (RPC1) is satisfied.
(II) (RPC2) is satisfied. Suppose that (�1, �2), (�2, �3) ∈ R, �3 ∈ ϒ(�1, �2) = {0, max{�1,�2}

a2 }
and �4 ∈ ϒ(�2, �3) = {0, max{�2,�3}

a2 }. Then, we consider the following cases:
(a) if �3 = �4 = 0; or �3 = max{�1,�2}

a2 , �4 = 0, then, since for every nonincreasing sequence
{�n} which is eventually constant and has limit 0, we have (�n, �n+1) ∈R for all n ∈ ℵ,
hence we have (�3, �4) ∈R.

(b) If �3 = 0, �4 = max{�2,�3}
a2 , then by definition of R we have (�3, �4) ∈R.

(c) If �3 = max{�1,�2}
a2 , �4 = max{�2,�3}

a2 , then if �2 = 0 we must have �1 ≥ �3, while if �2 �= 0,
then by the definition of R we must have �1 ≥ �2 ≥ �3 > 0. In both the cases there
exists a nonincreasing sequence of nonnegative rational numbers which converges
to zero and has two successive terms �3, �4, and so, (�3, �4) ∈R.

Hence, ϒ is a set-valued RPC-operator with contractive constant � such that 1
a2 ≤ � < 1.

(III) Condition (A) of Theorem 3.1 is satisfied. For every � ∈ Q+, we have {�n} ∈ L
Q+

0 ,
where �1 = �2 = � and �n+2 = max{�n ,�n+1}

a2 for all n ∈ ℵ. Hence, we have �n+2 ∈ ϒ(�n, �n+1) and
(�n, �n+1) ∈R for all n ∈ ℵ.

(IV) Condition (B) of Remark 2 is satisfied. Suppose that {�n} is a termwise related tra-
jectory of ϒ converging to � ∈ ß. As, {�n} is a termwise related trajectory of ϒ we must
have �3 ∈ ϒ(�1, �2), and so, the sequence {�n} is either an eventually constant sequence
converging to 0, or it is given by: �2n+1 = max{ �1

a2n , �2
a2n } and �2n+2 = max{ �1

a2n+2 , �2
a2n } for all

n ∈ ℵ. In each case, the sequence {�n} converges to 0 and (�n, 0) ∈R for all n ∈ ℵ.
Thus, all the conditions of Theorem 3.1 are satisfied, hence ϒ must possess a fixed point.

Indeed, the set of all fixed points of ϒ , i.e., Fix(ϒ) = {0,
√

2}.

We next consider a generalization of the closedness of set-valued mappings in product
spaces and a weaker version of this generalized closedness, which provides an alternate of
the condition (B) of Theorem 3.1.
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Definition 3.4 Let (ß, d) be a metric space equipped with a binary relation R and
ϒ : ßk →P(ß) be a set-valued mapping. Then the set G(ϒ) is called the graph of ϒ and

G(ϒ) =
{

(�0, �1, . . . , �k) ∈ ßk+1 : �k ∈ ϒ(�0, �1, . . . , �k–1)
}

.

We say that ϒ is a closed mapping if for every collection of convergent sequences {�i
n},

i = 0, 1 . . . , k in ß such that (�0
n, �1

n, . . . , �k
n) ∈G(ϒ) for all n ∈ ℵ we have (�0, �1, . . . , �k) ∈ G(ϒ),

where �i ∈ ß, i = 0, 1, . . . , k are the limits of the sequences {�i
n}, i = 0, 1, . . . , k respectively. It

is obvious that ϒ is closed if and only if G(ϒ) is a closed subset of ßk+1. We say that ϒ is
R-closed if for every convergent sequence {�n} ∈ �R such that (�n, �n+1, . . . , �n+k) ∈ G(ϒ)
for all n ∈ ℵ we have (�, �, . . . , �) ∈G(ϒ), where � ∈ ß is the limit of the sequence {�n}.

Remark 3 Suppose that {�n} ∈ �R is a convergent sequence with limit � in ß such that
(�n, �n+1, . . . , �n+k) ∈ G(ϒ) for all n ∈ ℵ. Define the sequences {�i

n}, i = 0, 1, . . . , k by {�i
n} =

{�n+i}, i = 0, 1, . . . , k, then each {�i
n} is convergent to � and we have (�1

n, �2
n, . . . , �k+1

n ) ∈ G(ϒ)
for all n ∈ ℵ, hence the implication “ϒ is closed �⇒ ϒ is R-closed” holds. The reverse
implication of the above does not hold (see the example below).

Example 2 Let ß = �, d is the usual metric on ß and L
Q+

0 be the class of all nonincreasing
sequences of nonnegative rational numbers converging to 0. Consider the relation R on
ß defined by R = {(�n, �n+1) ∈ ß2 : {�n} ∈ L

Q+

0 } and a mapping ϒ : ß2 →P(ß) defined by

ϒ(�1, �2) =

⎧
⎨

⎩

{0, �1+�2
2 }, if �1, �2 are nonnegative rationals;

{0, �1 + �2 + 1}, otherwise.

Note that if {�n} is a sequence of irrational numbers converging to 0, then (�n, �n+1, �1
n) ∈

G(ϒ) for all n ∈ ℵ, where �1
n = �n + �n+1 + 1 for all n ∈ ℵ and (�n, �n+1, �1

n) → (0, 0, 1) as
n → ∞. While 1 /∈ ϒ(0, 0)(= {0}), and so ϒ is not a closed mapping. On the other hand, if
{�n} ∈ �R such that (�n, �n+1, �n+2) ∈G(ϒ) for all n ∈ ℵ, then we must have {�n} ∈ L

Q+

0 , and
so, if the sequence {�n} converges, it must converge to 0. As 0 ∈ ϒ(0, 0), i.e., (0, 0, 0) ∈ G(ϒ),
hence ϒ is R-closed.

Proposition 1 If (ß, d) is a metric space, R is a binary relation on ß and ϒ : ßk → CB(ß)
is an R-closed mapping. If there exists a termwise related convergent trajectory of ϒ , then
ϒ has a fixed point.

Proof Let {�n} be a termwise related convergent trajectory of ϒ and �n → � as n → ∞.
Then, by definition, we have {�n} ∈ �R, (�n, �n+1, . . . , �n+k) ∈ G(ϒ) for all n ∈ ℵ. Since �n → �

as n → ∞ by R-closedness of ϒ we have (�, �, . . . , �) ∈ G(ϒ), i.e., � ∈ ϒ(�, �, . . . , �). Hence,
ϒ has a fixed point �. �

In the next theorem, the condition (B) of Theorem 3.1 is replaced by the R-closedness
of ϒ .

Theorem 3.2 Consider a metric space (ß, d) equipped with a binary relation R and a
mapping ϒ : ßk → CB(ß) such that (ß, d) is R-ϒ-complete. If ϒ is an RPC-operator with
contractive constant � and the following assertions hold:
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(A) there exist �i ∈ ß, i = 1, 2, . . . , k + 1 such that (�i, �i+1) ∈R for all i = 1, 2, . . . , k and
�k+1 ∈ ϒ(�1, �2, . . . , �k);

(B) ϒ is R-closed.
Then, there exists a termwise related trajectory {�n} ⊆ ß of ϒ such that limn→∞ �n = �∗ ∈ ß
and �∗ ∈ ϒ(�∗, �∗, . . . , �∗).

Proof Similar to the proof of Theorem 3.1, we obtain a termwise related trajectory {�n}
of ϒ with initial values �1, �2, . . . , �k such that the sequence {�n} converges to some �∗ ∈ ß.
Now, using Proposition 1, we obtain that �∗ is a fixed point of ϒ . �

Corollary 3.3 Consider a metric space (ß, d) equipped with a binary relation R and a
mapping ϒ : ßk → CB(ß) such that (ß, d) is R-ϒ-complete. If ϒ is an RPC-operator with
contractive constant � and the following assertions hold:

(A) there exist �i ∈ ß, i = 1, 2, . . . , k + 1 such that (�i, �i+1) ∈R for all i = 1, 2, . . . , k and
�k+1 ∈ ϒ(�1, �2, . . . , �k);

(B) ϒ is closed.
Then, there exists a termwise related trajectory {�n} ⊆ ß of ϒ such that limn→∞ �n = �∗ ∈ ß
and �∗ ∈ ϒ(�∗, �∗, . . . , �∗).

Proof The proof follows by using Remark 3 and Theorem 3.2. �

In the next section, we present several consequences of our main results.

4 Consequences
We derive several fixed point results as corollaries of Theorem 3.1 and Theorem 3.2.

Let (ß,�) be a partially ordered set. A pair (�1, �2) of elements of ß is called comparable
if �1 � �2 or �2 � �1. Define a binary relation R� by:

R� =
{

(�1, �2) ∈ ß2 : �1 � �2
}

.

Replacing the relation R by R� in Theorems 3.1 and 3.2, we obtain the following gener-
alized and unified set-valued version of results of Ran and Reurings [23] and Nieto and
López [24] in product spaces.

Corollary 4.1 Let (ß,�) be a partially ordered set, d a metric on ß and ϒ : ßk → CB(ß) be
such that (ß, d) is R�-ϒ-complete. Suppose that ϒ is an R�PC-operator with contractive
constant � and the following assertions hold:

(i) there exist �i ∈ ß, i = 1, 2, . . . , k + 1 such that (�i, �i+1) ∈R� for all i = 1, 2, . . . , k and
�k+1 ∈ ϒ(�1, �2, . . . , �k);

(ii) at least one of the following conditions is satisfied:
(a) ϒ is R�-closed;
(b) if a termwise related trajectory {�n} ⊆ ß of ϒ converges to � ∈ ß, then �n � � for

all n ∈ ℵ.
Then, there exists a trajectory {�n} ⊆ ß of ϒ such that �n � �n+1 for all n ∈ ℵ and
limn→∞ �n = �∗ ∈ ß and �∗ ∈ ϒ(�∗, �∗, . . . , �∗).
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Remark 4 Define:

R� =
{

(�1, �2) ∈ ß2 : �2 � �1
}

; and R� =
{

(�1, �2) ∈ ß2 : (�1, �2) is comparable
}

.

Then, similar to the above corollary, we can deduce the corresponding fixed point results
for R�PC-operators and R�PC-operators.

The following corollary is a set-valued version of the result of Ćirić and Prešić [1].

Corollary 4.2 Let (ß, d) be a complete metric space and ϒ : ßk → CB(ß) be a set-valued
Prešić-Ćirić type contraction, i.e., the following condition holds:

H
(
ϒ(�1, �2, . . . , �k),ϒ(�2, �3, . . . , �k+1)

) ≤ � max
1≤i≤k

{
d(�i, �i+1)

}

for all �1, �2, . . . , �k+1 ∈ ß, where 0 ≤ � < 1. Then, ϒ has a fixed point in ß. Moreover, for arbi-
trary �1, �2, . . . , �k ∈ ß, there exists a sequence {�n} in ß such that �n+k ∈ ϒ(�n, �n+1, . . . , �n+k–1)
for all n ∈ ℵ and {�n} converges to a fixed point of ϒ .

Proof Consider the universal relation R = ß2. Then, it is easy to see that all the conditions
of Theorem 3.1 are satisfied, hence the conclusion follows from Theorem 3.1. �

A mapping ϒ : ßk → ß is called a relation theoretic Prešić-Ćirić operator (RPC-
operator) if for every path {�i}k+1

i=1 in R the following hold:
(RPC1′) there exist � ∈ [0, 1) such that

d
(
ϒ(�1, �2, . . . , �k),ϒ(�2, �3, . . . , �k+1)

) ≤ � max
1≤i≤k

{
d(�i, �i+1)

}
;

(RPC2′) if �k+1 = ϒ(�1, �2, . . . , �k) and �k+2 = ϒ(�2, �3, . . . , �k+1) are such that d(�k+1, �k+2) <
max1≤i≤k{d(�i, �i+1)}, then (�k+1, �k+2) ∈R.

The constant � is called the contractive constant of ϒ . A sequence {�n} in ß is called a PP-
sequence of ϒ with initial values �1, �2, . . . , �k ∈ ß if �n+k = ϒ(�n, �n+1, . . . , �n+k–1) for all n ∈ ℵ
(see, [25]). The mapping ϒ is called P-R-continuous at � ∈ ß if for every PP-sequence {�n}
in �R such that �n → � as n → ∞ we have ϒ(�n, �n+1, . . . , �n+k–1) → ϒ(�, �, . . . , �) as n → ∞.
The mapping ϒ is called P-R-continuous on ß if it is P-R-continuous at every point of ß.

Remark 5 For a given single-valued mapping ϒ : ßk → ß we define its corresponding
set-valued mapping ϒs : ßk →P(ß) by ϒs(�1, �2, . . . , �k) = {ϒ(�1, �2, . . . , �k)} for all �1, �2, . . . ,
�k ∈ ß. Since H({�1}, {�2}) = d(�1, �2), hence we observe the following:

(a) If ϒ is an RPC-operator with contractive constant �, then ϒs is a set-valued
RPC-operator with contractive constant � and vice-versa.

(b) A termwise related PP-sequence of ϒ is a termwise related trajectory of ϒs and
vice-versa.

(c) If ϒ is P-R-continuous, then ϒs is R-closed and vice-versa.

The following corollary is a relation theoretic version of the main result of Ćirić and
Prešić [1].
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Corollary 4.3 Let (ß, d) be a complete metric space, R a binary relation on ß and ϒ : ßk →
ß be an RPC-operator with contractive constant �. Suppose that the following assertions
hold:

(i) there exist �i ∈ ß, i = 1, 2, . . . , k + 1 such that (�i, �i+1) ∈R for all i = 1, 2, . . . , k and
�k+1 = ϒ(�1, �2, . . . , �k);

(ii) at least one of the following conditions is satisfied:
(a′) for any PP-sequence {�n} ⊆ ß of ϒ which converges to � ∈ ß, then (�n, �) ∈R for

all n ∈ ℵ;
(b′) ϒ is a P-R-continuous mapping.

Then, there exists a PP-sequence {�n} ⊂ ß of ϒ such that limn→∞ �n = �∗ ∈ ß and �∗ =
ϒ(�∗, �∗, . . . , �∗).

Proof We consider the corresponding set-valued mapping ϒs of ϒ . Then, by using Re-
mark 5, one can easily verify that: (i) ϒs is a set-valued RPC-operator with contractive
constant �; (ii) condition (i) implies condition (A) of Theorem 3.1; (iii) condition (a′) im-
plies condition (B) of Theorem 3.1 (iv) condition (b′) implies condition (B) of Theorem 3.2.
Hence, the result follows from Theorem 3.1 and Theorem 3.2. �

Let (ß, d) be a metric space and 
 = {(�, �) : � ∈ ß}. Let � be a directed graph (see [9] and
the reference therein) with V (�) = ß and E(�) ⊆ ß2 and � has no parallel edges. Then, we
say that ß is endowed with the graph �. For �1, �2 ∈ ß, a path in � from �1 to �2 of length
N ∈ ℵ ∪ {0} is a finite sequence {�i}N

i=0 of N + 1 points (vertices) such that �0 = �1, �N = �2

and (�i–1, �i) ∈ E(�) for i = 1, . . . , N . A sequence {�n} in ß is called a termwise connected
sequence if (�n, �n+1) ∈ E(�) for all n ∈ ℵ.

The following corollary is the main result of Shahzad and Shukla [9].

Corollary 4.4 Let (ß, d) be a complete metric space endowed with a graph � and ϒ : ßk →
CB(ß) be a set-valued �-Prešić operator, i.e., for every path {�i}k+1

i=1 of k + 1 vertices in � the
following conditions are satisfied:

(�P1) there exist nonnegative numbers ςi ’s such that 0 ≤ ∑k
i=1 ςi < 1 and

H
(
ϒ(�1, �2, . . . , �k),ϒ(�2, �3, . . . , �k+1)

) ≤
k∑

i=1

ςid(�i, �i+1);

(�P2) if �k+1 ∈ ϒ(�1, �2, . . . , �k) and �k+2 ∈ ϒ(�2, �3, . . . , �k+1) are such that d(�k+1, �k+2) <
max1≤i≤k{d(�i, �i+1)}, then (�k+1, �k+2) ∈ E(�).

Suppose, the following conditions hold:
(a′′) there exists a path {�i}k+1

i=1 of k + 1 vertices in �, such that �k+1 ∈ ϒ(�1, �2, . . . , �k);
(b′′) for any termwise connected sequence {�n} converges to � ∈ ß, and �n+k ∈ ϒ(�n, �n+1, . . . ,

�n+k–1) for all n ∈ ℵ, then (�n, �) ∈ E(�) for all n ∈ ℵ.
Then, ϒ has a fixed point in ß. Moreover, there exists a termwise connected sequence {�n}
in ß such that �n+k ∈ ϒ(�n, �n+1, . . . , �n+k–1) for all n ∈ ℵ and {�n} converges to a fixed point
of ϒ .

Proof Consider the binary relation R� on ß defined by R� = {(�1, �2) ∈ ß2 : (�1, �2) ∈
E(�)}. First, note that

∑k
i=1 ςid(�i, �i+1) ≤ [

∑k
i=1 ςi] max1≤i≤k{d(�i, �i+1)}, and so condition
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(�P1) implies condition (R�PC1). Also, it is easy to see that condition (�P2) implies con-
dition (R�PC2). By definition of R�, the conditions (a′′) and (b′′) imply the conditions (A)
and (B) of Theorem 3.1. Hence, the existence of sequence {�n} with desired properties fol-
lows from Theorem 3.1. �

Remark 6 The existence results for set-valued Prešić type operators in ε-chainable spaces
(see, [26] and [9]) and the existence results for a single-valued cyclic-Prešić operator (see,
[25] and the references therein) can be derived in a similar way, here we are omitting the
detailed proof.

5 Applications
In this section, as applications of our main results, we establish existence of solution of a
particular differential inclusion problem and prove the existence and stability of equilib-
rium point of a difference inclusion.

5.1 Application to the solution of a differential inclusion
We first consider a differential inclusion problem for a solution under some suitable con-
ditions.

Suppose that 
 > 0 and I = [0,
 ]. By C(I,�) we denote the space of all continuous
real-valued functions on I under the supremum norm ‖ · ‖∞, while AC(I,�) denotes the
space of all absolutely continuous real-valued functions on I with same norm. For r > 0 and
� ∈ C(I,�) we define a subset B[�, r] of C(I,�) by: B[�, r] = {�1 ∈ C(I,�) : ‖� – �1‖∞ ≤ r}.

Consider the time-dependent differential inclusion problem of the following form:

�′(t) ∈ �
(
t, �(t)

)
+ g(t) for a.e. t ∈ I,

�(0) = α ∈ �,
(6)

in which � : I × � →P(�) is a set-valued mapping considered with some suitable condi-
tions, and g : I → � is a continuous function.

Suppose that �1
�(�) represents the set of all Lebesgue integrable selections of �(·, �(·)),

i.e.,

�1
�(�) =

{
v ∈ L1(I,�) : v(t) ∈ �

(
t, �(t)

)
for a.e. t ∈ I

}
.

We assume that �1
�(�) is nonempty and closed.

Definition 5.1 A function � ∈ AC(I,�) is called a solution to (6) if there is v ∈ �1
�(�) such

that �′(t) = v(t) + g(t) for a.e. t ∈ I and �(0) = α. On the other hand:
(i) a function �L ∈ AC(I,�) is said to be a lower solution of (6) if there is a vL ∈ �1

�(�L)
such that �′

L(t) ≤ vL(t) + g(t) for a.e. t ∈ I and �L(0) ≤ α;
(ii) a function � U ∈ AC(I,�) is said to be an upper solution of (6) if there is a

v U ∈ �1
�(� U) such that �′

U(t) ≥ v U(t) + g(t) for a.e. t ∈ I and � U(0) ≥ α.

Theorem 5.1 Suppose that the following conditions are satisfied:
(a) �1

�(�) �= ∅ for all � ∈ C(I,�);
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(b) if � ∈ C(I,�) is fixed and {vn} is a sequence in �1
�(�), then there exists a subsequence

{vni} of {vn}, which converges at almost every point t ∈ I to a v ∈ L1(I,�) such that
∫ t

0 vni (s) ds → ∫ t
0 v(s) ds, as i → ∞ for every t ∈ I ;

(c) �(t, �) is closed for all (t, �) ∈ I × � and for each fixed � ∈ C(I,�) we have �(·, �(·)) is
bounded on I ;

(d) there exist 0 ≤ μ < 1 and r > 0 such that, if �1 ∈ C(I,�), �2 ∈ B[�1, r] with �1(t) ≤ �2(t)
for all t ∈ I , then

∣
∣v�1 (t) – v�2 (t)

∣
∣ ≤ μ




[
�2(t) – �1(t)

]
, for a.e. t ∈ I (7)

for all v�1 ∈ �1
�(�1), v�2 ∈ �1

�(�2);
(e) if �1 ∈ C(I,�), �2 ∈ B[�1, r] with �1(t) ≤ �2(t) for all t ∈ I , then

v�2 (t) – v�1 (t) ≥ 0, for a.e. t ∈ I, (8)

for all v�1 ∈ �1
�(�1), v�2 ∈ �1

�(�2) with d(
∫ t

0 v�1 (s) ds,
∫ t

0 v�2 (s) ds) ≤ d(�1, �2).
If there exists a lower solution (or an upper solution) �L (or � U) of the differential inclusion
(6) such that d(�L, u) ≤ r whenever u = α+

∫ t
0 [v(s)+g(s)] ds, t ∈ I , v ∈ �1

�(�L) (or d(� U, u) ≤ r
whenever u = α +

∫ t
0 [v(s) + g(s)] ds, t ∈ I , v ∈ �1

�(� U)), then there exists a solution of (6).

Proof Let ß = C(I,�) (complete metric space with the supremum norm) and define a set3-
valued operator ϒ on ß by

ϒ(�) =
{

u ∈ ß: u(t) = α +
∫ t

0

[
v(s) + g(s)

]
ds, t ∈ I, v ∈ �1

�(�)
}

for all � ∈ ß.

Then, ϒ is well-defined, since �1
�(�) �= ∅ for all � ∈ ß. Now, it is obvious that the differential

inclusion (6) is equivalent to the following inclusion:

�(t) ∈ ϒ
(
�(t)

)
, t ∈ I,

i.e., � ∈ ϒ(�). Therefore, the solutions to the differential inclusion (6) are the fixed points
of the operator ϒ . Define a binary relation R on ß by:

R =
{

(�1, �2) ∈ ß2 : �2 ∈ B[�1, r], �1 ≤ �2
}

,

where �1 ≤ �2 means �1(t) ≤ �2(t) for all t ∈ I .
We observe that ß, ϒ and R meet all the conditions of Theorem 3.1 with k = 1. In fact:

(I) ϒ : ß → CB(ß).
Note that, �1

�(�) �= ∅ for all � ∈ ß, this shows that ϒ(�) �= ∅ for all � ∈ ß. We show
that ϒ(�) is closed and bounded in ß for each � ∈ ß. Suppose that � ∈ ß is fixed {un}
be a sequence in ϒ(�) and un → u ∈ ß. We show that u ∈ ϒ(�). Then, by definition,
there is a sequence {vn} in �1

�(�) with

un(t) = α +
∫ t

0

[
vn(s) + g(s)

]
ds, t ∈ I.
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By (b) there is a subsequence {vni} of {vn} such that {vni} converges at almost every
point t ∈ I towards v ∈ L1(I,�) as i → ∞ and
∫ t

0 [vni (s) + g(s)] ds → ∫ t
0 [v(s) + g(s)] ds, as i → ∞ for every t ∈ I .

Since each vni is in �(t, �(t)) which is closed for all t ∈ I , hence v(t) ∈ �(t, �(t))
for a.e. t ∈ I which with the fact v ∈ L1(I,�) shows that v ∈ �1

�(�). Moreover,

u(t) = lim
i→∞ uni (t) = α +

∫ t

0

[
v(s) + g(s)

]
ds, for all t ∈ I.

This shows that u ∈ ϒ(�) and so ϒ(�) is closed in ß.
Further, since �(·, �(·)) is bounded on I for each fixed � ∈ ß, there exists a

number M > 0 such that |v(t)| ≤ M for a.e. t ∈ I . Since g : I → � is continuous,
hence for all u ∈ ϒ(�) we have

sup
t∈I

∣
∣u(t)

∣
∣ ≤ |α| + sup

t∈I

∫ t

0

∣
∣v(s) + g(s)

∣
∣ds

≤ |α| +
∫ t

0
[M + gsup] ds

≤ |α| + [M + gsup]
 ,

where gsup = supt∈I g(t). Therefore, ϒ has bounded values in ß.
(II) ϒ is a set-valued RPC-operator.

Let �1, �2 ∈ ß with (�1, �2) ∈R, then we have �2 ∈ B[�1, r] and �1(t) ≤ �2(t) for all
t ∈ I . Then, we have

D
(
ϒ(�1),ϒ(�2)

)
= sup

u�1 ∈ϒ(�1)
d
(
u�1 ,ϒ(�2)

)

= sup
u�1 ∈ϒ(�1)

inf
u�2 ∈ϒ(�2)

d(u�1 , u�2 )

= sup
u�1 ∈ϒ(�1)

inf
u�2 ∈ϒ(�2)

sup
t∈I

∣
∣u�1 (t) – u�2 (t)

∣
∣

≤ sup
u�1 ∈ϒ(�1)

inf
u�2 ∈ϒ(�2)

sup
t∈I

∫ t

0

∣
∣v�1 (s) – v�2 (s)

∣
∣ds,

for some v�1 ∈ �1
�(�1), v�2 ∈ �1

�(�2). By use of (7) the above inequality yields:

D
(
ϒ(�1),ϒ(�2)

) ≤ μ



sup

u�1 ∈ϒ(�1)
inf

u�2 ∈ϒ(�2)
sup
t∈I

∫ t

0

∣
∣�1(s) – �2(s)

∣
∣ds

≤ μ



d(�1, �2) sup

u�1 ∈ϒ(�1)
inf

u�2 ∈ϒ(�2)
sup
t∈I

∫ t

0
ds

= μd(�1, �2).

By a similar calculation, one can obtain D(ϒ(�2),ϒ(�1)) ≤ μd(�1, �2). Hence,

H
(
ϒ(�1),ϒ(�2)

)
= max

{
D

(
ϒ(�1),ϒ(�2)

)
, D

(
ϒ(�2),ϒ(�1)

)}

≤ μd(�1, �2).
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Hence, (RPC1) is satisfied. Now suppose that (�1, �2) ∈R, �2 ∈ ϒ(�1) and
�3 ∈ ϒ(�2). Then, we have �2 ∈ B[�1, r] and �1(t) ≤ �2(t) for all t ∈ I . Hence, by
definition, there exist v�1 ∈ �1

�(�1) and v�2 ∈ �1
�(�2) such that

�2(t) = α +
∫ t

0

[
v�1 (s) + g(s)

]
ds and �3(t) = α +

∫ t

0

[
v�2 (s) + g(s)

]
ds, t ∈ I.

Therefore, using (d), we obtain:

d(�2, �3) = d
(

α +
∫ t

0

[
v�1 (s) + g(s)

]
ds,α +

∫ t

0

[
v�2 (s) + g(s)

]
ds

)

= d
(∫ t

0
v�1 (s) ds,

∫ t

0
v�2 (s) ds

)

≤ sup
t∈I

∫ t

0

∣
∣v�2 (s) – v�1 (s)

∣
∣ds

≤ μ



sup
t∈I

∫ t

0

[
�2(s) – �1(s)

]
ds

≤ μ



d(�1, �2)

∫ t

0
ds

≤ μd(�1, �2)

< d(�1, �2) ≤ r.

Hence, we have �3 ∈ B[�2, r] and with the help of property (e) we obtain:

�3(t) – �2(t) =
∫ t

0

[
v�2 (s) – v�1 (s)

]
ds ≥ 0, t ∈ I.

Hence, (�2, �3) ∈R, and so, (RPC2) is satisfied.
(III) Condition (A) of Theorem 3.1 is satisfied. By hypothesis, there exists a lower

solution �L of the differential inclusion (6) such that d(�L, u) ≤ r for all u ∈ ϒ(�L).
Hence, there exists vL ∈ �1

�(�L) such that �′
L(t) ≤ vL(t) + g(t) for a.e. t ∈ I ,

�L(0) ≤ α. This shows that

�L(t) ≤ �L(0) +
∫ t

0

[
vL(s) + g(s)

]
ds

≤ α +
∫ t

0

[
vL(s) + g(s)

]
ds =: uL(t), t ∈ I,

and uL ∈ ϒ(�L). Further, since uL ∈ ϒ(�L) by hypothesis we have d(�L, uL) ≤ r, i.e.,
uL ∈ B[�L, r]. Hence, (�L, uL) ∈R and uL ∈ ϒ(�L). So, the condition (A) of
Theorem 3.1 is satisfied.

(IV) Condition (B’) of Remark 2 is satisfied. Suppose that {�n} is a termwise related
trajectory of ϒ that converges to � ∈ ß, then �n+1 ∈ ϒ(�n) and �n ≤ �n+1 for all
n ∈ ℵ. By definition of ϒ(�n), there exists a sequence {vn} in �1

�(�n) such that

�n+1 = α +
∫ t

0

[
vn(s) + g(s)

]
ds
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and by condition (b) there exists a subsequence {�ni} that converges to some
v ∈ L1(I,�) with

∫ t
0 vni (s) ds → ∫ t

0 v(s) ds, as i → ∞ for every t ∈ I . Therefore,
� = α +

∫ t
0 [v(s) + g(s)] ds and we can find i0 ∈ ℵ such that d(vni , v) ≤ r



for all i > i0.

Also, since �n ≤ �n+1 for all n ∈ ℵ, we must have �vi ≤ � for all i ∈ ℵ. Finally, for all
i > i0 we have:

d(�ni , �) = sup
t∈I

∣
∣�ni (t) – �(t)

∣
∣

≤ sup
t∈I

∫ t

0

∣
∣vni (t) – v(t)

∣
∣ds

≤ d(vni , v) sup
t∈I

∫ t

0
ds

≤ r

Hence, (�ni , �) ∈R for all i > i0, and so, the condition (B’) of Remark 2 is also
satisfied for k = 1.

Therefore, the existence of a fixed point of ϒ , i.e., a solution to the differential inclusion
(6) follows by Theorem 3.1 and Remark 2.

On the other hand, it is easy to see that a similar conclusion can be drawn in case of
existence of upper solution of (6) by choosing the relation R accordingly. �

The next example validate and illustrate the above theorem.

Example 3 Consider the following differential inclusion problem:

�′(t) ∈ �
(
t, �(t)

)
+ sin t for a.e. t ∈ I = [0, 1],

�(0) = 1,
(9)

where � : I × � →P(�) is given by

�
(
t, �(t)

)
=

⎧
⎨

⎩

{x�, y�}, if � ∈Q;

{x�}, otherwise

and 0 < x < 1, y ∈ � are fixed real numbers. Then, all the conditions of Theorem 5.1 are
satisfied with 
 = 1, g(t) = sin t, t ∈ I , r = ex and μ = x. In fact, we have:

(a) If v(t) = x� for all t ∈ I , then v is a Lebesgue integrable selection of �(·, �(·)).
Therefore, �1

�(�) �= ∅ for all � ∈ C(I,�).
(b) For any fixed � ∈ C(I,�) if {vn} is a sequence in �1

�(�), then by definition of �1
�(�)

there exists a subsequence {vni} = {x�} of {vn} which converges at almost every point
t ∈ I to v = x� ∈ L1(I,�) such that

∫ t
0 vni (s) ds → ∫ t

0 v(s) ds, as i → ∞ for every t ∈ I .
(c) By definition, �(t, �) is closed for all (t, �) ∈ I × � and for each fixed � ∈ C(I,�) we

have �(·, �(·)) is bounded on I ;
(d) Here, 
 = 1. If �1, �2 ∈ C(I,�), �2 ∈ B[�1, ex] with �1(t) ≤ �2(t) for all t ∈ I and

v�1 ∈ �1
�(�1), v�2 ∈ �1

�(�2), then for 0 < μ = x < 1 and r = ex > 0 we have

∣
∣v�1 (t) – v�2 (t)

∣
∣ ≤ μ




[
�2(t) – �1(t)

]
, for a.e. t ∈ I.
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(e) If �1 ∈ C(I,�), �2 ∈ B[�1, ex] with �1(t) ≤ �2(t) for all t ∈ I , then

v�2 (t) – v�1 (t) = x�2 – x�1 ≥ 0, for a.e. t ∈ I,

for all v�1 ∈ �1
�(�1), v�2 ∈ �1

�(�2) with d(
∫ t

0 v�1 (s) ds,
∫ t

0 v�2 (s) ds) ≤ d(�1, �2).
Observe that �L(t) = ext for all t ∈ [0, 1] is a lower solution of inclusion problem (9), as
�′

L(t) = xext ≤ ext + sin t for a.e. t ∈ [0, 1] and �L(0) = 1. Also d(�L, u) ≤ r = ex whenever
u = 1 +

∫ t
0 [v(s) + sin s] ds, t ∈ I , v ∈ �1

�(�L). Hence, by Theorem 5.1, there exists a solution
of (9).

5.2 Application to equilibrium point of a difference inclusion
We now consider the problem of obtaining an equilibrium point of k-th order nonlinear
difference inclusions and its weak stability and global attractivity.

Suppose that � is a subset of a real Banach space ß and ‖ · ‖ denotes the norm on ß. Let
ϒ : �k → P(�) be a mapping, with nonempty values. Let �1, �2, . . . , �k ∈ � and consider
the k-th order nonlinear difference inclusion on �:

�n+k ∈ ϒ(�n, �n+1, . . . , �n+k–1), n = 1, 2, . . . . (10)

A function τ : ℵ → � is called a solution of (10) (see, [9]) if for every n ∈ ℵ, τ (n+k) = τn+k ∈
ϒ(τn, τn+1, . . . , τn+k–1). We say that � ∈ � is an equilibrium point of (10) if, � ∈ ϒ(�, �, . . . , �).
Obviously, an equilibrium point of (10) is a fixed point of ϒ and vice-versa. An equilibrium
point � ∈ � of (10) is said to be weakly stable if, given ε > 0, there exists δ > 0 such that
for at least one solution of (10) with initial values �1, �2, . . . , �k and ‖�1 – �‖ + ‖�2 – �‖ +
· · · + ‖�k – �‖ < δ implies ‖�n – �‖ < ε for all n ∈ ℵ. While the equilibrium point � is said to
be weakly asymptotically stable if it is weakly stable and limn→∞ �n = �, and � is said to be
global attractor if for every �1, �2, . . . , �k ∈ � we have limn→∞ �n = �.

Theorem 5.2 If � is a closed subset of ß and ϒ : �k → CB(�) satisfies the following con-
dition:

H
(
ϒ(�1, �2, . . . , �k),ϒ(�2, �3, . . . , �k+1)

) ≤ � max
1≤i≤k

{
d(�i, �i+1)

}

for all �1, �2, . . . , �k+1 ∈ ß, where 0 ≤ � < 1. Then for every set of initial conditions �1, �2, . . . ,
�k ∈ � the difference inclusion (10) has an equilibrium point � ∈ �. Furthermore, the equi-
librium point � is weakly asymptotically stable and a global attractor.

Proof By Corollary 4.2, the set-valued mapping ϒ has a fixed point in �, which is an equi-
librium point of (10). Also, by the method used in the proof of Corollary 4.2, we observe
that for all �1, �2, . . . , �k ∈ � the trajectory {�n} converges to �, therefore, � is weakly asymp-
totically stable and a global attractor. �

Example 4 Consider the real Banach space � with usual norm, and the following nonlin-
ear difference inclusion of order 2:

�n+2 ∈
[

0,
σ + �2

n+1
ς + �2

n

]

, (11)
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where 0 ≤ σ ≤ ς and ς > 2. Then the difference inclusion (11) has an equilibrium point
in � ∈ [0, 1/2]. Furthermore, the equilibrium point � is weakly asymptotically stable and a
global attractor.

Proof Let ß = � with the usual distance and � = I = [0, 1/2] and define a set-valued map-
ping ϒ : I2 → CB(I) by:

ϒ(�1, �2) =
[

0,
σ + �2

2
ς + �2

1

]

for all �1, �2 ∈ I.

We show that ϒ satisfies the contractive condition of Theorem 5.2. Then, for all �1, �2, �3 ∈
I we have:

H
(
ϒ(�1, �2),ϒ(�2, �3)

)
=

∣
∣
∣
∣
σ + �2

2
ς + �2

1
–

σ + �2
3

ς + �2
2

∣
∣
∣
∣

=
∣
∣
∣
∣
(σ + �2

2)(�2
2 – �2

1) + (ς + �2
1)(�2

2 – �2
3)

(ς + �2
1)(ς + �2

2)

∣
∣
∣
∣

≤ �1 + �2

ς + �2
1
|�1 – �2| +

�2 + �3

ς + �2
2
|�2 – �3|

≤ 2
ς

max
{|�1 – �2|, |�2 – �3|

}

≤ � max
{|�1 – �2|, |�2 – �3|

}
,

where � ≤ 2
ς

< 1. Hence, ϒ satisfies the contractive condition of Theorem 5.2. Therefore,
by Theorem 5.2, the difference inclusion (11) has an equilibrium point �σ ,ς ∈ I which is
weakly asymptotically stable and a global attractor. Indeed, the global attractor �σ ,ς will
depend on σ and ς and infσ∈[0,ς ] �σ ,ς = 0. �

6 Conclusion
In this paper, we have considered a relation-theoretic set-valued generalization of the re-
sult of Prešić and established the existence of fixed point of mappings under suitable as-
sumptions. The main result of this paper is a unification and generalization of the results
of [2, 3, 10, 12]. More importantly, this unification permits us to use the techniques of
[2] and [3] with weaker contractive conditions. The results have been successfully applied
to the differential inclusion problems and to obtain the equilibrium points of difference
inclusions. The result proved here can be further generalized and extended, e.g., more
weaker types of contractive conditions can be used, more than one mapping can be in-
volved in the contractive conditions, so that the scope and applicability of the results can
be broaden. We point out that the contractive condition and the method of proof used
here may not be compatible with the structure of a graphical metric spaces (see, [27]). It
is worth investigating under which assumption(s) the result of this paper can be further
generalized in the generalized setting of graphical metric spaces.
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