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1 Introduction
This paper studies a Balakrishnan–Taylor wave equation with memory and a strong time-
dependent delay

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vtt – (a + b‖∇v‖2 + σ (∇v,∇vt))�v +
∫ t

0
k(t – s)�v(s) ds

– μ1�vt(t) – μ2�vt(t – τ (t)) = 0, x ∈ �, t > 0, (1.1)

v = 0, on ∂� ×R
+, (1.2)

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ �, (1.3)

vt(x, t) = f0(x, t), x ∈ �, t ∈ [–τ (0), 0), (1.4)

where � ⊆ R
n (n ≥ 1) is a bounded domain with smooth boundary ∂�. The term

(a + b‖∇v‖2 + σ (∇v,∇vt)) represents the nonlinear stiffness of the membrane; μ1, μ2 are
two constants. The function k(t) is often called the kernel or relaxation function. τ (t) > 0,
which is dependent on time t, is the time delay. System (1.1)–(1.4) is related to the panel
flutter equation with memory term and time delay control from the physical point of view.

Balakrishnan and Taylor [4] first introduced Balakrishnan–Taylor damping σ (∇v,∇vt);
see also Bass and Zes [5]. If μ2 = σ = 0, the system, which is called Kirchhoff-type equation,
has been well studied. Generally speaking, the wave equation with Balakrishnan–Taylor
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damping is given by

vtt –
(
a + b‖∇v‖2 + σ (∇v,∇vt)

)
�v + g(vt) = f (v). (1.5)

In the absence of damping term and f (v) = |v|pv, the global existence and polynomial decay
of energy were obtained by Zarai and Tatar, see [35]. In [36], an exponential decay and
the blow up of solutions were established. If f (u) = 0, Park [34] obtained a general decay
rate of solutions. Ha [14] studied (1.5) with a memory term, and a general decay result
of energy was proved, which did not impose any restrictive growth assumption on the
damping term. We can find more results concerning wave equation with Balakrishnan–
Taylor damping in Clark [7, 11, 12, 15, 18, 37, 38, 41, 42], and so on.

The delay effects can be regarded as a source of instability. There are so many results on
wave equation with weak time delay effects; see, for example, Datko et al. [9], Nicaise et
al. [30–33], Xu et al. [39], and so on. For the wave equation with a memory term and weak
time delay,

vtt – �v + h ∗ �v + μ1g1
(
vt(t)

)
+ μ2g2

(
vt(t – τ )

)
= 0, (1.6)

if g1 and g2 are linear, the stability was established in [8, 19, 22, 23], etc. Benaissa, Bengues-
soum, and Messaoudi [6] considered (1.6) to prove a general decay of energy by assuming
g2 is linear-like. Regarding a wave equation with Balakrishnan–Taylor damping and weak
time delay,

vtt –
(
a + b‖∇v‖2 + σ (∇v,∇vt)

)
�v + h ∗ �v

+ μ1g1
(
vt(t)

)
+ μ2g2

(
vt(t – τ )

)
= 0, (1.7)

when g1 and g2 are linear, one can find some stability results in Lee et al. [20, 21] and Liu
et al. [24], and so on. Kang et al. [17] studied the general equation (1.7) and obtained a
general decay result following some properties of convex functions introduced in [1–3].
Gheraibia and Boumaza [13] established a general decay rate by assuming h′(t) ≤ –ξ (t)h(t)
for the case of g1(s) = g2(s) = |s|m–2s.

Concerning the wave equation with a strong time delay, in [29], Messaoudi et al. first
introduced a wave equation with strong time delay of the form

vtt – �v – μ1�vt – μ2�vt(t – τ ) = 0, (1.8)

studied the stability of the problem. Feng [10] considered (1.8) with viscoelastic damp-
ing. The author obtained a general decay rate of solution. With respect to viscoelastic
delayed wave equation with Balakrishnan–Taylor damping, Hao and Wei [16] studied the
case of the system with a weak time delay, and energy decay was established by assuming
the relaxation function k such that k′(t) ≤ –ζ (t)k(t). Using the same assumption on the
relaxation function, Yoon et al. [40] proved the general decay of a viscoelastic Kirchhoff
Balakrishnan–Taylor equation with nonlinear delay and acoustic boundary conditions.
Our goal in this paper is to study the energy decay of a wave equation with Balakrishnan–
Taylor damping and strong time delay, i.e., problem (1.1)–(1.4) by considering a more as-



Li Boundary Value Problems         (2023) 2023:60 Page 3 of 16

sumption on relaxation function k:

k′(t) ≤ –ζ (t)kq(t), 1 ≤ q < 3/2,

which is more general than considered in earlier papers. Hence our result improves and
generalizes earlier results in the literature.

In Sect. 2, we give some preliminaries. The general decay result is established in Sect. 3.

2 Preliminaries
First we state some assumptions used in this paper.

We assume k : R+ →R
+ is a nonincreasing differentiable function satisfying

k(0) > 0, a –
∫ ∞

0
k(s) ds = l > 0, (2.1)

and there exists a nonincreasing differentiable function ζ : R+ →R
+ such that for t ≥ 0,

ζ (t) > 0, k′(t) ≤ –ζ (t)kp(t), 1 ≤ p <
3
2

, (2.2)

and
∫ ∞

0
ζ (t) dt = ∞.

For the delay τ (t), there exist constants τ0 > 0 and τ1 > 0 such that

τ0 ≤ τ (t) ≤ τ1, ∀t > 0. (2.3)

In addition,

τ (t) ∈ W 2,∞(0, T) and τ ′(t) ≤ d < 1, ∀T , t > 0. (2.4)

The existence and uniqueness of problem (1.1)–(1.4), which can be proved by using the
Faedo–Galerkin method, are given in the theorem below, see, for example, [35, 41].

Theorem 2.1 Let (2.1)–(2.4) hold. Let μ2 ≤ μ1, and (v0, v1) ∈ (H1(�) × L2(�)), f0 ∈
H1

0 (� × (–τ (0), 0)). Then system (1.1)–(1.4) admits only one weak solution (v, vt) ∈
C(0, T ; H1

0 (�) × L2(�)) such that for any T > 0,

v ∈ L∞(
0, T ; H1

0 (�)
)
, vt ∈ L∞(

0, T ; L2(�)
)
.

The total energy is defined by

E(t) =
1
2
∥
∥vt(t)

∥
∥2 +

b
4
∥
∥∇v(t)

∥
∥4 +

1
2

(

a –
∫ t

0
k(s) ds

)
∥
∥∇v(t)

∥
∥2 +

1
2

(k ◦ ∇v)(t)

+
ξ

2

∫ t

t–τ (t)
e–λ(t–s)∥∥∇vt(s)

∥
∥2 ds,

(2.5)
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where ξ is a positive constant and the constant λ > 0 satisfies, see [32],

λ <
1
τ1

∣
∣
∣
∣log

|μ2|√
1 – d

∣
∣
∣
∣

and

(k ◦ v)(t) =
∫ t

0
k(t – s)

∥
∥v(t) – v(s)

∥
∥2 ds.

Lemma 2.1 Let |μ2| <
√

1 – dμ1. For any t ≥ 0, we have

E′(t) ≤ 1
2
(
k′ ◦ ∇v

)
(t) –

1
2

k(t)
∥
∥∇v(t)

∥
∥2 +

(
ξ

2
– μ1 +

|μ2|
2
√

1 – d

)
∥
∥∇vt(t)

∥
∥2

+
[ |μ2|

2
√

1 – d –
ξ

2
(1 – d)e–λτ1

]
∥
∥∇vt

(
t – τ (t)

)∥
∥2

– σ

(
1
2

d
dt

∥
∥∇v(t)

∥
∥2

)2

–
λξ

2

∫ t

t–τ (t)
e–λ(t–s)∥∥∇vt(s)

∥
∥2 ds

≤ 0.

(2.6)

Proof First,

1
2

d
dt

[

(k ◦ ∇v)(t) –
(∫ t

0
k(s) ds

)
∥
∥∇v(t)

∥
∥2

]

=
1
2
(
k′ ◦ ∇v

)
(t) –

1
2

k(t)
∥
∥∇v(t)

∥
∥2 –

∫

�

∇vt(t)
∫ t

0
k(t – s)∇v(s) ds dx.

(2.7)

Differentiating (2.5), we have

E′(t) =
∫

�

vt(t)vtt(t) dx –
1
2

k(t)
∥
∥∇v(t)

∥
∥2 +

(

a –
∫ t

0
k(s) ds

)∫

�

∇v(t) · ∇vt(t) dx

+ b
∥
∥∇v(t)

∥
∥2

∫

�

∇v(t)∇vt(t) dx +
1
2

d
dt

(k ◦ ∇v)(t)

+
ξ

2
∥
∥∇vt(t)

∥
∥2 –

ξ

2
e–λτ (t)(1 – τ ′(t)

)∥
∥∇vt

(
t – τ (t)

)∥
∥2

–
λξ

2

∫ t

t–τ (t)
e–λ(t–s)∥∥∇vt(s)

∥
∥2 ds.

Then it is obtained by using (1.1) that

E′(t) =
1
2
(
k′ ◦ ∇v

)
(t) –

1
2

k(t)
∥
∥∇v(t)

∥
∥2 – σ

(
1
2

d
dt

∥
∥∇v(t)

∥
∥2

)2

– μ1
∥
∥∇vt(t)

∥
∥2

+
ξ

2
∥
∥∇vt(t)

∥
∥2 – μ2

∫

�

∇vt(t) · ∇vt
(
t – τ (t)

)
dx

–
λξ

2

∫ t

t–τ (t)
e–λ(t–s)∥∥∇vt(s)

∥
∥2 ds –

ξ

2
e–λτ (t)(1 – τ ′(t)

)∥
∥∇vt

(
t – τ (t)

)∥
∥2,
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which, together with (2.7) and (2.3)–(2.4), implies

E′(t) ≤ 1
2
(
k′ ◦ ∇v

)
(t) –

1
2

k(t)
∥
∥∇v(t)

∥
∥2 – σ

(
1
2

d
dt

∥
∥∇v(t)

∥
∥2

)2

– μ1
∥
∥∇vt(t)

∥
∥2

+
ξ

2
∥
∥∇vt(t)

∥
∥2 – μ2

∫

�

∇vt(t) · ∇vt
(
t – τ (t)

)
dx

–
ξ

2
(1 – d)e–λτ1

∥
∥∇vt

(
t – τ (t)

)∥
∥2

–
λξ

2

∫ t

t–τ (t)
e–λ(t–s)∥∥∇vt(s)

∥
∥2 ds.

(2.8)

In view of Young’s inequality,

–μ2

∫

�

∇vt(t) · ∇vt
(
t – τ (t)

)
dx

≤ |μ2|
2
√

1 – d

∥
∥∇vt(t)

∥
∥2 +

|μ2|
2

√
1 – d

∥
∥∇vt

(
t – τ (t)

)∥
∥2. (2.9)

Then (2.6) follows from (2.8)–(2.9).
Clearly, eλτ1 → 1 as λ → 0. Recalling that the set of real numbers is continuous, we can

choose λ > 0, small such that

eλτ1 |μ2|√
1 – d

< ξ < μ1, (2.10)

where ξ is a positive constant. Then it follows that

|μ2|
2
√

1 – d
– μ1 +

ξ

2
< 0 and

|μ2|
2

√
1 – d –

ξ

2eλτ1
(1 – d) < 0. (2.11)

Combining (2.10) and (2.6), we get that the energy in (2.5) is nonincreasing. �

Lemma 2.2 Let (2.1) and (2.2) hold. We have

(k ◦ ∇v)(t) ≤ c
(∫ t

0
k

1
2 (s) ds

) 2q–2
2q–1 (

kq ◦ ∇u
) 1

2q–1 (t). (2.12)

Proof See, Messaoudi [25]. �

Lemma 2.3 Let (2.1) and (2.2) hold. Then for any t ≥ 0,

ζ (t)(k ◦ ∇v)(t) ≤ c
(
–E′(t)

) 1
2q–1 . (2.13)

Proof First, we claim that for any 0 < α < 2 – q,

∫ ∞

0
ζ (t)k1–α(t) dt < +∞. (2.14)
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Indeed, in view of (2.2) and 0 < α < 2 – q, we get

∫ ∞

0
ζ (t)k1–α(t) dt =

∫ ∞

0
ζ (t)kq(t)k1–q–α(t) dt

≤ –
∫ ∞

0
k′(t)k1–q–α(t) dt

= –
k2–q–α

2 – q – α

∣
∣
∣
∣

∞

0
< +∞.

Multiplying (2.12) by ζ (t), and using (2.6) and (2.14), we obtain

ζ (t)(k ◦ ∇v)(t) ≤ cζ
2q–2
2q–1 (t)

(∫ t

0
k

1
2 (s) ds

) 2q–2
2q–1 (

ζkp ◦ ∇v
) 1

2q–1 (t)

≤ c
(∫ t

0
ζ (s)k

1
2 (s) ds

) 2q–2
2q–1 (

–k′ ◦ ∇v
) 1

2q–1 (t)

≤ c
(
–E′(t)

) 1
2q–1 . �

Now we give the stability result.

Theorem 2.2 Let (2.1)–(2.4) hold. Suppose |μ2| <
√

1 – dμ1. Let (v0, v1) ∈ (H1(�) ×
L2(�)), f0 ∈ H1(� × (–τ (0), 0)). Then for any t1 > 0, E(t) satisfies for all t ≥ t1,

E(t) ≤
⎧
⎨

⎩

c exp(–η
∫ t

t1
ζ (s) ds), if q = 1,

c(1 +
∫ t

t1
ζ 2q–1(s) ds)– 1

2q–2 , if 1 < q < 3
2 ,

(2.15)

where η is a positive constant. In addition, if, for 1 < q < 3
2 ,

∫ ∞

t1

(

1 +
∫ t

t1

ζ 2q–1(s) ds
)– 1

2q–2
dt < +∞, (2.16)

then

E(t) ≤ c
(

1 +
∫ t

t1

ζ q(s) ds
)– 1

q–1
, 1 < q <

3
2

. (2.17)

The examples are given to verify some decay rates of energy, see [26–28].

Example 1 Taking ζ (t) = a, it is obtained by (2.15) that

E(t) ≤ βe–γ at .

Example 2 Taking ζ (t) = a
1+t , it is inferred by (2.15) that

E(t) ≤ β

(1 + t)γ a .
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Example 3 Taking k(t) = ae–b(1+t)α for a, b > 0 and 0 < α ≤ 1, we can pick ζ (t) = bα(1+t)α–1.
It is concluded from (2.15) that

E(t) ≤ β exp
(
–bγ (1 + t)α

)
.

Example 4 Consider k(t) = a
(1+t)b (b > 2). We take a > 0 satisfying (2.1). If here we denote

ζ (t) = b
1+t , then we have

k′(t) = –
ab

(1 + t)b+1 = –ζ (t)k(t). (2.18)

Then it is obtained from (2.15)1 that

E(t) ≤ c exp

(

–η

∫ t

t1

ζ (s) ds
)

=
c

(1 + t)bη
.

On the other hand, by denoting ζ (t) = ρ = b

a
1
b

, we rewrite (2.18) as

k′(t) = –ρ

(
a

(1 + t)b

) b+1
b

= –ζ (t)kp(t), (2.19)

with p = b+1
b < 3

2 . Then we get for any t1 > 0,

∫ ∞

t1

(

1 +
∫ t

t1

ζ 2p–1(s) ds
)– 1

2p–2
dt =

∫ ∞

t1

[
1 + c(t – t1)

]– 1
2p–2 dt < +∞.

Then from (2.17), we get

E(t) ≤ c
(

1 +
∫ t

t1

ζ p(s) ds
)– 1

p–1
=

c
(1 + t)b .

3 Uniform decay
We first define two functionals,

φ(t) =
∫

�

v(t)vt(t) dx +
σ

4
∥
∥∇v(t)

∥
∥4

and

ψ(t) = –
∫

�

vt(t) ·
∫ t

0
k(t – s)

(
v(t) – v(s)

)
ds dx.

Lemma 3.1 For any δ1 > 0, we have

φ′(t) ≤ ∥
∥vt(t)

∥
∥2 –

[
(a – l) – 3δ1

]∥
∥∇v(t)

∥
∥2 – b

∥
∥∇v(t)

∥
∥4

+
μ2

1
4δ1

∥
∥∇vt(t)

∥
∥2 +

μ2
2

4δ1

∥
∥∇vt

(
t – τ (t)

)∥
∥2 +

a – l
4δ1

(k ◦ ∇v)(t).
(3.1)
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Proof By (1.1),

φ′(t) =
∫

�

vtt(t)v(t) dx +
∥
∥vt(t)

∥
∥2 + σ

∥
∥∇v(t)

∥
∥2(∇v(t),∇vt(t)

)

=
∥
∥vt(t)

∥
∥2 + σ

∥
∥∇v(t)

∥
∥2(∇v(t),∇vt(t)

)

+
∫

�

v(t) ·
[
(
a + b

∥
∥∇v(t)

∥
∥2 + σ

(∇v(t),∇vt(t)
))

�v(t)

–
∫ t

0
k(t – s)�v(s) ds + μ1�vt(t) + μ2�vt

(
t – τ (t)

)
]

dx

=
∥
∥vt(t)

∥
∥2 –

(
a + b

∥
∥∇v(t)

∥
∥2)∥∥∇v(t)

∥
∥2

+
∫

�

∇v(t) ·
∫ t

0
k(t – s)

(∇v(s) – ∇v(t)
)

ds dx

+
∫ t

0
k(s) ds · ∥∥∇v(t)

∥
∥2 – μ1

∫

�

∇v(t) · ∇vt(t) dx

– μ2

∫

�

∇v(t) · ∇vt
(
t – τ (t)

)
dx.

(3.2)

By the Cauchy–Schwarz inequality, for any δ1 > 0, we obtain

∫

�

∇v(t) ·
∫ t

0
k(t – s)

(∇v(s) – ∇v(t)
)

ds dx

≤ δ1
∥
∥∇v(t)

∥
∥2 +

1
4δ1

∫

�

(∫ t

0
k(t – s)

(∇v(s) – ∇v(t)
)

ds
)2

dx

≤ δ1
∥
∥∇v(t)

∥
∥2 +

1
4δ1

∫ t

0
k(s) ds(k ◦ ∇v)(t)

≤ δ1
∥
∥∇v(t)

∥
∥2 +

a – l
4δ1

(k ◦ ∇v)(t),

(3.3)

– μ1

∫

�

∇v(t) · ∇vt(t) dx ≤ δ1
∥
∥∇v(t)

∥
∥2 +

μ2
1

4δ1

∥
∥∇vt(t)

∥
∥2, (3.4)

– μ2

∫

�

∇v(t) · ∇vt
(
t – τ (t)

)
dx ≤ δ1

∥
∥∇v(t)

∥
∥2 +

μ2
2

4δ1

∥
∥∇vt

(
t – τ (t)

)∥
∥2. (3.5)

Replacing (3.3)–(3.5) in (3.2), (3.1) follows. �

Lemma 3.2 For any δ2 > 0, we have

ψ ′(t) ≤ σ 2E(0)
(

1
2

d
dt

∥
∥∇v(t)

∥
∥2

)2

–
(∫ t

0
k(s) ds – δ2

)
∥
∥vt(t)

∥
∥2 + δ2

∥
∥∇vt(t)

∥
∥2

+ c1(k ◦ ∇v)(t) – c2
(
k′ ◦ ∇v

)
(t) + δ2

∥
∥∇vt

(
t – τ (t)

)∥
∥2 + δ2

∥
∥∇v(t)

∥
∥2,

(3.6)

where c1 and c2 are positive constants depending on δ2.
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Proof It is obtained by (1.1) that

ψ ′(t) = –
∫

�

vtt(t) ·
∫ t

0
k(t – s)

(
v(t) – v(s)

)
ds dx

–
∫

�

vt(t)
[

vt(t)
∫ t

0
k(t – s) ds +

∫ t

0
k′(t – s)

(
v(t) – v(s)

)
ds

]

dx

= –
∫

�

[
(
a + b

∥
∥∇v(t)

∥
∥2 + σ

(∇v(t),∇vt(t)
))

�v(t) –
∫ t

0
k(t – s)�v(s) ds

+ μ1�vt(t) + μ2�vt
(
t – τ (t)

)
]

·
∫ t

0
k(t – s)

(
u(t) – u(s)

)
ds dx

–
∫

�

vt(t)
∫ t

0
k′(t – s)

(
v(t) – v(s)

)
ds dx –

∫ t

0
k(s) ds

∥
∥vt(t)

∥
∥2.

Then

ψ ′(t) =
(

a –
∫ t

0
k(s) ds + b

∥
∥∇v(t)

∥
∥2

)∫

�

∇v(t) ·
∫ t

0
k(t – s)

(∇v(t) – ∇v(s)
)

ds dx

+
∫

�

(∫ t

0
k(t – s)

(∇v(s) – ∇v(t)
)

ds
)2

dx –
∫ t

0
k(s) ds

∥
∥vt(t)

∥
∥2

–
∫

�

vt(t)
∫ t

0
k′(t – s)

(
v(t) – v(s)

)
ds dx

+ μ1

∫

�

∇vt(t) ·
∫ t

0
k(t – s)

(∇v(t) – ∇v(s)
)

ds dx

+ σ
(∇v(t),∇vt(t)

)
∫

�

∇v(t)
∫ t

0
k(t – s)

(∇v(t) – ∇v(s)
)

ds dx

+ μ2

∫

�

∇vt
(
t – τ (t)

) ·
∫ t

0
k(t – s)

(∇v(t) – ∇v(s)
)

ds dx.

(3.7)

Noting that E′(t) ≤ 0, then

(

a –
∫ t

0
k(s) ds

)
∥
∥∇v(t)

∥
∥2 ≤ 2E(t) ≤ 2E(0),

and using (2.1), we have

∥
∥∇v(t)

∥
∥2 ≤ 2l–1E(0). (3.8)

We combine Hölder’s and Cauchy–Schwarz inequalities and (3.8) to obtain, for any
δ2 > 0,

(

a –
∫ t

0
k(s) ds + b

∥
∥∇v(t)

∥
∥2

)∫

�

∇v(t) ·
∫ t

0
k(t – s)

(∇v(t) – ∇v(s)
)

ds dx

≤
(

a +
2b
l

E(0)
)∣

∣
∣
∣

∫

�

∇v(t) ·
∫ t

0
k(t – s)

(∇v(t) – ∇v(s)
)

ds dx
∣
∣
∣
∣

≤ δ2
∥
∥∇v(t)

∥
∥2 + (a – l)(4δ2)–1(a + 2bl–1E(0)

)2(k ◦ ∇v)(t),

(3.9)
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σ
(∇v(t),∇vt(t)

)
∫

�

∇v(t)
∫ t

0
k(t – s)

(∇v(t) – ∇v(s)
)

ds dx

≤ σ 2(∇v(t),∇vt(t)
)2 l

2
∥
∥∇v(t)

∥
∥2

+
1
2l

∫

�

(∫ t

0
k(t – s)

(∇v(t) – ∇v(s)
)

ds
)2

dx

≤ σ 2E(0)
(

1
2

d
dt

∥
∥∇v(t)

∥
∥2

)2

+ (a – l)(2l)–1(k ◦ ∇v)(t),

(3.10)

μ1

∫

�

∇vt(t)
∫ t

0
k(t – s)

(∇v(t) – ∇v(s)
)

ds dx

≤ δ2
∥
∥∇vt(t)

∥
∥2 + μ2

1(a – l)(4δ2)–1(k ◦ ∇v)(t),
(3.11)

μ2

∫

�

∇vt
(
t – τ (t)

) ·
∫ t

0
k(t – s)

(∇v(t) – ∇v(s)
)

ds dx

≤ δ2
∥
∥∇vt

(
t – τ (t)

)∥
∥2 + μ2

2(a – l)(4δ2)–1(k ◦ ∇v)(t),
(3.12)

–
∫

�

vt(t)
∫ t

0
k′(t – s)

(
v(t) – v(s)

)
ds dx

≤ δ2
∥
∥vt(t)

∥
∥2 +

1
4δ2

(∫ t

0

(
–k′(t – s)

)∥
∥v(t) – v(s)

∥
∥ds

)2

dx

≤ δ2
∥
∥vt(t)

∥
∥2 – k(0)(4δ2λ1)–1(k′ ◦ ∇v

)
(t),

and

∫

�

(∫ t

0
k(t – s)

(∇v(s) – ∇v(t)
)

ds
)2

dx ≤ (a – l)(k ◦ ∇v)(t).

It is inferred by combining the above inequalities with (3.7) that (3.6) holds with

c1 =
a – l
4δ2

(
a + 2bl–1E(0)

)2 + (a – l)(2l)–1 + μ2
1(a – l)(4δ2)–1 + μ2

2(a – l)(4δ2)–1 + (a – l)

and

c2 = k(0)(4δ2λ1)–1. �

We define Ẽ(t) by

Ẽ(t) := E(t) + ε1φ(t) + ε2ψ(t),

for ε1 > 0 and ε2 > 0.

Lemma 3.3 For ε1 > 0 and ε2 > 0 small, it holds that

1
2

E(t) ≤ Ẽ(t) ≤ 3
2

E(t). (3.13)
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Proof It is concluded by Young’s and Poincaré’s inequalities that

∣
∣Ẽ(t) – E(t)

∣
∣ = ε1φ(t) + ε2ψ(t)

≤ ε1

∫

�

∣
∣v(t)

∣
∣
∣
∣vt(t)

∣
∣dx +

ε1σ

4
∥
∥∇v(t)

∥
∥4

+ ε2

∫

�

∣
∣vt(t)

∣
∣
∫ t

0
k(t – s)

∣
∣v(t) – v(s)

∣
∣ds dx

≤ ε1

2
∥
∥vt(t)

∥
∥2 +

ε1

2λ1

∥
∥∇v(t)

∥
∥2 +

ε1σ

4
∥
∥∇v(t)

∥
∥4

+
ε2

2
∥
∥vt(t)

∥
∥2 +

ε2

2λ1
(a – l)(k ◦ ∇v)(t).

Then there is a constant ε > 0 such that

∣
∣Ẽ(t) – E(t)

∣
∣ ≤ εE(t),

which implies (3.13) by taking ε1 > 0 and ε2 > 0 sufficiently small. �

Proof of Theorem 2.2 First, for any t1 > 0, it is obtained that for any t ≥ t1,

∫ t

0
k(s) ds ≥

∫ t1

0
k(s) ds := k0.

We infer from (2.6), (3.1), and (3.6) that for any t ≥ t1,

Ẽ′(t) ≤ –
(∫ t

0
k(s) ds – δ2

)

ε2
∥
∥vt(t)

∥
∥2 –

[[
(a – l) – 3δ1

]
ε1 – δ2ε2

]∥
∥∇v(t)

∥
∥2

+
(

ξ

2
– μ1 +

|μ2|
2
√

1 – d
+

μ2
1

4δ1
ε1 + δ2ε2

)
∥
∥∇vt(t)

∥
∥2

+
[ |μ2|

2
√

1 – d –
ξ

2
(1 – d)e–λτ1 +

μ2
2

4δ1
ε1 + δ2ε2

]
∥
∥∇vt

(
t – τ (t)

)∥
∥2

+
(

1
2

– c2ε2

)
(
k′ ◦ ∇v

)
(t) +

(
a – l
4δ1

ε1 + c1ε2

)

(k ◦ ∇v)(t)

–
λξ

2

∫ t

t–τ (t)
e–λ(t–s)∥∥∇vt(s)

∥
∥2 ds –

(
σ – σ 2E(0)ε2

)
(

1
2

d
dt

∥
∥∇v(t)

∥
∥2

)2

.

(3.14)

First, we take δ1 > 0 satisfying

(a – l) – 3δ1 >
a – l

2
.

For any fixed δ1 > 0, we choose δ2 > 0 satisfying for t ≥ t1,

∫ t

0
k(s) ds – δ2 ≥ 1

2
k0.

At this point, for any fixed δ1, δ2 > 0, we take ε1 > 0 small enough such that (3.13) holds,

ε1 < min

{
2δ1

μ1
–

ξδ1

μ2
1

–
|μ2|δ1

μ2
1
√

1 – d
,
ξδ1

μ2
2

(1 – d)e–λτ1 –
δ1

|μ2|
√

1 – d
}

,
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which gives us

ξ

2
– μ1 +

|μ2|
2
√

1 – d
+

μ2
1

4δ1
ε1 <

ξ

4
–

μ1

2
+

|μ2|
4
√

1 – d

and

|μ2|
2

√
1 – d –

ξ

2
(1 – d)e–λτ1 +

μ2
2

4δ1
ε1 <

|μ2|
4

√
1 – d –

ξ

4
(1 – d)e–λτ1 .

At last for any fixed δ1, δ2 > 0 and ε1 > 0, we pick ε1 > 0 so small that (3.13) holds, and
further

ε2 < min

{
1

4c2
,

1
2σE(0)

,
a – l
2δ2

ε1,
μ1

4δ2
–

ξ

8δ2
–

|μ2|
8δ2

√
1 – d

,

ξ

8δ2
(1 – d)e–λτ1 –

|μ2|
8δ2

√
1 – d

}

,

which gives us

1
2

– c2ε2 >
1
4

, σ – σ 2E(0)ε2 >
σ

2
,

a – l
2

ε2 – δ2ε2 > 0,

ξ

4
–

μ1

2
+

|μ2|
4
√

1 – d
+ δ2ε2 <

ξ

8
–

μ1

4
+

|μ2|
8
√

1 – d
,

and

|μ2|
4

√
1 – d –

ξ

4
(1 – d)e–λτ1 + δ2ε2 <

|μ2|
8

√
1 – d –

ξ

8
(1 – d)e–λτ1 .

Then we can conclude that for any t ≥ t1,

Ẽ′(t) ≤ –γ1E(t) + γ2(k ◦ ∇v)(t), (3.15)

for γ1 > 0 and γ2 > 0.
Case 1. q = 1
We multiply (3.15) by ζ (t) and use (2.2) to obtain

ζ (t)Ẽ′(t) ≤ –γ1ζ (t)E(t) + γ2ζ (t)(k ◦ ∇v)(t)

≤ –γ1ζ (t)E(t) – γ2
(
k′ ◦ ∇v

)
(t)

≤ –γ1ζ (t)E(t) – γ3E′(t), ∀t ≥ t1,

(3.16)

where γ3 > 0.
Denoting

H(t) = ζ (t)Ẽ(t) + γ3E(t),

and recalling (3.13), we know that H(t) ∼ E(t), i.e.,

β1E(t) ≤ H(t) ≤ β2E(t), (3.17)
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where β1 and β2 are two constants. Noting that ζ (t) is nonincreasing, we can derive from
(3.16)–(3.17) that

H ′(t) ≤ –
γ1

β2
ζ (t)H(t), ∀t ≥ t1.

It is inferred that for any t ≥ t1,

H(t) ≤ H(t0) exp

(

–
γ1

β2

∫ t

t1

ζ (s) ds
)

, (3.18)

which gives us (2.15)1.
Case 2. It is concluded by multiplying (3.15) by ζ (t) that

ζ (t)Ẽ′(t) ≤ –γ1ζ (t)E(t) + γ2ζ (t)(k ◦ ∇v)(t)

≤ –γ1ζ (t)E(t) + c
(
–E′(t)

) 1
2q–1 .

(3.19)

Multiplying (3.19) by ζ 2q–2(t)E2q–2(t) implies

ζ 2q–1(t)E2q–2(t)Ẽ′(t) ≤ –γ1(ζE)2q–1(t) + c(ζE)2q–2(t)
(
–E′(t)

) 1
2q–1 . (3.20)

Using Young’s inequality in (3.20) gives for any ε0 > 0,

ζ 2q–1(t)E2q–2(t)Ẽ′(t) ≤ –(γ1 – cε0)(ζE)2q–1(t) –
c
ε0

E′(t). (3.21)

Since ζ (t) and E(t) are nonincreasing, we can take ε0 small enough such that γ1 – cε0 > 0
to get that there exists γ ′

3 > 0 such that

(
ζ 2q–1E2q–2Ẽ

)′(t) ≤ ζ 2q–1(t)E2q–2(t)Ẽ′(t) ≤ –γ ′
3(ζE)2q–1(t) – cE′(t). (3.22)

Define

J(t) = ζ 2q–1E2q–2Ẽ.

Clearly, J(t) ∼ E(t). Then for some γ4 > 0,

J ′(t) ≤ –γ3(ζE)2q–1(t) ≤ –γ4ζ
2q–1(t)J2q–1(t). (3.23)

Integrating (3.23) over (t1, t) yields

E(t) ≤ c
(

1 +
∫ t

t1

ζ 2q–1(s) ds
)– 1

2q–2
.

To prove (2.17), we first observe from (2.15)2 and (2.16) that

∫ ∞

0
E(t) dt < +∞.
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Define

θ (t) =
∫ t

0

∥
∥∇v(t) – ∇v(t – s)

∥
∥2 ds.

We have

θ (t) ≤ 2
∫ t

0

(∥
∥∇v(t)

∥
∥2 +

∥
∥∇v(t – s)

∥
∥2)ds

≤ 4l–1
∫ t

0

(
E(t) + E(t – s)

)
ds

≤ 8l–1
∫ t

0
E(t – s) ds = 8l–1

∫ t

0
E(s) ds

≤ 8l–1
∫ ∞

0
E(s) ds < +∞.

(3.24)

Multiplying (3.15) by ζ (t) and using (3.24) together with Jensen’s inequality, we obtain

ζ (t)Ẽ′(t) ≤ –γ1ζ (t)E(t) + γ2ζ (t)(k ◦ ∇v)(t)

≤ –γ1ζ (t)E(t) + c
θ (t)
θ (t)

∫ t

0

(
ζ qkq) 1

q (s)
∥
∥∇v(t) – ∇v(t – s)

∥
∥2 ds

≤ –γ1ζ (t)E(t) + cθ (t)
(

1
θ (t)

∫ t

0
ζ q(s)kq(s)

∥
∥∇v(t) – ∇v(t – s)

∥
∥2 ds

) 1
q

,

(3.25)

where we assume that θ (t) is positive, otherwise, for any t ≥ t1, E(t) ≤ ce–kt , k > 0. Hence
it is inferred from (3.25) that

ζ (t)Ẽ′(t) ≤ –γ1ζ (t)E(t) + cθ
q–1

q (t)
(

ζ q–1(0)
∫ t

0
ζ (s)kq(s)

∥
∥∇v(t) – ∇v(t – s)

∥
∥2 ds

) 1
q

≤ –γ1ζ (t)E(t) + c
(
–k′ ◦ ∇v

) 1
q (t)

≤ –γ1ζ (t)E(t) + c
(
–E′(t)

) 1
q .

(3.26)

Consequently, it is concluded by multiplying (3.26) by ζ q–1(t)Eq–1(t) and repeating the
above steps that

E(t) ≤ c
(

1 +
∫ t

t1

ζ q(s) ds
)– 1

q–1
, 1 < q <

3
2

.

This ends the proof of Theorem 2.2. �

4 Conclusion
This paper studies a Balakrishnan–Taylor viscoelastic strongly delayed wave equation. Un-
der suitable assumptions on μ1, μ2 and the relaxation function, a more general energy
decay result is proved by using Lyapunov functionals. The decay rate we established is
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more general than earlier results, hence our result improves and generalizes some previ-
ous works. Several rates of energy decay are illustrated by provided examples.
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