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Abstract
In this paper we present some existence and multiplicity results for a class of
anisotropic �p-Laplacian problems with Dirichlet boundary conditions. In particular,
the existence of three solutions is pointed out. The approach is based on variational
methods and our main tool is a three critical point theorem.
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1 Introduction
In the present work we deal with multiplication results of solutions for the following
anisotropic problem

⎧
⎨

⎩

–��pu = λf (x, u) in �,

u = 0 on ∂�.
(D�p

λ)

We suppose that � is a nonempty bounded open set of the real Euclidean space R
N , with

N ≥ 2, whose boundary is of class C1, f : � ×R → R is an L1-Carathéodoy function and
�p = (p1, p2, . . . , pN ), �p ∈R

N , with

p– = min{p1, p2 . . . , pN } > N and p+ = max{p1, p2 . . . , pN }, (1.1)

respectively the minimum and the maximum value of the anisotropic configuration.
Moreover, λ is a positive real parameter.

The anisotropic �p-Laplacian operator is defined as

��pu =
N∑

i=1

∂

∂xi

(∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi–2
∂u
∂xi

)

, (1.2)

which is a generalization of the usual Laplacian operator in the case of pi = 2, for all i =
1, . . . , N . We also observe that formula (1.2) becomes the pseudo-p-Laplacian operator if
�p is constant (that is, pi = p for all i = 1, . . . , N ) (see, for instance, [5, 11]).
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The theory of anisotropic Sobolev space appears for the first time in [22, 28, 30, 31,
35], where the authors introduce the anisotropic Sobolev space starting from a generic
set of multi-indices. Recently, many authors have investigated anisotropic boundary value
problems. For an overview of these subjects, we refer to [3, 4, 9, 13, 14, 18–20, 24] and the
references therein. In [18] the authors study the existence of positive solutions for a class
of anisotropic quasilinear systems. The approach is based on a suitable combination of
the sub-supersolution method with the mountain pass theorem. In [24], the authors use
an approximation approach to prove the existence and regularity of the solutions to an
anisotropic problem involving a singular nonlinearity.

The theory of anisotropic problems is also extended for the case when the indexes of the
operator are continuous functions. Then, the operator describing these problems becomes
the following anisotropic �p(x)-Laplacian operator

��p(x)u =
N∑

i=1

∂

∂xi

(∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi(x)–2
∂u
∂xi

)

. (1.3)

It is easy to see that in the case of pi(x) = p(x) for all i = 1, . . . , N , the operator (1.3) becomes
the pseudo-p(x)-Laplacian operator (see, for instance, [10]). In this framework, the study
of nonlinear elliptic problems involving operators of the type p(x)-Laplacian is based on
the theory of generalized Lebesgue-Sobolev spaces (see for instance [15, 17, 21, 25–27]
and references therein). Nonlinear differential problems involving nonlocal operators
as well as non standard and/or non uniform operators have been widely studied (see
[12, 16, 29]). Anisotropic problems are of increasing interest, especially for their appli-
cations. Operators such as (1.2) model phenomena in which partial derivatives vary with
direction. For instance, the study of an epidemic disease in heterogeneous habitat or many
reaction–diffusion processes depending on different environments can be expressed by
an anisotropic nonlinear operator. For more details about these arguments, we refer to
[1, 6, 7, 23, 32, 33, 36, 37] and the references therein.

The aim of this paper is to obtain the existence of multiple solutions for the problem
(D�p

λ) using variational methods. In particular, our main tool is a critical points theorem
(Theorem 2.1) established in [8]. Here a special case of our main result is presented.

Theorem 1.1 Let g : R → R be a continuous function which is nonnegative and non zero
in [0, +∞) and nonpositive and nonzero in (–∞, 0] and such that

lim|t|→+∞
g(t)

|t|p––1 = lim
t→0

g(t)
|t|p+–1 = 0. (1.4)

Then there exists λ∗ > 0 such that for each λ > λ∗ the problem

⎧
⎨

⎩

–��pu = λg(u) in �,

u = 0 on ∂�,
(AD�p

λ)

admits at least four distinct nontrivial weak solutions, two positive and two negative.

The paper is arranged as follows. In Sect. 2 we define some preliminaries and basic nota-
tions that we are going to use to define the anisotropic Sobolev space. Moreover, properties



Bonanno et al. Boundary Value Problems         (2023) 2023:89 Page 3 of 12

of the functional associated to problem (D�p
λ) are pointed out. In Sect. 3, our main result

(Theorem 3.1) and consequences are presented (see Theorem 3.2). In particular, under
suitable sign conditions for the nonlinearity, in Theorem 3.2 the existence of two positive
solutions is established. Finally, an example (see Example 3.4) is presented.

2 Preliminaries and basic notations
The present section is devoted to defining the anisotropic Sobolev space and to recall-
ing some properties and basic results that we will use in the sequel. Given a vector
�p = (p0, p1, . . . , pN ) with pi ≥ 1 for i = 0, 1, . . . , N , the anisotropic Sobolev space (see [30,
Definition 7]) is defined as

W 1,�p(�) =
{

u ∈ Lp0 (�) :
∂u
∂xi

∈ Lpi (�), for i = 1, . . . , N
}

, (2.1)

endowed with the norm

‖u‖W 1,�p(�) = ‖u‖Lp0 (�) +
N∑

i=1

∥
∥
∥
∥

∂u
∂xi

∥
∥
∥
∥

Lpi (�)
. (2.2)

We define as W 1,�p
0 (�) the closure of C∞

0 (�) with respect to the norm (2.2) and denote
by (W 1,�p

0 (�))∗ its dual space. Moreover, (W 1,�p(�),‖ · ‖W 1,�p(�)) and (W 1,�p
0 (�),‖ · ‖W 1,�p

0 (�))
are separable Banach spaces, which are reflexive if pi > 1 for i = 0, 1, . . . , N , and, taking into
account the smoothness of the boundary the �, the embedding theorems are verified, (see
[22, 30, 31]).

Here and in the sequel assume p– = min{p1, p2, . . . pN } > N . Clearly, from the Hölder in-
equality, one has

‖u‖W 1,p– (�) ≤ c
N∑

i=1

∥
∥
∥
∥

∂u
∂xi

∥
∥
∥
∥

Lpi (�)

for all u ∈ W 1,�p
0 (�) (see [9, page 234]). Taking into account that W 1,p– (�) is com-

pactly embedded in C(�̄), one has ‖u‖C(�̄) ≤ k
∑N

i=1 ‖ ∂u
∂xi

‖Lpi (�) for which ‖u‖Lp0 (�) ≤
k̃
∑N

i=1 ‖ ∂u
∂xi

‖Lpi (�). Hence, on W 1,�p
0 (�) we can also define the following norm

‖u‖W 1,�p
0 (�) :=

N∑

i=1

∥
∥
∥
∥

∂u
∂xi

∥
∥
∥
∥

Lpi (�)
, (2.3)

which is equivalent to the usual one (2.2).
Now, recalling that the usual Sobolev space W 1,p–

0 (�) is compactly embedded in C0(�̄),
we explicit that one also has

‖u‖C0(�̄) ≤ mp–‖u‖W 1,p–
0 (�), (2.4)

for every u ∈ W 1,p–

0 (�), where

mp– =
N– 1

p–

√
π

[

�

(

1 +
N
2

)] 1
N
(

p– – 1
p– – N

)1– 1
p–

|�| 1
N – 1

p– , (2.5)
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with � the Gamma function and |�| the Lebesgue measure of �. In particular, if � is the
N-dimensional ball, (2.5) is the best constant such that (2.4) is verified (see [34, Formula
(6b)]).

Now we recall the following two propositions (see [9, Proposition 2.1] and [9, Proposi-
tion 2.2]) that we need for our purposes.

Proposition 2.1 Suppose that p– > N ; one has

‖u‖C0(�̄) ≤ T0‖u‖W 1,�p
0 (�), (2.6)

for each u ∈ W 1,�p
0 (�), where

T0 = 2
(N–1)(p––1)

p– mp– max
1≤i≤N

{|�|
pi–p–
pip– }

. (2.7)

Moreover, the embedding of W 1,�p
0 (�) in C0(�̄) is compact.

Proposition 2.2 Fix r > 0. Then for each u ∈ W 1,�p
0 (�) such that

N∑

i=1

1
pi

∥
∥
∥
∥

∂u
∂xi

∥
∥
∥
∥

pi

Lpi (�)
< r,

one has

‖u‖C0(�̄) < T max
{

r1/p–
; r1/p+}

,

where T = T0
∑N

i=1 pi
1/pi and T0 is given in (2.7).

Throughout the sequel, we suppose that f : �×R→R is an L1-Carathéodory function,
i.e.:

(1) x �→ f (x, ξ ) is measurable for every ξ ∈ R;
(2) ξ �→ f (x, ξ ) is continuous for almost every x ∈ �;
(3) for every s > 0 there is a function ls ∈ L1(�) such that

sup
|ξ |≤s

|f (x, ξ )| ≤ ls(x)

for a.e. x ∈ �.
We recall that u : � → R is a weak solution of problem (D�p

λ) if u ∈ W 1,�p
0 (�) satisfies the

following condition

N∑

i=1

∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi–2
∂u
∂xi

∂v
∂xi

dx = λ

∫

�

f
(
x, u(x)

)
v(x) dx,

for all v ∈ W 1,�p
0 (�).

Finally, we define the functionals 	,
 : W 1,�p
0 (�) →R by setting

	(u) :=
N∑

i=1

1
pi

∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi

dx, 
(u) :=
∫

�

F
(
x, u(x)

)
dx, (2.8)
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for every u ∈ W 1,�p
0 (�), where

F(x, t) =
∫ t

0
f (x, τ ) dτ , for all t ∈R.

Clearly, 	 and 
 are Gâteaux differentiable functionals whose Gâteaux derivatives at the
point u ∈ W 1,�p

0 (�) are respectively given by

	′(u)(v) =
N∑

i=1

∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi–2
∂u
∂xi

∂v
∂xi

dx,


 ′(u)(v) =
∫

�

f
(
x, u(x)

)
v(x) dx,

(2.9)

for every v ∈ W 1,�p
0 (�). Moreover, we observe that the critical points in W 1,�p

0 (�) of the
functional Iλ = 	 – λ
 are precisely the weak solutions of problem (D�p

λ).
Now we prove the following propositions useful in the sequel.

Proposition 2.3 The functional 	 defined in (2.8) is coercive and sequentially weakly
lower semicontinuous. Moreover, its Gâteaux derivative admits a continuous inverse on
(W 1,�p

0 (�))∗.

Proof Let 	 the functional defined in (2.8). Put pj such that

(∫

�

∣
∣
∣
∣
∂u
∂xj

∣
∣
∣
∣

pj

dx
) 1

pj
:= max

1≤i≤N

(∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi

dx
) 1

pi
;

simple computations show

	(u) ≥ 1
p+Npj

‖u‖pj

W 1,�p
0 (�)

, (2.10)

and so 	 is coercive.
Now, we observe that 	 is sequentially weakly lower semicontinuous. Indeed, it is con-

vex and continuous and our claim follows from [38, Proposition 25.20]).
Finally, we prove that 	′ admits a continuous inverse on (W 1,�p

0 (�))∗. Since pi > 2 for
i = 1, . . . , N , arguing as [2, Proposition 2.4] one has that 	′ is uniformly monotone. Hence,
the Browder-Minty Theorem (see [38, Theorem 26.A (d)]) ensures that there exists the
inverse (	–1)′, which is continuous. �

Proposition 2.4 The functional 
 is continuously Gâteaux differentiable and its deriva-
tive is compact.

Proof Our aim is to apply [38, Proposition 26.2]. To this end let {un} ⊂ W 1,�p
0 (�) be

bounded. Since W 1,�p
0 (�) is reflexive (see [31, Theorem 1]), up to a subsequence, we have

that

un
w−→ u in W 1,�p

0 (�). (2.11)
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Clearly, since the embedding of W 1,�p
0 (�) in C0(�̄) is compact (see Proposition 2.1) we have

that

un
s−→ u in C0(�̄).

that is

un(x) → u(x) uniformly in �,

then there exists K > 0 such that |un(x)| ≤ K for all x ∈ � and then, since f is an L1-
Carathéodory function, up to a subsequence we obtain that

f
(
x, un(x)

) → f
(
x, u(x)

)
in L1(�).

Let v ∈ W 1,�p
0 (�) be such that ‖v‖W 1,�p

0 (�) ≤ 1; we observe that

∣
∣
 ′(un)(v) – 
 ′(u)(v)

∣
∣ =

∣
∣
∣
∣

∫

�

(
f
(
x, un(x)

)
– f

(
x, u(x)

))
v(x) dx

∣
∣
∣
∣

≤
∫

�

∣
∣f

(
x, un(x)

)
– f

(
x, u(x)

)∣
∣
∣
∣v(x)

∣
∣dx

≤ T0

∫

�

∣
∣f

(
x, un(x)

)
– f

(
x, u(x)

)∣
∣dx, (2.12)

where in the last inequality we use formula (2.6). Finally, from (2.12), we obtain

sup
‖v‖

W 1,�p
0 (�)

≤1

∣
∣
 ′(un)(v) – 
(u)(v)

∣
∣ ≤ T0

∥
∥f

(
x, un(x)

)
– f

(
x, u(x)

)∥
∥

L1(�), (2.13)

and from (2.13)

lim
n→+∞

∥
∥
 ′(un)(v) – 
(u)(v)

∥
∥

(W 1,�p
0 (�))∗ = lim

n→+∞

[
sup

‖v‖
W 1,�p

0 (�)
≤1

∣
∣
 ′(un)(v) – 
(u)(v)

∣
∣
]

≤ T0 lim
n→+∞

∥
∥f

(
x, un(x)

)
– f

(
x, u(x)

)∥
∥

L1(�) = 0,

that is 
 ′ is strongly continuous and then, from comma (a) of [38, Proposition 26.2], 
 ′ is
compact. �

Our main tool is a three critical point theorem, that we recall here for reader conve-
nience.

Theorem 2.1 (see [8, Theorem 7.1]) Let X be a real Banach space and 	, 
 : X → R be
two continuously Gâteaux differentiable functionals with 	 bounded from below. Assume
that 	(0) = 
(0) = 0 and that there exist r > 0 and ū ∈ X, with r < 	(ū), such that:

supu∈	–1(]–∞,r]) 
(u)
r

<

(ū)
	(ū)

(2.14)
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Moreover, for each λ ∈ �r =] 	(ū)

(ū) , r

supu∈	–1(]–∞,r]) 
(u) [, the functional Iλ = 	 – λ
 is bounded
from below and satisfies the (PS)-condition.

Then, for each λ ∈ �r , the functional Iλ = 	–λ
 has at least three distinct critical points
in X.

3 Main result and consequences
This section presents our main result and some consequences. Our goal is to apply the
critical point theorem recalled in Sect. 2 (Theorem 2.1). More precisely, we point out an
existence result of at least three weak solutions (see Theorem 3.1) and some consequences
(Theorem 3.2, Example 3.15). Put

R := sup
x∈�

dist(x, ∂�);

simple calculations show that there is x0 ∈ � such that B(x0, R) ⊆ � and we denote by

ωR := |B(x0, R)| =
π

N
2

�(1 + N
2 )

RN ,

the measure of the N-dimensional ball of radius R.
Let x = (x1, . . . , xN ), x0 = (x01, . . . , x0N ) be in R

N and put

δi =
∫

B(x0,R)\B(x0, R
2 )

|xi – x0i|pi

|x – x0|pi
N

dx, (3.1)

and

H =
N∑

i=1

[
1
pi

(
2
R

)pi

δi

]

, (3.2)

where | · |N is the usual norm in R
N .

Theorem 3.1 Let f : �×R→R be an L1-Carathéodory function. Assume that there exist
two positive constants c and d, with

min
{

cp–
; cp+}

< Hmin
{

Tp–
; Tp+}

min
{

dp–
; dp+}

, (3.3)

such that

F(x, t) ≥ 0, for all (x, t) ∈ � × [0, d], (3.4)

and

∫

�
max|ξ |≤c F(x, ξ ) dx

min{cp– ; cp+} <
1

Hmax{Tp– ; Tp+}

∫

B(x0, R
2 ) F(x, d) dx

max{dp– ; dp+} (3.5)

where T is given in Proposition 2.2. Moreover, suppose that

lim sup
|t|→+∞

F(x, t)
|t|p– = 0, uniformly a.e. in �. (3.6)
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Then, for each λ ∈ �̃ :=]H max{dp–
;dp+ }∫

B(x0, R
2 ) F(x,d) dx , 1

max{Tp– ;Tp+ }
min{cp–

;cp+ }∫

� max|ξ |≤c F(x,ξ ) dx [, problem (D�p
λ) has

at least three weak solutions.

Proof Put 	 and 
 as in (2.8). It is well known that 	 and 
 satisfy all regularity as-
sumptions requested in Theorem 2.1, and furthermore one has infu∈W 1,�p

0 (�) 	(u) = 	(0) =


(0) = 0. Our aim is to verify condition (2.14). To this end, put r = min{( c
T )p– ; ( c

T )p+}, where
T is given in Proposition 2.2. Fix

ū(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x ∈ � \ B(x0, R),
2d
R (R – |x – x0|) if x ∈ B(x0, R) \ B(x0, R

2 ),

d if x ∈ B(x0, R
2 ).

(3.7)

Clearly, ū ∈ W 1,�p
0 (�). From (3.3), we obtain that 	(ū) > r. Indeed,

	(ū) =
N∑

i=1

1
pi

∫

�

∣
∣
∣
∣
∂ū
∂xi

∣
∣
∣
∣

pi

dx =
N∑

i=1

1
pi

(
2d
R

)pi ∫

B(x0,R)\B(x0, R
2 )

|xi – x0i|pi

|x – x0|pi
N

dx

=
N∑

i=1

[
1
pi

(
2d
R

)pi

δi

]

≥
N∑

i=1

[
1
pi

(
2
R

)pi

δi

]

min
{

dp–
; dp+}

= Hmin
{

dp–
; dp+}

>
min{cp– ; cp+}

min{Tp– ; Tp+}

= min
{

cp–
; cp+}

max

{(
1
T

)p–

;
(

1
T

)p+}

≥ min

{(
c
T

)p–

;
(

c
T

)p+}

= r

Moreover, for all u ∈ W 1,�p
0 (�) such that u ∈ 	–1(] – ∞, r]), from Proposition 2.2 one has

∣
∣u(x)

∣
∣ < T max

{
r1/p–

; r1/p+}
= c for all x ∈ �. (3.8)

So,


(u) =
∫

�

F
(
x, u(x)

)
dx ≤

∫

�

max
|ξ |≤c

F(x, ξ ) dx,

for all u ∈ X such that u ∈ 	–1(] – ∞, r]). Hence,

sup
u∈	–1(]–∞,r])


(u) ≤
∫

�

max
|ξ |≤c

F(x, ξ ) dx.

Therefore, one has

supu∈	–1(]–∞,r]) 
(u)
r

≤
∫

�
max|ξ |≤c F(x, ξ ) dx

min{( c
T )p– ; ( c

T )p+}

≤ max
{

Tp–
; Tp+}

∫

�
max|ξ |≤c F(x, ξ ) dx

min{cp– ; cp+} . (3.9)
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On the other hand, from (3.1) and (3.2), we have

	(ū) =
N∑

i=1

1
pi

∫

�

∣
∣
∣
∣
∂ū
∂xi

∣
∣
∣
∣

pi

dx =
N∑

i=1

1
pi

(
2d
R

)pi ∫

B(x0,R)\B(x0, R
2 )

|xi – x0i|pi

|x – x0|pi
N

dx

=
N∑

i=1

[
1
pi

(
2d
R

)pi

δi

]

≤
N∑

i=1

[
1
pi

(
2
R

)pi

δi

]

max
{

dp–
; dp+}

= Hmax
{

dp–
; dp+}

and, taking (3.4) into account, one has


(ū) ≥
∫

B(x0, R
2 )

F(x, d) dx.

Hence, we obtain


(ū)
	(ū)

≥ 1
H

∫

B(x0, R
2 ) F(x, d) dx

max{dp– ; dp+} . (3.10)

Hence, from (3.9), (3.10) and assumption (3.5), we obtain

supu∈	–1(]–∞,r]) 
(u)
r

<

(ū)
	(ū)

.

Now, we prove that the functional Iλ = 	 – λ
 is coercive.
Fix 0 < ε < 1

2(p––1)(N–1)p+λT0|�| , from (3.6) and since f is L1-Carathéodory, there exists a
function hε ∈ L1(�) such that

F(x, t) ≤ ε|t|p–
+ hε(x),

for each (x, t) ∈ � ×R. Then, for each u ∈ W 1,�p
0 (�), from formula (2.6), taking (2.10) into

account, we have that

Iλ(u) ≥ 1
p+Npj

‖u‖pj

W 1,�p
0 (�)

– λεTp–

0 |�|‖u‖p–

W 1,�p
0 (�)

– λ‖hε‖L1(�),

that is

Iλ(u)
‖u‖W 1,�p

0 (�)

≥ 1
p+Npj

‖u‖pj–1

W 1,�p
0 (�)

– λεTp–

0 |�|‖u‖p––1
W 1,�p

0 (�)
– λ

‖hε‖L1(�)

‖u‖W 1,�p
0 (�)

,

and therefore it is coercive. Indeed, let u ∈ W 1,�p
0 (�) be such that ‖u‖W 1,�p

0 (�) → +∞. If

pj �= p–, the coercivity is trivial. Otherwise, it follows since 0 < ε < 1
λp+Npj Tp–

0 |�| .
Clearly, Iλ is bounded from below, owing to the fact that it is coercive and sequentially

weakly lower semicontinuous. Moreover, it satisfies (PS)-condition owing to Propositions
2.3 and 2.4 (see [39, Example 38.25]).

Hence, all assumptions of Theorem 2.1 are verified and the proof is complete. �
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Now, we point out a consequence of our main result for the autonomous case. To be
precise, let g : R → R be a continuous function and consider the anisotropic Dirichlet
problem (AD�p

λ) in the Introduction.
Moreover, put

G(t) =
∫ t

0
g(τ ) dτ for all t ∈R.

Theorem 3.2 Let g : [0, +∞) → [0, +∞) be a nonzero continuous function such that

lim
t→+∞

g(t)
tp––1 = 0, (3.11)

and

lim
t→0+

g(t)
tp+–1 = 0. (3.12)

Put λ∗ = H
|B(x0, R

2 )| min{inf0<d<1
dp–

G(d) ; infd≥1
dp+

G(d) }.

Then, for every λ > λ∗, problem (AD�p
λ) admits at least two positive distinct weak solutions.

Proof Put

g+(t) =

⎧
⎨

⎩

g(0), if t < 0,

g(t), if t ≥ 0,
(3.13)

and consider the following problem

⎧
⎨

⎩

–��pu = λg+(u) in �,

u = 0 on ∂�.
(3.14)

Since g �≡ 0 there is d > 0 such G(d) = G+(d) =
∫ d

0 g+(t) dt > 0, so that min{inf0<d<1
dp–

G(d) ;

infd≥1
dp+

G(d) } < +∞. To fix ideas, assume min{inf0<d<1
dp–

G(d) ; infd≥1
dp+

G(d) } = inf0<d<1
dp–

G(d) . There-
fore, fixed λ > λ∗, there is d, with 0 < d < 1 such that λ > H

|B(x0, R
2 )|

dp–

G(d) . On the other hand,

from (3.12) one has limt→0+ tp–

G(t) = +∞ for which there is c > 0 small enough such that
(3.3) holds and 1

max{Tp– ,Tp+ }
cp–

G(c)|�| > λ. Hence, assumption (3.5) is satisfied. Moreover, from
(3.11), also the assumption (3.6) is verified and we can apply Theorem 3.1 for which prob-
lem (3.14) admits three weak solutions. Arguing in a standard way, such solutions are
nonnegative and are also solutions of problem (AD�p

λ) (see, for instance, [9, Lemma 2.2]).
Finally, applying the strong maximum principle (see [9, Lemma 2.3]), at least two of them
are positive and the proof is achieved. �

Remark 3.3 Theorem 1.1 in the introduction is a consequence of Theorem 3.2.

As an application, we give the following example.
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Example 3.4 Fix N = 2 and � = B(0, 2), put p1 = 3, p2 = 4, and consider the following
problem

⎧
⎨

⎩

–
∑2

i=1
∂

∂xi
(| ∂u

∂xi
|pi–2 ∂u

∂xi
) = (t+1)t4

et in �,

u = 0 on ∂�.
(3.15)

Since H = 32

25 π , owing to simple computations one has

λ∗ =
32e

25(144e – 391)
,

for which Theorem 3.2 ensures that for each λ > λ∗ problem (3.15) admits at least two
positive weak solutions.
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