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1 Introduction and main results
In this paper, we consider the following nonlinear elliptic equation:

-Au+pu=uf, u>0inC,

g—” =0, on 092,
v

(Pu_,p) :

where 1 < p < 00, Q2 is a smooth bounded domain in R”, n > 3, and p is a positive number.

The interest in Problem (P, ,) grew up from the fact that it models several phenomena
in applied sciences. For example it can be seen as a steady-state problem for parabolic
problems in chemotaxis, e.g., Keller—Segel model [13], or for the shadow system of the
Gierer—Meinhardt system in biological pattern formation [10, 16].

Many works have been devoted to problem (P, ). It is well known that the situation
depends on both the parameter  and the exponent p. When w is small and p is subcritical,
ie., 1 <p< (n+2)/(n-2), the only solution is the constant one [13]. For large 1 and p
subcritical, it is known that solutions exist and concentrate at one or several points located
in the interior of the domain, on the boundary, or some of them on the boundary and
others in the interior (see the review in [17]). In the critical case, i.e., p = (n +2)/(n - 2),
when p is small, #n = 3 and Q is convex, the only solution is the constant one [31, 32].
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However, for n € {4,5,6} and u small, nonconstant solutions exist (see [4] when € is a ball
and [25, 30] for general domains). When u is large, nonconstant solutions also exist (see
[1,26]) and, as in the subcritical case, solutions blow up at one or several boundary points
as p goes to infinity (see [2, 3, 11, 14, 15, 18, 21, 27-29]). The question of the existence
of interior blow-up points is still open. However, in contrast with the subcritical case,
we know that at least one point must lie on the boundary [22]. In the supercritical case,
very little is known. When € is a ball, the uniqueness of the radial solution is proved
for small p [12]. For a general smooth bounded domain and a slightly supercritical p,
i.e, p=((n+2)/(n-2)) + e, where ¢ >0 ¢ — 0, a single boundary bubble solution exists
for fixed p > 0 and n > 4 [9, 24]. Furthermore, a single interior bubble solution has been
constructed in [23] for n = 3. Notice that the slightly supercritical pure Neumann problem,
thatis, u = 0 and ¢ is a small positive real, has been studied recently in [19], and the authors
proved the existence and multiplicity of bubbling solutions in a ball. In this paper, we focus
on anew phenomenon, which is the nonexistence of interior bubbling solutions for slightly
supercritical case when # > 4. Thus, in what remains of this paper, we consider the slightly
supercritical problem

—Au+pu=uvl*, u>0in¢,

(Pe): du
Se=0, on 0%,
where ¢ is a small positive real, €2 is a smooth bounded domain in R”, n > 4, u is a positive
fixed number, and p + 1 = 2n/(n — 2) is the critical Sobolev exponent for the embedding
HY(Q) — L1(R).
Before we state our main result, we need to introduce some notation. Let us define the
following family of functions called bubbles:

A(n—Z)/Z

n _ (n-2)/4
1+ 12lx = ap) oo’ A>0,a,x R ,co—(n(n—Z)) , (1)

aa,)\ (x) =Co

which are the only solutions to the problem [7]

—Au=y"0=2) 5 0in R,

We first exclude, in contrast with the three dimensional case [23], the existence of so-
lutions which blow up at a single point lying in the interior of the domain as ¢ goes to 0.
Notice that if (u.) is a sequence of nonconstant solutions to (P.), then there are several
and equivalent ways to define blow-up points of (). For example, a2 € Q will be said to be
a blow-up point of (u,) if

o
liminflim sup/ |Vug|2(or/ |ug“) > 0.
=0 50 JB@rnQ Bla,r)NS2

Our first result is the following.

Theorem 1.1 Let n > 4 and let u be a fixed positive number. Then (P.) has no solution u,
that blows up, as ¢ — 0, at a single interior point in the sense that

llte = Sag e ) — 0

witha, — a € Q and A, — o0 as & — 0.
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To study the question of interior blow-up points without any assumption on the number
of these points, we need to get some information about such possible solutions. This is the
goal of the following result.

Theorem 1.2 Letn > 4 and u be a fixed positive number. Let (u.) be a sequence of solutions
of (Ps) such that

N
Ug = Z :aﬂi,&)&i,s T Ve
i=1

with N > 2, vl —> 0, Ay —> o0 and a;c — a; € Qase — 0 forallie {1,...,N}.
Then the following facts hold.:
(i) Foreachje{l,...,N} satisfying

|ajc —agel — 0ase— 0.

Mg

/> 00 as € — 0, there exists k # j such that

)tmin,s

. e A

(ii) In addition, if n > 5, then 3% — oo as ¢ — 0.
min,&

Theorem 1.2 allows us to generalize Theorem 1.1. More precisely, our next result shows
the nonexistence of solutions with two or three interior blow-up points.

Theorem 1.3 Let n>5and N =2 or n > 6 and N = 3. Let u be a fixed positive number.
Then (P.) has no solution u, that blows up, as ¢ — 0, at N interior points ay,..., Ay, in
the sense that

N
Ue — : :aﬂi,s»xi,s
i=1

—0
HY{(Q)

with, for eachi€ {1,...,N}, a; — a; € Q and L;; — 00 as ¢ — 0.

In the case of N interior blow-up points, with N > 4, the situation becomes more del-
icate. However, we note that Theorem 1.2 easily gives the following partial nonexistence
result.

Corollary 1.4 Let n >4, N > 4, and u be a fixed positive number. Then (P;) has no solu-
tion u, such that

N
U = E (Sﬂmm + Vg
i=1

with ||vellgq) — 0, Aie — 00, @i — a; € Qas e — 0 foralli e {1,...,N}, and one of the
following two conditions holds:
(i) nzSandi:;—::jﬁooass—)Q
b
Amin

|ajc —axel > C>0ase— 0forallke{l,...,N}withk #j.

(i) n >4 and there exists j € {1,...,N} satisfying —FE + ocoase— 0and

To prove our results, we test the equation by appropriate vector fields and then, using
refined asymptotic estimates in the neighborhood of bubbles, we obtain equilibrium con-
ditions satisfied by the concentration parameters. The careful analysis of these balancing
conditions allows us to obtain our results.
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The remainder of the paper is organized as follows: in Sect. 2 we give some basic tools
that we use in our proofs. In Sect. 3 we provide an accurate estimate of the gradient terms
in the neighborhood of bubbles. Section 4 is devoted to the proof of our results. In Sect. 5,
we discuss some future perspectives. Finally, we collect in Sect. 5 some useful estimates
needed in this paper

2 Some basic tools
For v, w € HY(Q), we set

(V,W>=/ VV~VW+M/ v,  |vI? = (). 2)
Q Q

Throughout the sequel we assume that n > 3, u, is a sequence of solutions of (P,) written
in the form

N
Ug = Z :Bﬂi,m)\i,s T Ve
i=1

with N > 1, [[vell @) — 0, Aje — o0 and a;, — @; € Q as e — 0 forall i.
To simplify the notation, throughout the sequel we set 8; = 8, 5;,, @i = @ie, and A; = A
We know that there is a unique way to choose a;,, 1;¢, and v, such that

N
Ug = E ai,s&q,',g,)»i,g + Ve (3)
i=1
with
Qg —> 1, aie € Q, aie —> a; € 2, Aig —> 00,
Moh 2Y(2-n)/2
&jj = (A_;+ )»_i + Aidjla; — aj )( m2 s 0, (4)

ve— 0 in HY(Q),v, € E,;,

where, for any (a,A) € QN x (0,00)V, E,; denotes

) 9; 95;
E,,=iveH (Q): | Vv-V§;=| Vv.V—= [ Vv.V— =0,
Q Q i Ja d,

VlgigN,Vlgjgn}.

For the proof of this fact, see [20]. In what follows, we always assume that u, is written as
in (3) and (4). We start by proving the following crucial lemma.

Lemma 2.1 Letn>3. Forallje({l,...,N}, it holds
elni;—0 ase— 0.

Proof Multiplying (P.) by §; and integrating on €2, we obtain

N N
_ Z(x]/ A(Sj(sl’ —/ Av S+ 1 ZO[]/ 51'81' + ,LL/ Ved;
j=1 @ @ j=1 Q@ Q
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N p+e
= /Q(Za/Sj+v5) (Sl‘. (5)
j=1

Using Lemma 6.6, we have
- [ a8~ [ sf5i=0teny = ott) Vi
Q Q

—/ A5i5i=/5f+l=/ 85”1—/ 8f+1=Sn+O<in),
Q Q R" RM\Q A

where

Sy=d f _dx (6)
R

n (14 [x]2)"

Now), since du./dv = 0, we observe that

v N 38, |
- | Av 5i=/ Vv vai—f —£8; = a'f —28§=0 =o(1),
/Q ‘ a ag OV 1:21 " Jaq dv ;K,’fZ

and using Lemma 6.6, we get

) 1n°" A onl1s2) (n+2)/(2n)
L n/(n+
/Q(S/Si+/98i +/Q|V5|5i20(8ij+W"’”%”(/Qai ) )ZU(I)’

where oy =1and o, =0if n # 4.
It remains to estimate the right-hand side of (5). Using Lemma 6.1, we get

N pte
/(Zaj8j+v8) 5,’
Q j=1

- [[rse o(z [ersears)s [vps sf*ﬂm)). %
Q

J7i

Concerning the first integral on the right-hand side of (7), it holds

nte 152
p+e Cp+1+e )‘i ® dx
ai (Si: 0 2 +els2
Q @ (1+ A7 |x—a;|?)"™2
nve 72 n+e 72
_Cp+1+s/ )‘i * dx Cp+1+s/ )‘i ® dx
-0 —2 ~ “0 2 *
(L + A2 |w - a|2)"t ' (1 +A2|x - a7

But we have

c(';+1+8kf1+6"2;2 Sﬂ_z Cn+1 dx 8}’1—2
/ d — dx:)»iTcS/ —0 ——=1; 2 (S, +O(e)),
R (1 +AZ|x —a]?)"™* 2 R (1 + [x]2)"*e 2
/ A;HEHTZ dx <ﬁnT—2€/ A dx <fo¥
R (14220 — a2y~ R (L+ A7l —ai)" =7 A7
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For the second integral on the right-hand side of (7), using the fact that §7 < ckf(nfz) 2, we
getforj i
pre pre et pre ol-g ?\ 4 ' 1 el3?
9(8/ 8; +8;6; ) <cA; Q(Bj 8, "+ 3/8i) x < ch; g = o(ki ),
pt+e p+e & nTJ ptegl-e 2 & nz;z i %

Q(|Vs| 8i + [vel§; ) <c Q(|V€| d; +|Ve|5,') <cllvellr; :O(Ai )

Combining the above estimates, we obtain
) ) =2
Sp+0(1)=S.4; 2 +o(r; T )=(Su+o(D)Ar; 7.

Hence 45”2 = 1 + o(1), which completes the proof of the lemma. O

Notice that since |u, | is of the same order as )»5;';3 2 Lemma 2.1 implies the following

important remark.

Remark 2.2 There is gy > 0 such that, for ¢ € (0, g9), we have
luelee =€ and  vel5, = C,

where C is a positive constant independent of ¢.

Now, we are going to estimate the v,-part in (3). To this aim, we need to prove the co-
ercivity of the following quadratic form:

N
Q(V)=/ |VV|2+“/V2_PZ/-55;LV2’ veE,;. (8)
Q Q e

In the case of Dirichlet boundary conditions, this kind of coercivity is proved by Bahri
[5]. Such a result was adapted in [20] to our case when the concentration points do not
approach each other. What we need here is a result which holds even if the points are close
to each other. More precisely, we will give some general formulae for future use. To this

aim, let

V(N,¢e,n):= {(a,a,k) € (0,00)N x QN x (0,00)N : |a; — 1| < pseInh; < m;

Lid(a;, 9Q) > 0~ Vise; <n Vi # ), 9)
where N € N and 5 > 0 is a small parameter.
Proposition 2.3 Let n > 3 and (a,a,)1) € V(N, &,n). Then there exists py > 0 such that
QW) = pollvl® Vv € Eqp.
Proof Letv e E,; and v; be its projection onto Hg(<2) defined by

Avi=Av inQ, v1=0 onof2
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and define v, = v — v;. It is easy to obtain

aVz
ViV =— | viAv+ | vi—= =0, (10)
Q Q e v

/|Vv|2=/ |Vv1|2+[ [Vv,|2. (11)
Q Q Q

For y € Q, we denote by d,, := d(y, 3$2). Since v, is a harmonic function in €, we see that

126)] ‘/ () dx

where Gy is the Green’s function of the Laplace operator with Dirichlet boundary condi-

< c/ M dx < c||va|| /d;”_z)/z, (12)
aq X ="

tions and where we have used, in the last inequality, Holder’s inequality and Lemma 6.7.

In the same way, we have
[Vvs)] < cllvallgn /i Vy €. 13

Next, for 1 <i <N, taking

e 8& 1 96; l<i< (14)
i n PYNE yIL=j=n
3)\,’ )Ll' a(di)j J

and B; := B(a;, d;/2), we observe that, for each y € B;, it holds that d;/2 < d, < 2d;. There-
fore, we get

/Vvlvwi:/ Vl/vwi—/ ViV,
Q Q Q
/ Vi,V + O 1 / Vo 1 d
- 1% P+ —_ V|————
B; 2 A(" 212 Jong 2 ly —a;|"! 4
_of Iv2llm / V| + IIVzIIH1 -0 [lvall g (15)
dn/Z t (\id; ) (3. ANm-2)/2 (}Lidi)(n—Z)/z ’

where we have used (13), the fact that |, 5, Vil = O(di/)\gnfz)/z) (for the first integral), and
Holder’s inequality (for the second integral). Now, we write

N
Q= Qo)+ [ V0l eu [ -pd [ o7 @ v (16)
Q Q ' Ja
where

N
Qo(vl)=f |VV1|2—pZ/6§"1v%
Q i-1 Q

However, using (12), we obtain

/85“(2|vl| +[val) val
Q
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=/ af’*l(2|vl|+|vZ|)|V2|+/ 577 (2] + [val) sl

B; Q\B;

8n ni2 2
< clvall (Wl + valln) |~ ([ 87) 7"+ )"
= 2 11H 21 H dgy,_z)/z 5. i B, i

4

=o(lvallzn + vallzn)-
To proceed further, let
V1=v; in€, v1=0 inR"\Q.

Clearly, 7, € DY*(R"). Now, we write

N(n+2)
V= Z y;W; + V1  where
i=1
06 1 96k ) _ )
Y €8 — ———1<k<N;1<j<mp and VvV, =0 Vi
oAk Mg a(ak)/ R
Using (15), we obtain
/ ViV =cy; + O(Z y/> = / Vn Vi, = o(||V2||H1) Vi.
n Q
This implies that
Vo2 = |1V +o(lvallzp)-
R” R

Using (19), we get

)= [ var-pY [ 8%
— —1— —
=/ |vVl|2—pZ/ 879+ o(I1VWL I, + Iv2l 7).
g R”
Combining (18) and Proposition 3.1 of [5], we obtain
Qo(v1) = pf VoL + o (VL2 + Ivall2)
RYI
P - P
z—/ |vV1|2+o(||V2||§,1)=—f )
2 R 2 Q
Therefore (21) and (16) imply that
0
Q(v)zE/ |VV1|2+/ |sz|2+u/v2+o(||v1||2+||vZ||§,1)zC||v||2,
Q Q Q

which completes the proof of Proposition 2.3.

Next, we are going to estimate the norm of v,-part of u#, when ¢ goes to zero.

(17)

(18)

(19)

(20)

(21)

Page 8 of 34
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Proposition 2.4 Let n > 3 and let v, be the remainder term defined in (3). Then there is
g0 > 0 such that, for € € (0, &), the following fact holds:

lvell < CR(e,a, ) with
n+2
Reanmer Lor 5 (@ e o)
i1 (Aid; ) 1<ij<N,ji
A2 ifn=6,

N
+ Z - min(2,%52)

i=1 )\i U(l’l #6

Proof Taking U = Zf\i] «;6;, multiplying (P.) by v, and integrating on €2, we obtain

/|VV€|2+,LL/V§+MZC(]‘/S/VS:/(U+VS)p+EVS, (22)
Q Q Q Q

For the right-hand side in (22), we write

/(U+V£)P+8V8 - / L[[HSV‘9 +([9+8)/ upﬂ?—lvg
Q

+O( / |vg|”+1)+0<n<5 ( f w2y, P)

fL[’”W +(p+s)/ urr 2 1 o(Jlvell?), (23)

where we have used Remark 2.2 and where the notation O(,<5) means that the term appears
onlyifn <5.

However, using Lemma 2.1 and (4), we have

4
o) [ w2 - pZ/ 732 4 oI ). (20)
Q
For the other integral in (23), using Lemma 6.1, we see that, for n > 6, we have
N .
/ up+8Vg — Zafﬂs/. 8§7+5v8 + ZO(/ (8@)"7 |Vg|>. (25)
Q ) Q o Q

Using Lemmas 2.1, 6.2, and 6.4, we obtain

f(w) " <c/(6,»6,->‘f’|va|
n+2
n 2n n+2
Scnveu(/(aia,-)w) < clvell[ef ne; | 5. 26)
Q

For the first term on the right-hand side of (25), using again Lemmas 6.2 and 6.4, we obtain

n-2
/5{,””Vszchf 2 /5§’v8+o<s/5f|vg|1n(1+)\§|x—ai|2)>
Q Q Q
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n+2

2 . 2n
T /Qafvg+o<s||vg||(4ﬂ6f*1ln@(1+A?Ix—ail2)> )

(n-2)
=cih; 2 /S;Sf’vg+0(s||v8||). (27)

However, since v, € E,;, using Holder’s inequality and Lemma 6.7, it holds

/vag /—Aéivg

Q Q

/ ad;
—Ve| =

I av

For n <5, using Lemma 6.1, we write

c / [Vel c vl
< Vell.
A Jog e —ap|n=t T (hdy) 22 ‘

(28)

N
/up+evezzafz+s/5f+svg+zo</‘ 8f1+85j|v8|+/8i5fj1+8|V€|>. (29)
Q -1 Q Q Q

i7

Using Lemmas 6.2 and 6.6, we get (since 1 < 2n/(n + 2) < 8n/(n* — 4) for n < 5)

L L ) (n+2)/(2n)
/ 8§ Slvel < / 8" 8,|vg|sc||vs||( / 5" ‘”8?"“”*”) <cllvelley. (30)
Q Q

Lastly, by easy computations, we have

mione2) (n+2)/(2n)

n/(n+

[ et = cive ( | s ) < ClIvelI TO) (31)
Q Q

with
1 n*P@) 1.
Combining Proposition 2.3 and the above estimates, we easily obtain Proposition 2.4. O

3 Estimate of the gradient in the neighborhood of bubbles

As our proof is based on an argument by contradiction, we will assume that problem (P,)
has a solution u := u, in the form (3) and satisfying (4), and we will need to give careful
estimates of some integrals involved in our proof. In fact, for future use, we are going to
give some crucial estimates in a more general situation than ours. To this aim, for N € N,
¢ and 1 small positive reals, taking (o, a, 1) € V(N, ¢,7), where V(N, ¢, ) is defined by (9),

and u = Zf\il @i8g; 5, + v with v e E, 5, we need to evaluate the following expressions:

e d98; 1 94; .
VuViyi+p | upi— | wlf™uy; Yie dpri— ——1¢ 1<i<N. (33)
Q Q Q 0A; A; 0a;

We start by dealing with the nonlinear integrals in (33).
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Proposition 3.1 Let n > 3 and u := Zf\il ®i8g; 5, + v be such that (a,a,)) € V(N,¢,n) and
v€E,,. Then, for 1 <i <N, we have

/| |P1+5 18_8
A; 0a;

1 881 n=2 _n_
j o I+e, 873 =) -1 2
C) E iy o A +O(R3; + E g Ing, + g5, ),
k=i,j

JHi k+#r
where
R 1
R3yi = Z[)\./|dl ﬂl|8 +88U] ()\.idl‘)n/Z Z ()\.kdk)(n+2)/2
J#i k=1
1 2)/(n-2 (n+2)/(2m)
+ ||V||(”V|| + &+ W +Z Eij +8”+ )/ (2(n— ))]n(gl] )Yl+ n] )
j#i
Proof To simplify notation, we write U = Z/ 1058 and ;= i % . We set

Q ={reQ:|v)| <U®} and Q=Q\Q,

Using Lemma 6.1, we get

/ |l
Q

- f U+ (p+ ) / up-“fvwim(/ P22y + f |v|P+f|w,»|). (34)
Q Q Qy QF

First, from Lemmas 6.3 and 6.2, we obtain

/ U”_Z*SVZIWH/ VI il SC/ U’HV2+C/ vt <clvl®. (35)
v QF Q Q

Second, Lemmas 6.1 and 6.2 imply that

/ Lr- 1+8V¢ /(a(g)}’ lww// +O(/ (08P~ Z(ZO{] >|V||1//l|)

J7i

(f (Za, ) |v||¢i|), 36)

j#i

where Q;={x € Q: Z;a“; x) < ;6;(x)} and QF = 2\ Q;.
To deal with the remaining term in (36), we distinguish two cases. For n > 6, observe
that p — 1:=4/(n-2) < 1. Thus, using Lemmas 6.3 and 6.4, it follows that

fglaa)f’ (Za, >|v||wl|+f (Za, )'HWHW

J#i J#i

/ aayﬂ(za, )|V|+c/ (Za,) s,

J7i J#i
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(n+2)/(2n)
= CZf (8:8) v <c||v||</ (8:8)"""" 2)

J#i
< C||V|| ZE(rHZ (n— 2) n(glll)(n+2)/(2n)‘ (37)

For n <5, we have p — 1 > 1, and therefore, using (30), it holds

/(aw (Za, >|v||w,|+/ (Za, ) vl

J# J#i
<cZ(/ 5”15j|v|+/5f1|v|5i)
J7 @
<clvll)_ ey (38)

To complete estimate (36), using Lemmas 6.2. 6.3, 6.4, 6.7 and v € E,; ;, we obtain

/af‘“s Y = A 2/2/5’9 1V1M+O( /5f‘1|v||wi|1n(1+A$|x—ai|2)>
Q

= AR B(Vm/f,-, Vv)2 - f alﬁ" v:| +O(elvll) (39)

BQa

1 [v|
) O<M'/Z /zm e — a;|" * 8HVH)
1
= O<||v|| |:8 + —()»idi)”/z])' (40)

It remains to estimate the first integral on the right-hand side of (34). To this aim, by

Lemma 6.1, we write

/uf”%p faa p+5wl+(p+£)/ (0;8;)P%" I(Za, )w, f(Zot, ) Vi

o (S (5 )
+o(/ |:a8<§(x, )W 1 (0i8:)~ 1**“(%:% )]m) (41)

We are going to estimate each term of (41). First, for n > 4, it follows that p — 1 < 2. Using
Lemmas 6.2, 6.3, and 6.4, we obtain

Ne J|wl|+/ i =cY [ 6a)# <Y e me! )

J#i J#

and for n = 3, using Lemmas 6.2, 6.3, and 6.6, it follows that

fQi[-~~1|wi|+/ ]|wl|<c2f6465+6?8;*5c28§-

J#i J7i
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Second, since ¥; is odd and §; is even with respect to x — a;, using Lemmas 6.2, 6.3, and

6.4, we get

/ (i = o( / 6§’|w)
Q Q\Blayd;)
e 1
= O R — = O — |,
(/;Z\B(ai,di) Ailx — al ) (()»idi)’”l)

where d; := d(a;, 0Q).
Third, using Lemmas 6.2, 6.3, 6.4, and 6.6, we obtain

c—1
/S;afﬂ? wi‘sj
s(n 2) 1
=ch, ? /5” Vid; +o< /sfa,ln(lmﬂx—aif))

&e(n-2) -1
_ £ 2 -
=CoA; / & Vb
RW

878, 2
+o</ — /(5"25)5 Z1In (1+)\l.2|x—ai|2)>
rm\Q Ailx — ail Q

&e(n=2) C 88" +1 1 1
2 i ot
=coh; 2 ——2+ 0| Ajlai - a,le - + g ).

pAi da; T g (3jdj) =272

Finally, using Lemmas 6.1, 6.2, and 6.3, we get

[(ze) v

J7i
Zap”/(s"”wl+o<2/sksp 1|¢l>
j#i ke {i )}
pre ey S50 [ s
DI A /Q 5 Vi
i
+O(e/§28f5iln(1+)»]2|x—a, Z/(Ské” 1Illfl)

ke{ij)

On the other hand, using Lemmas 6.3, 6.4, and 6.6 we see that

Z/SkSp Yl < /(515 ) n=2) <CZS"/(” 2 lns[‘,l, ifn>4,
I#r

k(i) I#r

Z/sk(s" 1|¢l|<2/54535c283, ifn=3,

k(i) r#j I#r

f 8718:1 In(1+ A2 |x - a?) < / (8:87 )87 "D (1 + 22 1% - @) < cey
Q

5][?51'
f5p1pl f 8p1ﬂ1+0</ 4)
ri\Q Ailx — al

(43)

(44)

(45)

(46)

(47)
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Cp 0€yj ntl 1 1
=22y o(rlai-alel + ———— ). (48)
Ai 0a; / ( . ) ()\,dl)f
%
Combining the above estimates, the proof of Proposition 3.1 follows. d

Next, we are going to improve Proposition 3.1 in some particular cases. More precisely,

. -2 1 .
we need to improve the term Y &}/ > Ing; ! in these cases.

Proposition 3.2 Let n > 5, and for 1 <i <N, let N;:={j:1 <j<N,la; —aj| — O}, y :=
min{|a;—ax|,j #k,j, k € Ni}, and o := max{|a;—ax|,j #k,j, k € N;}. Assumethaty/oc >c>0
and y min{Ay : k € N;} > ¢> 0. Then, for 1 <i <N, we have

1 96; 1 ¢ e(n-2) el
p— 1+s l/ p-l+e, =3 P l+e 2
/| | v _c2§ % [of 770 7+l ]+O(R3,+R4l)
where Rs; is defined in Proposition 3.1 and
n+1/2 n=1/2
n-2 n-2
R4.i ]/)wi : kr +§ :811 2 :811 :

k#r J#i L

Proof The proof follows the proof of Proposition 3.1, but we need to improve estimates
(42) and (46). We remark that, since the distances |a; — aj|s are of the same order (that is
ylo > c¢>0)and y min{As : k € N;} > c (by the assumption of the proposition), it follows

2)(2—n)/2

from Assertion (4) of Lemma 6.5 that g;; and (AtA;y are of the same order.

We start by improving (46). Let B, = B(ay, y /4), we write for k ¢ {i,j} and i #j

p—l A= e tz=
/Q 50 il = /B ,- + /B,- + /B k + /Q p— =)+ D+ D) + (V).

For the last one, using Lemma 6.3, it holds

dx

A;:’"Z)/Z)Lf/z)\f /Q\(BiUBiuBk) % — a2 |x — a; "t x — aj|*

= o < = - s
MNPy T iy

(v)<

I#r

Concerning the first one, it holds

0 < c / & _ C  _C\oon
— n-2 n — n-2 n — )/ )
()kaz)T ()‘j]/z)z B; )‘i2 |x _ ai|n—l )‘kT )\? )»,2]/”*1 )Li)/ s r

and in the same way we obtain

Z :glr

l I#r

(D + (1) <

This completes the desired improvement for (46).
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Now, we will focus on the improvement for (42). Using Lemmas 6.2 and 6.3, we get

/Qi[---]|wl~|+fm[-~-]|wi|

n+1/2 n-1/2 1
< c E / 6 n=2 § n-2
— ’ Ailx — a)
n=1/2
nelfy n-lp 1 A" 2
n— n— E
8 8 tc n+1/2 )\'|x ﬂ| 2 Pa= /2
I#l Q\B; I 1 2 B; i (1 +)\. |x ﬂl )
Cc nnl£2 Cc 1
=D e +027—
- A J n+1/2 n+_1/2
[rRes 7 (Y2h)2
Cc n-1/2 n+1/2
E E _Sijn—Z + Cgljn—Z ,
7 VA

where we have used Lemma 6.6. This completes the improvement of (42). Hence the proof

of Proposition 3.2 follows.

Next, we are going to deal with the linear terms in (33). We start by the second one,

namely, we prove the following.

Proposition3.3 Letn >3 andu := Zﬁl ;b4 +vbesuchthat (a,a,1) € V(N,¢,n). Then,

for1 <i<N, the following fact holds:

1 d .

Iindi| ||V||k3/2 ifn=3,

/ i% <CR51 with R5,i = — ZE‘I 3 + v ||(ln)h—12 lfn:ZL’
Q Aida; a Ai

L Lo

W + ”V”E ifn>5.

Proof Let v; := 1 85‘ . Observe that, for j # i, using Lemmas 6.3 and 6.6, it holds

n-2 1
1 N 1 1
f i1l < Cf — ;6 < < f(S/Si)”T% / — < igij'
Q Q Ailx —ail ri\Ja o lx—a|"t Ai
For j =i, let R > 0 be such that  C B(a;, R), it holds that

1 2

Silﬂi + 5;‘1#;‘ <c —81’
Blajdy) Q\B(ajd;) Q\Blapd;) Milx — ail

_c /MR 2 - |Ind;| 3 1 el
— C Un=0—F———-—1Un .
T Jua, a£2y2 7O A2 A(hdy)=3 T

1

8
Q

Finally, using again Lemma 6.3, it holds

Lm=am ([ (5a)” )
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i /232 ifn=3,
1 /AiR tn l—m o 2ara
<c|v|l—= —_—— <c|v|| X { (InX; Ae o ifm=4,
Wiz ) G e vl x { (nx)¥4/22 it n
1/32 ifn>5.
Thus the proof follows. g

Next, we deal with the first linear term in (33).

Proposition 3.4 Let n > 3 and u := Zf\il @84, + v be such that («,a,1) € V(N,¢,1) and
v € E,;. Then, for 1 <i <N, the following fact holds:

108 _ de .
/QVu- e da Za, +O(R61) with

1 n+l
Rg; = - + Ajla; - ajle -2,
(}\idi)7 Z (dek)TZ g ’

Proof Since v € E,, it follows that

f 194
Vu.-v— %
Q )\, 861,

1 96;
=Y LR vx_a_
1<j<N 4
195 1/2 1 98 12\ 12
ekt (LD
15<N RM\Q rRQ| A 0a;
_ 1 0g utl
= Za,(c%la—ﬂl O(rjla; —ajle;™) | + (/\ d)% Z TZ ,
J7i J
where we have used Lemma 6.4. This completes the proof. d

Combining Propositions 3.1, 3.3, and 3.4, we obtain the following balancing expression

involving the point of concentration a;.

Proposition 3.5 Let n > 3 and u = stN ®j8a; 5 +V be such that (a,a,)\) € V(N,&,n) and
veE,,. Then, for 1 <i <N, the following fact holds:

1 96; 1 06; 1 96;

frestien[sh - [
Q Ai 0a; o Aida; A; da;
&(n-2)

1 dgj; _ el
=6y 4= —[1-d “ng 7 —af “Sxi 7]+ O(Rss)

where R3s,;:= R3; + Rs; + Rg ; + Z -2 ln(skrl) + ekr)
k+#r

and where ¢, is defined in Lemma 6.4 and Rs ;, Rs ;, Re ; are defined in Propositions 3.1, 3.3,

3.4, respectively.
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When the concentration points satisfy some properties, we can improve the previous
proposition. More precisely, combining Propositions 3.2, 3.3, and 3.4, we obtain the fol-

lowing.

Proposition 3.6 Let n>5and u = stN 0a;; + v be such that (a,a, 1) € V(N, &,1) and
veE,;. Fori<N,let N;:={j:|a; — a;] = 0}, y :=min{|a; — ax|,j #k,j,k € N;} and o :=
max{la;—ax|,j # k,j, k € N;}. Assume that y o > ¢ > 0and y min{Ay : k € N;} > ¢ > 0. Then,
for1 <i <N, thefollowing fact holds:

1 85, 105 e 106,
Vi Voo g oo |
Q Ai da; Q )» da; A da;

.. e(n-2) &e(n=2)
[1- o —af” ey, 2 |+ O(R3; + Ry + Rs; + Re,),
i

] ] L

where ¢, is defined in Lemma 6.4 and Rs ;, Ry,;, Rs ;, Re,; are defined in Propositions 3.1, 3.2,
3.3, 3.4, respectively.

In the same way, we prove the following balancing expression involving the rate of the

concentration and the mutual interaction of bubbles &;.

Proposition 3.7 Letn >4 and u = Z;SN a0, +V be such that (a,a,)) € V(N, ¢, n) (with
di:=d(a;, Q) >cifn=4)andv € E,,. Then, for 1 <i <N, the following fact holds:

8; 38 35;
fw.vx M/ uhi— — | |ulP e un—
o EYy “ar Ja EYy

In%"( )L 0gji
=—c16 —c(n)u (i) -C ZA g

J#i
In” (A) 1 1 )
+ o(s + ,(<ZN x2 + ;skr +0 (hid) (=212 Z Oopde) 272 + vl ),

where ¢ is defined in (49), c¢(n) is defined in (52) if n > 5 and in (53) ifn =4 and o, = 1 and
on =0 for n>5, and c, is defined in Lemma 6.4.

Proof We will follow the proof of Propositions 3.1, 3.3, and 3.4, and we will precise the
estimate of some integrals. In fact, in this case, we will use the function ; := 1,98;/9A,;.
Note that (34), (35), (36), (37), (38), and (39) hold in this case since they are based on the
fact that |v;| < ¢§;, which is also true with the new v/;. Some changes are needed for (40).

In fact, using Lemma 6.7, we have

: 4z 1 v 1
— Vy;Vv — =0+0 o —~— .
P /Q v s OV e <)»5"_2)/2 /(;Q | — a;|"! (Aid;) =212 v

Furthermore, (41) and (42) also hold true, but (43) becomes as follows (see (3.4) of [6]):

994;
/ 87 hi P Af("’z)/zcle + O<82 +
Q

i)
(udi)r )’
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where

n—2 x2-1
= ( y = 2)/ L et In(1 + [«|*) dx > 0. (49)
4 r (1 + [x]2)n+!

Concerning (44), using Lemmas 6.2 and 6.4, it holds

e(n-2) _2
/sf’”‘lw,-a,»:chi 2 / 5f‘1¢i5j+o</ 88+ / "2 In(1+ A7 |x — ai ))
Q R” R™M\Q

_cekyzjkagif +O(8n’121n8—1+ 1 +€€")
oM » la)\-i ij ij ()‘-idi) (n+2)/2 ()‘]d/) n-2)/2 4

In addition, (45), (46), and (47) hold. However, (48) becomes

fa”wl /af’wﬁo(/ 53)
R™M\Q

Hence the analogue of Proposition 3.1 becomes

( n 2 1 )
Ing;! it — — .
Nd) T (dy) T

n-2

_ 851 -1 g— 1+e. &
R R i
Q

1 1
n 2
+ O(E 8,02 Ing! + [|vlI* + &2 + God)? + E (Akdk)")' (50)

k+#r
For the analogue of Proposition 3.4, it holds (since v € E, )
N

35, 38; 38 5;
/ VMV)\,I_ = ZO{]' / Sp)\.l— +/ _})\i_
Q 8)\L i Q Y 8AL aQ Jdv 3)\,,

=1

=q; hi— /apx /
a/W +Za, +Za, higy

Notice that, using Lemma 6.7, we have

aé;
Bk

35;
Q av

c /‘ 1 1
( A2 Joo |x — aj|n1 |x — a2

: (/ ; ) " (f 1 ) "
< -
T (ar) DR Jag Jx — a2 n o

Cc C
< .
- ()L],dl,)(n—2)/2 ()\idl,)(n—2)/2

Thus, using Lemma 6.4, we obtain

le,
VMV)» a;c ,
| = Zae
n-2
+o(ze Iney' + s O gy ) 2

J#i
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It remains the analogue of Proposition 3.3. Using Lemma 6.2, we have

94; d9;
/uki—:ai/SiAi—+O / |V|81+Z'/8]8l .
Q 0 o 0 Q Q

Jj#

The last integral is computed in Lemma 6.6, and the second one is computed in (31).

Concerning the first one, it depends on the dimension . If n > 5, then it holds

38 n-2 1-A2|x —a;|? 1 1
/8;‘)»;‘—l = c(z)/ )»?72 2" ;' : +O</ YT AT —Y 4)
Q@  0A 2 R (1 + A7 e —a;i?)"- r\Q Af [ —a*"

_ cn) O( 1 >
"2 T\ udy

n-2 x2-1
with ¢(n) := c% il >
2 rr (1 4+ |x[2)n-1

(52)

However, for n = 4, let r,R > 0 be such that B(a;,r) C Q2 C B(a;, R). (Note that, if a; is in a
compact set of 2, then r will be independent of ;). It holds

a8 n-2 1- 2% —a;)? 1 1
@ 0 2 B (L+A7|x—ail?) BlapR)\Blayr) M 1% — ail

InA; 1 -2
= —c(n) 22 + O(P) with ¢(n) := nTmeas(Ss)cg. (53)
Finally, combining (50), (51), (52), and (53), the proof of Proposition 3.7 follows. O

Lastly, we give the following expression involving the gluing parameters os. Namely, we

have

Proposition 3.8 Let n >4 and u = Z]SN ®j0a;; +V be such that («,a,A) € V(N, &,n) and

v € E,;. Then, for 1 <i <N, the following fact holds:

/Vro(SﬁM/uSi—/ lu|P~ 1 us;
Q Q Q

—aiS, (1T

In°" A; 1
+O0[e+|v|?+ Eir + Ly .
( P+ 2 o0 A7 Z()\kdk)nz)

Proof The proof can be done as the previous ones, and it is more easy. Hence we omit
it. O

4 Proof of the main results
This section is devoted to the proof of the main results of the paper. Their proof is basically
based on the precise estimates made in Sect. 3. We start by excluding the existence of

solutions that concentrate at a single interior point.
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4.1 Proof of Theorem 1.1

We argue by contradiction, assume that such a sequence of solutions (u,) exists. Thus the
solution #, will have the form (3) that is u, = «.8,, 5, + V. and properties (4) are satisfied.
Furthermore, Lemma 2.1 and Proposition 2.4 hold true with N = 1. Hence, («;,a., ) €
V(1,¢,n) for small n > 0 and v, € E,, ;,. Thus, using Propositions 3.7 and 2.4, we obtain
the following:

In"(Ag) In%" (A
0=-c1e —c(n)u +ole+ ,

A2 A2

& &

which gives a contradiction. Hence the proof is completed.
In the next subsection, we give a partial characterization of the solutions that concen-
trate at interior points if there exist.

4.2 Proof of Theorem 1.2

Let (u.) be a sequence of solutions of (P, ) satisfying the assumptions of the theorem. Thus
the solution u, will have the form (3), that is, u, = Z],il ke Sag o e
are satisfied. Furthermore, Lemma 2.1 and Proposition 2.4 hold true. In addition, Propo-

+ v, and properties (4)

sitions 3.5—-3.7 hold and the left-hand side in each proposition is equal to 0. For the sake
of simplicity, we will omit the index ¢ of the variables. Furthermore, without loss of the
generality, we can order the A;s as follows:

A <Ay <--- < AN

First, multiplying Proposition 3.7 with 2 and summing over i = 1,..., N, it holds (by using
Proposition 2.4 and Assertion (3) of Lemma 6.5)

lan )\' 1 ifl’l:4,
ng,fc(“ n gﬂ), where o, - (54)
s A 0 ifn>5.

1
First, we prove Assertion (i) in the theorem, arguing by contradiction. Let j be such that
Aj/Ay is bounded and assume that |a; — ax| > ¢ > 0 for each k #j. Thus, we derive that
gy < c/()Lj)Lk)(”‘z)/2 < ¢/A72 for each k #j. Now, writing Proposition 3.7 with i = j and
recalling that the left-hand side is 0, we obtain

) In°"(X;) ~ ( In°" (Al))
c1e —c(mu A]? =ole+ ¥ ,
which gives a contradiction since A; and A, are of the same order. Thus Assertion (i) fol-
lows.
Second, we focus on the proof of Assertion (ii). In the sequel, we therefore assume that
n > 5. Now, using Proposition 2.4, we get

N
1 n+2 n2
”Vs”2 < C(€2 + E F + E (8;72 (1118;1) T+ 83))
i=1

t 1<ij<N,j#i

' ifn=s,

N o
+C ) (55)
lzl Ay M2 6,
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Note that for n > 6 we have 2n/(n — 2) < n — 2 and for n > 5 we have 2 > n/(n — 2). This
implies that

&% = 0(8”/("’2)) Vn>5 and A" = o(kl_zn/("_z)) Vn > 6. (56)
Now, using (54), (55), and (56), the estimate of ||v;||> can be written as

O(1/A3) ifn=5,

[lv. ||2 =0O(R,) whereR,:=0 =2y |
& v v ( ) O(I/A%n/(n—Z)) ifn > 6.

Furthermore, the remaining term in Proposition 3.5 can be written as

1 1 1
R35,i = 0(8(;1—1)/(;1—2) + m + Z )\__ ) + O()\._ Z 817'). (57)
1 i

7 il 94 i

88l'j

Now, we will focus on Assertion (ii). Arguing by contradiction, assume that Ax/A; is
bounded. From the smallness of the elfjs, we deduce that ;|a; — a;| — oo for each j #i. Let
y :=min{|a; — ai| :j # i} > 0. Since the ;s are of the same order, without loss of generality,
we can assume that y = |a; — a;,| for some iy # 1. Let N; := {j : |a; — a;| — 0}. Note that
1 € N; and Assertion (i) implies that N contains at least another index. Since we have
assumed that Ay/A; is bounded, it follows that

1 c
()\I)V,)(n—z)/2|ﬂ1 _ |n 2 — ()\1)» )n 2)/2|a1 |n 2 =

gy < <cel, V2<j<N. (58)
Now, we need to introduce the points that are very close to a;. Let us define N}, := {j € N :
la; — a,|/y — oo} and Nj := N7 \ Nj. We remark that the gs, for i,j € Ny with i #}, are of
the same order (in the sense that ¢ < g;/e;,. < ¢’ for each i,j, k,r € Ny).

Let @ be such that } ;.\, (aj — @) = 0. It is easy to see that |a; —a| < cy for eachj €
N,. Hence it follows that (by using the fact that Ay/A; is bounded and Assertion (8) of
Lemma 6.5)

Mila;i —a| < cy/ A.])Li0|di0 —ap| < Cé‘lil't/(niz) Vie Ns. (59)

Combining Propositions 3.8, 2.4, and 3.5 and using (57), we derive that, for n > 5 and for
eachie N,

1 Z 38,‘1‘
A & Oa;
J7

1 1
_ (n-1)/(n-2) —
= 0(8 t i) t Z

)‘1 17’1

38,‘}'
da;

) . o(% Zgi,) Vi<N. (60)

L
Since the A;s are of the same order, using (54) and Assertions (1) and (8) of Lemma 6.5, we

get

3311 (=D/n=2) _ . (1-1)/(n-2) ¢

ij — A?(n—l)/(n—Z) ’

g5 < cgj;

da; k |a; —a,l

1
20
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_r& 1/(n-2) (n-1)/(n-2) + g(n—l)/(n—z))
ij N

1
U— \/ITLOWI “zo — y(sh 8,])—0(€1l0

Multiplying (60) by A;(@ — a;) and summing over i € N, we obtain

Zzasu(a a;) _O(Z)"|al_a|( (n-1)/(n-2) )‘. 1 - 2))) (61)
1

ieNy j#i ieNy

To proceed further, we split the above sum on j into three blocks.
Block 1: i,j € N, with j # i. In this group, using Assertions (1) and (8) of Lemma 6.5, we
observe that

= (n—2)Aidjla; — a,»lzsl;?% =(n- Z)Slj(l + 0(1)). (62)

Block 2: i € Ny and j ¢ Ny, that is, |a; — a;| > ¢ > 0. In this case, using Assertion (1) of
Lemma 6.5, we obtain

88,,
da;

min2) . _la—ail

@ - ail = (n - 2)Aidjla; - ajl|a — ai|e; Gt

= o(e1i). (63)

Block 3: i € Ny and j € N7 \ Ny. In this group, using Assertion (8) of Lemma 6.5, the fact
that |@; — a| < Cy for each i € N; and |a; — a;j| > |a; — a;y|, we get

. cla - a _ 0(( @ - ail ) — oleny).  (64)

dejj <
= 022l = T O\ k) DR ay — a1

da;

Combining estimates (62), (63), (64), and (61), we deduce that

1(m-2) [ L(n-1)/(n-2) ;
Z ey < 0(‘91;0 (8 + )Lz(n_l)/(n—Z)))’
1

k#j,k,jeN2

which implies

1
E1i =0<8+ A_%) (65)

Putting (58) and (65) in Proposition 3.7 with i = 1 and using the fact that u, is a solution
of (P.) (which implies that the left-hand side of the proposition is 0), we obtain

—c16 — c(n))Ll = o(s + ;2) (66)

which presents a contradiction.
Hence the proof of the theorem is completed.
In the next subsection, we use Theorem 1.2 and the precise estimates of Sect. 3 to ex-

clude the case of the existence of solutions with two or three interior blow-up points.
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4.3 Proof of Theorem 1.3

We argue by contradiction. Assume that such a sequence of solutions (i) exists. Thus
the solution u, will have the form (3) that is u, = 21]:1:1 QieeBay p g, + Ve with N € {2,3} and
properties (4) are satisfied. Furthermore, Lemma 2.1 and Proposition 2.4 hold true. As in
the previous proof, without loss of the generality, we can assume that A; <--- < Ay.

We first prove the theorem in the case of two interior blow-up points.

Proof of Theorem 1.3 in the case of N = 2 and n > 5 The proof will be decomposed into
three steps. The first one is a direct consequence of Theorem 1.2.

Step 1. Ap/A; — o0 and |a; —ay| — 0.

The second one is as follows.

Step 2. There exists a positive constant 1; > 0 such that A;|a; — ay| > n;.

To prove Step 2, arguing by contradiction, we assume that A;|a; — ay| — 0 as ¢ — 0.

Thus, using Assertion (7) of Lemma 6.5, Proposition 3.7 with i = 1 implies

(),u _n-2 1
—c1e—cn)— —-c—ep=ole+ =5 +¢12 ),
1 )L% 27y A% 12

which cannot occur (since ¢ > 0 and u > 0). Hence Step 2 follows.
Step 3. Proof of the theorem in the case mentioned above: on the one hand, using As-

sertions (1) and (4) of Lemma 6.5, we get

c A 1)/
> e > | ey VO, (67)
Atlar — as| Al

On the other hand, applying Proposition 3.5 and using (57), we obtain
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However, using (67), we have

1

| | ( dern
—én=la -/ —€12=0\ —
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We derive that

()
Elp=0l€+ —= ).
M

Putting this information in Proposition 3.7 with i = 1, we derive (66), which gives a con-
tradiction. Hence the proof of the theorem is complete in the case of N =2 and n > 5. [

Proof of Theorem 1.3 in the case of N = 3 and n > 6 To make the proof clearer, we will split
it into several claims. The first one is a direct consequence of Theorem 1.2.
Claim 1. A3/A1 — o0, there exists k € {2, 3} such that |a; — a;| — 0 and (54) holds true.
Before stating the second claim, we notice that, since u, is a solution of (P,), the left-
hand side of Propositions 3.5, 3.7, and 3.8 becomes 0. Thus, using (54), Propositions 2.4,
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3.5, and 3.7, we obtain

oo e
(E) -ce- c(n)}\—i2 -0 Zki o = 0(8 +
i
_ 1 381']‘
F) — —
( l) CZZ )\i Bai
i
1 1|0de;
= 0(82 + —4) +0(Z — =
)\.1 — )‘-i a(li
J#

The second claim is as follows.

1

—2) V1<i<N,
)‘1

Claim 2. There exists a positive constant n; such that A;|a; —as| > n1.

To prove Claim 2, arguing by contradiction, we assume that A;|a; — a3| — 0. The small-

ness of €1, implies that A;/1; — 0. Computing (E3) — (E;) and using Lemma 6.5, it holds

W om—=2_ n—2_ _ de13 de1s
C(l/l)—2 + TC2812 + 5 C2E23 + Cy —)xgaT + )LlaT =0\¢
3 1

M

:)
+ ).
2

Now, using Assertion (2) of Lemma 6.5, we derive that

k (e)
€125 €23 = 0\ €).
2}

Al

Putting this information in (E;), we obtain a contradiction. Hence the proof of this claim

is complete.
Next, we prove the following claim.

Claim 3. There exists a positive constant 7, such that A;|a; —as| > 1.

Arguing by contradiction, assume that A1 |a; —a3| — 0. Using Claim 2, we see that |a; —

as|/|a; — az| — 0. We distinguish two cases.

First case: Ay/X1 — 00. Observe that, in this case, Claim 2 implies that A |a; —a;| — oo.

Therefore Ayl|ay — as| — oo (since |a; — as| = o(|la; — az|)). Using Lemma 6.5, (E) — (E1)

implies

W om—=2_ n—2_ _ de1n de1n
C(l’l)—2 + TC2813 + 5 C2E23 + C —)\2— + )Ll— =

M

oAy 0Aq

(+3)
ole+ —= ).
2

Using Assertion (2) of Lemma 6.5, we derive that

k (e)
€135 €23 = 0\€).
2}

Al

Putting this information in (E3), we obtain a contradiction. Hence the proof of Claim 3

follows in this case.

Second case: L»/\1 isbounded. In this case, the smallness of &1, implies that A;|a; —as| —

oo for j = 1,2. Therefore Ay|ay — as| — oo (since |a; — as| = o(|a1 — az|)). Note that, using

Lemma 6.5, we obtain

&3 =

1

1 - )\1 (n-2)/2
C —_—
(AaAslag — a3|?)n=2/2 = "\ A3 (hahildg — ap|2) 272 =

< c€13€12,
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1
A2

0823 o) céx cex3 (-2
2 = (n - 2)hslay — azlell" ™ < < < Cel" Py,

T Aalay—azl T Alax—aq|

Putting this information in (F;) and using (54), we obtain

1 1
+c<82 + —4) < c(e2 + —4>.
A M

On the other hand, using Lemma 6.5 and the fact that A,/ is bounded, we get

1
A2

de c
2| _ ¢

=

8823

8612 85{2

1

A2

8812

8012

/(n-2 ~1)/(n-2
= (n—2)hlay — ay /)" = celi D/ 2),

Thus

1
812:0<8+F>. (68)
1

Putting this information in (£;), using the fact that A;|a; — as| — 0 and Lemma 6.5, we
obtain

nw n—-2_ 1
—C16 — c(n))\—% - 762813 = o(s + )T%)’

which gives a contradiction. Hence the proof of Claim 3 also follows in this case. This
completes the proof of Claim 3.

Now, we state and prove Claim 4.

Claim 4. There exists a positive constant 13 such that |a; — ay|/|a; — as| > ns.

Arguing by contradiction, assume that |a; — ay| = o(|a; — as]). Using Lemma 6.5, we
observe that

1 |9e1p 12 D2
Mldar |~ Mlar—ag] TP ’
1 1
£12 < =0 =o0(epm), 69
P = (Mhslay —asl?)n-27 ((}»2)»1|612 - ﬂl|2)("_2)/2> (612) (69)
1 |de13 __ ¢z _ o( cern )
A | a1 | T Mlay — as) Mlar—as] )

Thus, (F;) implies that

1 3812

)»—1 day

(1+0(1) = 0(82 + %);
A

which shows that (68) holds. Putting (69) and (68) in (E;), we obtain (66), which gives a
contradiction. Hence the proof of Claim 4 follows.
Next, we prove the following.
Claim 5. There exists a positive constant 1, > 0 such that |a; — as|/|a; — az| > na.
Arguing by contradiction, assume that |a; — as| = o(|a; — a3|). First, observe that

1 1
£o9q < =0 =o(ep), 70
B = Vahslag — as|?) =202 (()»2)»1|6l2 - ﬂl|2)("_2)/2) (612) 70

where we have used in the last inequality Claim ! and Assertion (8) of Lemma 6.5.
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Second, we distinguish three cases and we will prove that all these cases cannot occur.

First case: Ly/A; remains bounded. Using Lemma 6.5 and (70), it holds

1 3812 CE12 (n-1)/(n-2)
> cely )
ay )»2|6l1 - a]
1| 9e23 CE3 0( €12 )
day |~ Aalay —as| Azlay — as|

Therefore, using (F,), we get

(1+0(1) = 0(82 + %),
A

which implies that (68) holds in this case. Now, taking (E5 — E; — E;) and using (70), (68)

0e1n
8612

we obtain

2 W 0e13 0e13 1
ae+cn)— +cn)— +c| Az3—+A1— ) =o0le+ = |. 71
1 ( ))\'% ( ))\'% 2< 38)\.3 18)\.1) ( )\'2) ( )

Using Assertion (2) of Lemma 6.5, we obtain a contradiction. Hence this case cannot occur.
— E3) and using

Second case: Ly/A; — oo and €13 = o(€12). In this case, taking (E; — E;
(70), we get
ae ae 1
c15+c(1/1)ﬂ2 ( Ay —— 12 Alj =0 8+—2).
A DY) oAr A
Again, using Assertion (2) of Lemma 6.5, we obtain a contradiction. Hence this case cannot
also occur.

Third case: Ay/A1 — 00 and g13 > ce15 for some positive constant ¢
Using assertions (1) and (4) of Lemma 6.5, it follows that

1 3813 nl(n-2) [
— > cAzla; —azle > ————¢€13 (72)
0a, 13 Alay —as|
s |2 ! > gii?
= —F €13 8
M v/ A1Azlar - as|
and
e c
—|== <chla; - ﬂ2|8n/n Y < €12 <
da; Atlay — as| Atlay — as|
< < C 8813
= 13 €13 = -—
Atlar — ay| Alay —as| A1l day
—as| = o(lay — ay]) and (72).

where we have used in the last line the fact that |a;

Therefore, using (F;), we get

1 |0de13
da;

1
1 1 —
( + o )) (e +A%>
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which implies that

1
enieiz=ole+ 5 ). (73)
1

Thus, putting this information in (E;), we easily obtain a contradiction. Thus this case
cannot also occur. Therefore, the proof of Claim 5 follows.

Now, we state and prove the following.
Claim 6. There exists a positive constant 15 such that |a; — as|/|ay — a;1| > ns.
Arguing by contradiction, assume that |ay —as| = o(|a; —as|). Multiplying (F;) by ‘21:2‘ )

we obtain

_ 1 8812 _ 1 8813 a) —ay
- C _— —_—
)\,1 3(11 2)\.1 8111 |(ll —ll2|

o+ p) ro(

! j#

1 3811'
)»1 3611

) +O<X_11281j>' (74')

1

However, by Assertion (1) of Lemma 6.5, we have

( c 0e1n O 8r‘313> ay—ap

S dar A day ) |ar - asl

= (n-2)(holar — azlefs” + Aslar —as| (1 +o(1))ef5?)
(75)

> ce(lré—l)/(n—Z) + Cegng—l)/(n—Z)'

Combining (74) and (75), we derive that
(%)
€12;€13 =0+ — |.
At
Putting this information in (E;), we obtain (66), which gives a contradiction. Hence the

proof of Claim 6 follows.
Now, we deal with the following claim.
Claim 7. There exists a positive constant ng such that Ay/i3 > ng.
Arguing by contradiction, assume that 1,/A3 — 0. Thus it follows that

1 0( 1 ) -~ o(e1), (76)

€13 = =
()\,1)\3|ﬂ1 — 613|2)(n72)/2 ()\,1)\2|ﬂ2 —a) |2)(n—2)/2
1 |0e3 ce13 €12 c |depp
—|—| < << < —|—]
A | 0y Mlay—az|l  Alar—az| — A1| 0aq
Thus (F;) implies that
_1)/(n— ce ce 1 |0e 1
MAglas —ar] — Mlaz—ail — A1] dmy Al

which implies (68). Putting (68) and (76) in (E;), we get (66), which gives a contradiction.
Thus the proof of Claim 7 follows.
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Lastly, we are going to prove the theorem in the cases mentioned above. Combining the

previous claims, we get

a3 < ! _ o( ! ) - o(e13) 77)

(AaAslay — az|?)n-2)2 (MAzlay —az|?) =272
1
A3

013
8a3

3823

CE93 CE13 < Cc
8613

. (78)

T hslaz—as|  Asla—as| T As
Thus, using Proposition 3.6 for i = 3, we derive that

1

A3

8813

(1 + 0(1)) = O(Rg,g + R4,3 + R5,3 + Rﬁyg).
8013

Observe that, since n > 6, easy computations show that

2n 1

_n_ =) 8813
R3’3 + R4,3 + R5’3 + R6,3 =0| &2 + )\1 + )\—
3

8613

) and i
A3

We derive that

1
€13 =0 8+)\'—% .

Putting this information and (77) in (E; + Es — E;), we obtain (66), which gives a contra-
diction. Hence the proof of the theorem is complete. d

5 Conclusion
By using delicate estimates near the “standard” bubbles, we have provided some necessary
conditions to be satisfied by the concentration parameters. The careful analysis of these
balancing conditions allows us to observe a new phenomenon in the higher dimensional
case: the nonexistence of solutions of (P,) that blow up at one or two or three interior
points. This stands in strong contrast to the fact that if # = 3, then solutions to (P;) exist
with interior blow-up points [23]. However, some questions remain open:
(i) Do the results of Theorem 1.3 remain true for all n > 4?
(i) Are there any solutions of (P.) that blow up, as & goes to zero, at N interior points
with N > 4 and for all dimension n > 4?
(iii) What happens if we put in front of the nonlinear term of (P,) a nonconstant
function K?

Appendix
In this appendix we collect several estimates needed throughout the paper. We start with
the following auxiliary analysis formulae. Their proofs follow from a Taylor expansion with

Lagrange remainder.

Lemma 6.1 For1<a <3 andp >0, we have
(1) (a+Db)* =a* +aa® b + O@*2b? xp<4 + b* Xa<b),
(2) (a+Db)* =a” + aa* b+ b* + O([a®2b% + b* ] xp<a + [0 La + a® D] xu<p),
(3) (a+b)* =a” +b* + 0@ byp<s + ab*  xu<p),
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(4) (a+Db)? =aP + 0@ bxp<a + b Xu<s.).
Next, we give the following estimate.

Lemma 6.2 For ¢InX small and a € 2, for each x € Q, it holds

8o () = cf))ﬁanz (1 - sn —2 ln(l + Azlx—a|2)) + O(z?2 ln2(1 + A2 x - a|2)) =1+o0(1).

Proof By the definition of §,,, we have

" 2
855 (x) = cf)AgTz exp(—en In(1+A%|x - alz)).

Using the fact that Q is bounded and Taylor’s expansion, we easily derive the desired re-
O

sult.

By easy computations, we easily obtain the following result.

Lemma 6.3 Forall x € Q, it holds

o 1084 Mx —a) O(34,.(x)),
(i) ————&)=(n-2)—F——58.,() =

T T e
. 084y, . n-2 1-A%x—al? B
(i) A an (%) = ) 8a.(%) 1+ A2z —af = O((Sak(x))-

Next, we give the following estimates.

Lemma 6.4 We have

- /(n-2 -
/Q (8:8)" 02 < Cef" P ney?,

%_ﬂ y 2 2 C n
(2) 8/ In (1+A|x—a|)§ = Vﬁe[O,—z) Yy >0,
Q A2 n-
13
C
3) / 502 ,
RN\Bar) (Ar)r
n+2 1 96; +2 41 96; 1 d¢j utl
(4) / g2~ % _ " / 87— L8 =cy——" + O(hila; - ajle; ),
R” )\,1 Ba,» n-2 R” / )‘j Baj )‘j 8a,
m2 98 nm+2 A 08 _ . ey ] 4
(5) /H(S’ 2Ai8_)\,- = /];{'18,81 2)”'8_,' = o l +O(£U 2 Ing; ),
2n/(n 2)

where ¢y = [, 71%‘ e

Proof (1), (4), and (5) are extracted from estimates E2 (page 4), F11 (page 22), and F16

(page 23) of [5] respectively. However, (2) and (3) follow by using standard computa-
O

tions.

Now, we state the following properties.
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Lemma 6.5 We have

1 dgj; N ag;i n-—2 A _
(1) )\_] 8{2 =(n-2xria; - aj)(s;/(" 2 and by 8): = —78,7'(1 - 2)\—;8;/(;1 2
381']' Bsij
) ALt =2 >0 ifri<h;,
@ Tax; o T fri<
dej . dgy deyj . 0gy
(3) —2/\;—Z]— i ZIZCSi/ fri<k and - 1‘—”‘ i =0,
3)\] 8k, a)‘l a)"l
c 1
(4) o5 S & < = fAi<A and Ajlai-a] > C,
()\ﬂ\”ﬂi —ajIZ)T ()\'i)\/'|(li_aj|2)T
n-2 n=2
)Li 2 )"i E
(5) ¢ ” <& < )T) if ki < &jand Aila; — aj| < C,
j j
de;j n-—-2 _ .
(6) —kjot == e+ O ") if hildy > o0,
j

dgj; n—2 .
a): = TS,}(I + 0(1)) lf)\.l' < )\1’

(7) &= (%) N (1+0(1)) and A

j
and Ai|a; — aj| — 0,

1+0(1)
£ =
ij ()‘-i)\/|ai _ aj|2)(n—2)/2

(8)

if \; and X; are of the same order,

dey -2
y = n—S,’]‘(1+0(1)) if)»/|ai—a,»| — OQ.

9 —n—2=
©) Tar, 2

Proof Claim (1) follows immediately from the definition of ¢; (see (4)). Concerning Claim

(2), using the second assertion of Claim (1), we get, for A; < A;,

_a 88,‘1‘ AiaE,']' _

— + (n - 2)el2 bk >0
Toan, A ¥ Moohg) T

which completes the proof of Claim (2). In the same way, we have

dey; dej; /(n=2) 2
g g = 1= 26 e - a),

which implies the second assertion of Claim (3). Furthermore, for A; < 1;, we have

6&7 n-2 Ai 2/(n-2) n-2
—)»} akl = Té‘l}<1 - k_jglj " = b Sij(l + 0(1)),

which completes the proof of Claim (3).

Now, assuming that A; < A; and A;|a; — a;| > C, we see that

~2/(n-2)

8;} 1 1
1< 5 =73 5+ T3 ;+tl=c
)\.,’)\/|6li—ﬂ]‘| )\,j|6li—ﬂj| )Li |6li—6ll‘|

Hence the proof of Claim (4) is completed.
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Concerning Claim (5), we observe that if 1; < A; and A;|a; — ;| < C, we have

M 2i(n-2) A
=2/(n=2) _ i 2. 12
& =1+ 5 +Ajlai—al” <c

] j

1<

Thus Claim (5) follows.
Notice that Claim (6) follows immediately from the second assertion of Claim (1).
Concerning Claim (7), observe thatif 1; < A; and A;|4; —a;| — 0, then from the smallness

of g;; it follows that A;/1; is very small. Thus

A Aj
2 2 20\ %Y j
A.l')\.l'|ﬂi —a]‘| = ()"z' Iai — 6lj| ))\_, = 0(}\‘—[)
Hence Claim (7) follows.
Now, note that if A; and 1; are of the same order, then the smallness of ¢;; implies that
Aikjla; — aj)? is very large. Hence Claim (8) follows.
Finally, if A;|a; — a;| — oo, then we have
A 1
_lgg/(n—Z) _ -0,

A Y 22
452
/ 1+ 5 +Afla; —aj?
1

which implies Claim (9), and therefore the proof of the lemma is completed. 0
We end this appendix by proving the following two useful results.

Lemma 6.6 Letn > 3.
(1) For 1 < B <n/(n—2) and ©; < A, it holds

W + |a; - a;)P"?) if2B(n-2)<n,

/(&5,)‘3 < ng la; — aj|P"=?|In|a; — a;|| + W Ink; if2p(n-2)=n,
o ,

i

la; — a;|" P2 + m if2B(n—-2)>n.

i

(2)Letl <aandl < B besuchthata # B and (i): a+ B = 2n/(n—2) or (ii): o + B < 2n/(n-2).
Then it holds

/5282"8;3 < nglm(a’ﬂ); /98%}3 = 0(8;;11“(“”3)) in case (ii).

Proof We remark that, for 8 = n/(n — 2), the estimate of Claim (1) is already given in
Lemma 6.4. Here, we need to improve this estimate when 8 < n/(n — 2). Furthermore, the
case 28(n — 2) < n occurs only when n = 3 and B < 3/2, and the case 25(n — 2) = n occurs
onlyifn=4and B=1orn=3and g =3/2.

First, we focus on proving Claim (1).

Note that, if 28(n — 2) < u (this case can occur only if n = 3 and B < 3/2), in this case, it
holds

c dx 1
(6:8)F < 7( / 7) < ca'?.<— +la —a4|ﬁ(”_2)).
L % ()Ll,)tj)ﬁ(n—Z)/Z /; Q |x _ ﬂk|2ﬂ(n_2) Ul }Lf(n—Z) 4 ]
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Thus, in the sequel of the proof, we consider 28(n — 2) > n. We distinguish two
cases.

Case 1. Mila; — a;] < M, where M is a large constant. In this case, by Lemma 6.5, we
know that ¢; and (1;/4;)"~2'2 have the same order. Let B; := B(aj, 4M/A;). Observe that,
for x € 2\ Bj, we have |x — a;| > c|x — a;|. Thus

N
/(555,)ﬂ5c(ﬁ) f S n_Z/ ol
Q Aj B X =ailP"=2 )P Jas v — a0

b1 cof L InA; if28(n—2) =n,
=L¢g; W + Ly 3 f1=2) A2B=2-n e 28(m=2)>n
i i '

4

Hence the result in this case.

2y(2-m)/2

Case 2. Aj|la; — aj| > M. In this case, Lemma 6.5 implies that (A;A;]a; — a;| and ¢;

have the same order. For k =i, , let By = B(ay, |a; — aj|/4). Observe that

8:i8)f < / / el
/( i) = ()»Hﬂz—ﬂ/ |2)Bn-2)/2 Z e — ﬂk|ﬂ” x—agpod ( B
<C8ﬂ|ﬂ'—d'|n B(n-2) +l_[< / 1 >1/2
—_ i 1
v ! Ak B 1 —ag |22

k=i

S

1
(L)
Q\B; /

< Ce |a,—a|”’3”2)

|In|a; — aj| if28(n-2)=

+Cella; )
! |a; — aj|"" 2D if 2B(n - 2) > n.

Hence the result follows in this case also.

Hence the proof of Claim (1) is complete. Concerning Claim (2), it follows from Claim
(d) of Lemma 2.2 of [8] when the assumption (i) is satisfied. However, when (ii) is satisfied
(assume that « < B8), let y := (@ + B)/2, it follows that y < n/(n —2) and y —a = (8 — «)/2.
Thus, using Holder’s inequality and Claim (1), it holds

aly (y-a)ly
f 58/ = /Q (8:8)78/ < ( /Q (aiaj)y) ( fg 3,-”2) = o(&5).

Hence the proof is complete. d

Lemma 6.7 Fora € Q and B >0, it holds

1 c
dy < .
/asz la — y|-1+F r= d(a,dQ2)P

Proof We remark that if 4 is far away from the boundary, then the result is immediate.
Hence, we focus on the case where d,, := d(a, 9$2) is small. Let g be the projection of a at
the boundary. Thus, we have

1 1
dy < d
/asz ja—yp1E —C/m @2+ fa -yt @
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