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Abstract
In this paper, we consider the Neumann elliptic problem (Pε):
–�u +μu = u((n+2)/(n–2))+ε , u > 0 in �, ∂u/∂ν = 0 on ∂�, where � is a smooth
bounded domain in R

n, n ≥ 4, ε is a small positive real, and μ is a fixed positive
number. We show that, in contrast with the three dimensional case, (Pε) has no
solution blowing up at only interior points as ε goes to zero. The proof strategy
consists in testing the equation by appropriate vector fields and then using refined
asymptotic estimates in the neighborhood of bubbles, we obtain equilibrium
conditions satisfied by the concentration parameters. The careful analysis of these
balancing conditions allows us to obtain our results.
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1 Introduction and main results
In this paper, we consider the following nonlinear elliptic equation:

(Pμ,p) :

⎧
⎨

⎩

–�u + μu = up, u > 0 in �,
∂u
∂ν

= 0, on ∂�,

where 1 < p < ∞, � is a smooth bounded domain in R
n, n ≥ 3, and μ is a positive number.

The interest in Problem (Pμ,p) grew up from the fact that it models several phenomena
in applied sciences. For example it can be seen as a steady-state problem for parabolic
problems in chemotaxis, e.g., Keller–Segel model [13], or for the shadow system of the
Gierer–Meinhardt system in biological pattern formation [10, 16].

Many works have been devoted to problem (Pμ,p). It is well known that the situation
depends on both the parameter μ and the exponent p. When μ is small and p is subcritical,
i.e., 1 < p < (n + 2)/(n – 2), the only solution is the constant one [13]. For large μ and p
subcritical, it is known that solutions exist and concentrate at one or several points located
in the interior of the domain, on the boundary, or some of them on the boundary and
others in the interior (see the review in [17]). In the critical case, i.e., p = (n + 2)/(n – 2),
when μ is small, n = 3 and � is convex, the only solution is the constant one [31, 32].
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However, for n ∈ {4, 5, 6} and μ small, nonconstant solutions exist (see [4] when � is a ball
and [25, 30] for general domains). When μ is large, nonconstant solutions also exist (see
[1, 26]) and, as in the subcritical case, solutions blow up at one or several boundary points
as μ goes to infinity (see [2, 3, 11, 14, 15, 18, 21, 27–29]). The question of the existence
of interior blow-up points is still open. However, in contrast with the subcritical case,
we know that at least one point must lie on the boundary [22]. In the supercritical case,
very little is known. When � is a ball, the uniqueness of the radial solution is proved
for small μ [12]. For a general smooth bounded domain and a slightly supercritical p,
i.e., p = ((n + 2)/(n – 2)) + ε, where ε > 0 ε → 0, a single boundary bubble solution exists
for fixed μ > 0 and n ≥ 4 [9, 24]. Furthermore, a single interior bubble solution has been
constructed in [23] for n = 3. Notice that the slightly supercritical pure Neumann problem,
that is, μ = 0 and ε is a small positive real, has been studied recently in [19], and the authors
proved the existence and multiplicity of bubbling solutions in a ball. In this paper, we focus
on a new phenomenon, which is the nonexistence of interior bubbling solutions for slightly
supercritical case when n ≥ 4. Thus, in what remains of this paper, we consider the slightly
supercritical problem

(Pε) :

⎧
⎨

⎩

–�u + μu = up+ε , u > 0 in �,
∂u
∂ν

= 0, on ∂�,

where ε is a small positive real, � is a smooth bounded domain in R
n, n ≥ 4, μ is a positive

fixed number, and p + 1 = 2n/(n – 2) is the critical Sobolev exponent for the embedding
H1(�) → Lq(�).

Before we state our main result, we need to introduce some notation. Let us define the
following family of functions called bubbles:

δa,λ(x) = c0
λ(n–2)/2

(1 + λ2|x – a|2)(n–2)/2 , λ > 0, a, x ∈R
n, c0 =

(
n(n – 2)

)(n–2)/4, (1)

which are the only solutions to the problem [7]

–�u = u(n+2)/(n–2), u > 0 in R
n.

We first exclude, in contrast with the three dimensional case [23], the existence of so-
lutions which blow up at a single point lying in the interior of the domain as ε goes to 0.
Notice that if (uε) is a sequence of nonconstant solutions to (Pε), then there are several
and equivalent ways to define blow-up points of (uε). For example, a ∈ �̄ will be said to be
a blow-up point of (uε) if

lim inf
r→0

lim sup
ε→0

∫

B(a,r)∩�

|∇uε|2
(

or
∫

B(a,r)∩�

|u 2n
n–2
ε

)

> 0.

Our first result is the following.

Theorem 1.1 Let n ≥ 4 and let μ be a fixed positive number. Then (Pε) has no solution uε

that blows up, as ε → 0, at a single interior point in the sense that

‖uε – δaε ,λε‖H1(�) → 0,

with aε → a ∈ � and λε → ∞ as ε → 0.
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To study the question of interior blow-up points without any assumption on the number
of these points, we need to get some information about such possible solutions. This is the
goal of the following result.

Theorem 1.2 Let n ≥ 4 and μ be a fixed positive number. Let (uε) be a sequence of solutions
of (Pε) such that

uε =
N∑

i=1

δai,ε ,λi,ε + vε

with N ≥ 2, ‖vε‖H1(�) → 0, λi,ε → ∞ and ai,ε → ai ∈ � as ε → 0 for all i ∈ {1, . . . , N}.
Then the following facts hold:
(i) For each j ∈ {1, . . . , N} satisfying λj,ε

λmin,ε
	→ ∞ as ε → 0, there exists k 	= j such that

|aj,ε – ak,ε| → 0 as ε → 0.
(ii) In addition, if n ≥ 5, then λmax,ε

λmin,ε
→ ∞ as ε → 0.

Theorem 1.2 allows us to generalize Theorem 1.1. More precisely, our next result shows
the nonexistence of solutions with two or three interior blow-up points.

Theorem 1.3 Let n ≥ 5 and N = 2 or n ≥ 6 and N = 3. Let μ be a fixed positive number.
Then (Pε) has no solution uε that blows up, as ε → 0, at N interior points a1,ε ,. . . , aN ,ε in
the sense that

∥
∥
∥
∥
∥

uε –
N∑

i=1

δai,ε ,λi,ε

∥
∥
∥
∥
∥

H1(�)

→ 0

with, for each i ∈ {1, . . . , N}, ai,ε → ai ∈ � and λi,ε → ∞ as ε → 0.

In the case of N interior blow-up points, with N ≥ 4, the situation becomes more del-
icate. However, we note that Theorem 1.2 easily gives the following partial nonexistence
result.

Corollary 1.4 Let n ≥ 4, N ≥ 4, and μ be a fixed positive number. Then (Pε) has no solu-
tion uε such that

uε =
N∑

i=1

δai,ε ,λi,ε + vε

with ‖vε‖H1(�) → 0, λi,ε → ∞, ai,ε → ai ∈ � as ε → 0 for all i ∈ {1, . . . , N}, and one of the
following two conditions holds:

(i) n ≥ 5 and λmax,ε
λmin,ε

	→ ∞ as ε → 0,

(ii) n ≥ 4 and there exists j ∈ {1, . . . , N} satisfying λj,ε
λmin,ε

	→ ∞ as ε → 0 and
|aj,ε – ak,ε| ≥ C > 0 as ε → 0 for all k ∈ {1, . . . , N} with k 	= j.

To prove our results, we test the equation by appropriate vector fields and then, using
refined asymptotic estimates in the neighborhood of bubbles, we obtain equilibrium con-
ditions satisfied by the concentration parameters. The careful analysis of these balancing
conditions allows us to obtain our results.
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The remainder of the paper is organized as follows: in Sect. 2 we give some basic tools
that we use in our proofs. In Sect. 3 we provide an accurate estimate of the gradient terms
in the neighborhood of bubbles. Section 4 is devoted to the proof of our results. In Sect. 5,
we discuss some future perspectives. Finally, we collect in Sect. 5 some useful estimates
needed in this paper

2 Some basic tools
For v, w ∈ H1(�), we set

〈v, w〉 =
∫

�

∇v · ∇w + μ

∫

�

vw, ‖v‖2 = 〈v, v〉. (2)

Throughout the sequel we assume that n ≥ 3, uε is a sequence of solutions of (Pε) written
in the form

uε =
N∑

i=1

δai,ε ,λi,ε + vε

with N ≥ 1, ‖vε‖H1(�) → 0, λi,ε → ∞ and ai,ε → ai ∈ � as ε → 0 for all i.
To simplify the notation, throughout the sequel we set δi = δai,ε ,λi,ε , ai = ai,ε , and λi = λi,ε .
We know that there is a unique way to choose ai,ε , λi,ε , and vε such that

uε =
N∑

i=1

αi,εδai,ε ,λi,ε + vε (3)

with
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αi,ε → 1, ai,ε ∈ �, ai,ε → ai ∈ �, λi,ε → ∞,

εij := ( λi
λj

+ λj
λi

+ λiλj|ai – aj|2)(2–n)/2 → 0,

vε → 0 in H1(�), vε ∈ Ea,λ,

(4)

where, for any (a,λ) ∈ �N × (0,∞)N , Ea,λ denotes

Ea,λ =
{

v ∈ H1(�) :
∫

�

∇v · ∇δi =
∫

�

∇v · ∇ ∂δi

∂λi
=

∫

�

∇v · ∇ ∂δi

∂aj
i

= 0,

∀1 ≤ i ≤ N ,∀1 ≤ j ≤ n
}

.

For the proof of this fact, see [20]. In what follows, we always assume that uε is written as
in (3) and (4). We start by proving the following crucial lemma.

Lemma 2.1 Let n ≥ 3. For all j ∈ {1, . . . , N}, it holds

ε lnλj → 0 as ε → 0.

Proof Multiplying (Pε) by δi and integrating on �, we obtain

–
N∑

j=1

αj

∫

�

�δjδi –
∫

�

�vεδi + μ

N∑

j=1

αj

∫

�

δjδi + μ

∫

�

vεδi
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=
∫

�

( N∑

j=1

αjδj + vε

)p+ε

δi. (5)

Using Lemma 6.6, we have

–
∫

�

�δjδi =
∫

�

δ
p
j δi = O(εij) = o(1) ∀j 	= i,

–
∫

�

�δiδi =
∫

�

δ
p+1
i =

∫

Rn
δ

p+1
i –

∫

Rn\�
δ

p+1
i = Sn + O

(
1
λn

i

)

,

where

Sn = cp+1
0

∫

Rn

dx
(1 + |x|2)n . (6)

Now, since ∂uε/∂ν = 0, we observe that

–
∫

�

�vεδi =
∫

�

∇vε∇δi –
∫

∂�

∂vε

∂ν
δi =

N∑

j=1

αj

∫

∂�

∂δj

∂ν
δi = O

( N∑

k=1

1
λn–2

k

)

= o(1),

and using Lemma 6.6, we get

∫

�

δjδi +
∫

�

δ2
i +

∫

�

|vε|δi = O
(

εij +
lnσn λi

λ
min(n–2,2)
i

+ ‖vε‖
(∫

�

δ
2n/(n+2)
i

)(n+2)/(2n))

= o(1),

where σ4 = 1 and σn = 0 if n 	= 4.
It remains to estimate the right-hand side of (5). Using Lemma 6.1, we get

∫

�

( N∑

j=1

αjδj + vε

)p+ε

δi

=
∫

�

(αiδi)p+εδi + O
(∑

j 	=i

∫
(
δ

p+ε

j δi + δ
p+ε

i δj
)

+
∫

(|vε|p+εδi + δ
p+ε

i |vε|
)
)

. (7)

Concerning the first integral on the right-hand side of (7), it holds

∫

�

δ
p+ε

i δi = cp+1+ε

0

∫

�

λ
n+ε n–2

2
i dx

(1 + λ2
i |x – ai|2)n+ε n–2

2

= cp+1+ε

0

∫

Rn

λ
n+ε n–2

2
i dx

(1 + λ2
i |x – ai|2)n+ε n–2

2
– cp+1+ε

0

∫

Rn\�
λ

n+ε n–2
2

i dx
(1 + λ2

i |x – ai|2)n+ε n–2
2

.

But we have

∫

Rn

cp+1+ε

0 λ
n+ε n–2

2
i

(1 + λ2
i |x – ai|2)n+ε n–2

2
dx = λ

ε n–2
2

i cε
0

∫

Rn

cp+1
0 dx

(1 + |x|2)n+ε n–2
2

= λ
ε n–2

2
i

(
Sn + O(ε)

)
,

∫

Rn\�
λ

n+ε n–2
2

i dx
(1 + λ2

i |x – ai|2)n+ε n–2
2

≤ λ
ε n–2

2
i c

∫

Rn\�
λn

i dx
(1 + λ2

i |x – ai|2)n ≤ c
λ

ε n–2
2

i
λn

i
.
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For the second integral on the right-hand side of (7), using the fact that δε
i ≤ cλε(n–2)/2

i , we
get for j 	= i

∫

�

(
δ

p+ε

j δi + δjδ
p+ε

i
) ≤ cλε n–2

2
i

∫

�

(
δ

p+ε

j δ1–ε
i + δjδ

p
i
)

dx ≤ cλε n–2
2

i ε1–ε
ij = o

(
λ

ε n–2
2

i
)
,

∫

�

(|vε|p+εδi + |vε|δp+ε

i
) ≤ cλε n–2

2
i

∫

�

(|vε|p+εδ1–ε
i + |vε|δp

i
) ≤ c‖vε‖λε n–2

2
i = o

(
λ

ε n–2
2

i
)
.

Combining the above estimates, we obtain

Sn + o(1) = Snλ
ε n–2

2
i + o

(
λ

ε n–2
2

i
)

=
(
Sn + o(1)

)
λ

ε n–2
2

i .

Hence λ
ε(n–2)/2
i = 1 + o(1), which completes the proof of the lemma. �

Notice that since |uε|∞ is of the same order as λ
(n–2)/2
max , Lemma 2.1 implies the following

important remark.

Remark 2.2 There is ε0 > 0 such that, for ε ∈ (0, ε0), we have

|uε|ε∞ ≤ C and |vε|ε∞ ≤ C,

where C is a positive constant independent of ε.

Now, we are going to estimate the vε-part in (3). To this aim, we need to prove the co-
ercivity of the following quadratic form:

Q(v) =
∫

�

|∇v|2 + μ

∫

�

v2 – p
N∑

i=1

∫

�

δ
p–1
ai ,λi

v2, v ∈ Ea,λ. (8)

In the case of Dirichlet boundary conditions, this kind of coercivity is proved by Bahri
[5]. Such a result was adapted in [20] to our case when the concentration points do not
approach each other. What we need here is a result which holds even if the points are close
to each other. More precisely, we will give some general formulae for future use. To this
aim, let

V(N , ε,η) :=
{

(α, a,λ) ∈ (0,∞)N × �N × (0,∞)N : |αi – 1| < η; ε lnλi < η;

λid(ai, ∂�) > η–1∀i; εij < η ∀i 	= j
}

, (9)

where N ∈N and η > 0 is a small parameter.

Proposition 2.3 Let n ≥ 3 and (α, a,λ) ∈ V(N , ε,η). Then there exists ρ0 > 0 such that

Q(v) ≥ ρ0‖v‖2 ∀v ∈ Ea,λ.

Proof Let v ∈ Ea,λ and v1 be its projection onto H1
0 (�) defined by

�v1 = �v in �, v1 = 0 on ∂�
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and define v2 = v – v1. It is easy to obtain

∫

�

∇v1∇v2 = –
∫

�

v1�v2 +
∫

∂�

v1
∂v2

∂ν
= 0, (10)

∫

�

|∇v|2 =
∫

�

|∇v1|2 +
∫

�

|∇v2|2. (11)

For y ∈ �, we denote by dy := d(y, ∂�). Since v2 is a harmonic function in �, we see that

∣
∣v2(y)

∣
∣ =

∣
∣
∣
∣

∫

∂�

∂G0

∂ν
(x, y)v2(x) dx

∣
∣
∣
∣ ≤ c

∫

∂�

|v2(x)|
|x – y|n–1 dx ≤ c‖v2‖H1 /d(n–2)/2

y , (12)

where G0 is the Green’s function of the Laplace operator with Dirichlet boundary condi-
tions and where we have used, in the last inequality, Holder’s inequality and Lemma 6.7.
In the same way, we have

∣
∣∇v2(y)

∣
∣ ≤ c‖v2‖H1 /dn/2

y ∀y ∈ �. (13)

Next, for 1 ≤ i ≤ N , taking

ψi ∈
{

δi,λi
∂δi

∂λi
,

1
λi

∂δi

∂(ai)j
, 1 ≤ j ≤ n

}

(14)

and Bi := B(ai, di/2), we observe that, for each y ∈ Bi, it holds that di/2 ≤ dy ≤ 2di. There-
fore, we get

∫

�

∇v1∇ψi =
∫

�

∇v∇ψi –
∫

�

∇v2∇ψi

= –
∫

Bi

∇v2∇ψi + O
(

1
λ

(n–2)/2
i

∫

�\Bi

|∇v2| 1
|y – ai|n–1 dy

)

= O
(‖v2‖H1

dn/2
i

∫

Bi

|∇ψi| +
‖v2‖H1

(λidi)(n–2)/2

)

= O
( ‖v2‖H1

(λidi)(n–2)/2

)

, (15)

where we have used (13), the fact that
∫

Bi
|∇ψi| = O(di/λ(n–2)/2

i ) (for the first integral), and
Holder’s inequality (for the second integral). Now, we write

Q(v) = Q0(v1) +
∫

�

|∇v2|2 + μ

∫

�

v2 – p
N∑

i=1

∫

�

δ
p–1
i (2v1 + v2)v2, (16)

where

Q0(v1) =
∫

�

|∇v1|2 – p
N∑

i=1

∫

�

δ
p–1
i v2

1.

However, using (12), we obtain

∫

�

δ
p–1
i

(
2|v1| + |v2|

)|v2|
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=
∫

Bi

δ
p–1
i

(
2|v1| + |v2|

)|v2| +
∫

�\Bi

δ
p–1
i

(
2|v1| + |v2|

)|v2|

≤ c‖v2‖
(‖v1‖H1 + ‖v2‖H1

)
[

1
d(n–2)/2

i

(∫

Bi

δ
8n

n2–4
i

) n+2
2n

+
(∫

�\Bi

δ
p+1
i

) 2
n
]

= o
(‖v1‖2

H1 + ‖v2‖2
H1

)
. (17)

To proceed further, let

ṽ1 = v1 in �, ṽ1 = 0 in R
n \ �.

Clearly, ṽ1 ∈D1,2(Rn). Now, we write

ṽ1 =
N(n+2)∑

i=1

γiψi + v1 where

ψi ∈
{

δk ,λk
∂δk

∂λk
,

1
λk

∂δk

∂(ak)j
, 1 ≤ k ≤ N ; 1 ≤ j ≤ n

}

and
∫

Rn
∇v1∇ψi = 0 ∀i.

Using (15), we obtain

∫

Rn
∇ ṽ1∇ψi = cγi + o

(∑
γj

)
=

∫

�

∇v1∇ψi = o
(‖v2‖H1

) ∀i. (18)

This implies that

∫

Rn
|∇v1|2 =

∫

Rn
|∇ ṽ1|2 + o

(‖v2‖2
H1

)
. (19)

Using (19), we get

Q0(v1) =
∫

Rn
|∇ ṽ1|2 – p

∑∫

Rn
δ

p–1
i ṽ2

1

=
∫

Rn
|∇v1|2 – p

∑∫

Rn
δ

p–1
i v2

1 + o
(‖∇v1‖2

L2 + ‖v2‖2
H1

)
. (20)

Combining (18) and Proposition 3.1 of [5], we obtain

Q0(v1) ≥ ρ

∫

Rn
|∇v1|2 + o

(‖∇v1‖2
L2 + ‖v2‖2

H1
)

≥ ρ

2

∫

Rn
|∇ ṽ1|2 + o

(‖v2‖2
H1

)
=

ρ

2

∫

�

|∇v1|2 + o
(‖v2‖2

H1
)
. (21)

Therefore (21) and (16) imply that

Q(v) ≥ ρ

2

∫

�

|∇v1|2 +
∫

�

|∇v2|2 + μ

∫

�

v2 + o
(‖v1‖2 + ‖v2‖2

H1
) ≥ C‖v‖2,

which completes the proof of Proposition 2.3. �

Next, we are going to estimate the norm of vε-part of uε when ε goes to zero.
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Proposition 2.4 Let n ≥ 3 and let vε be the remainder term defined in (3). Then there is
ε0 > 0 such that, for ε ∈ (0, ε0), the following fact holds:

‖vε‖ ≤ CR(ε, a,λ) with

R(ε, a,λ) := ε +
N∑

i=1

1
(λidi)

n–2
2

+
∑

1≤i,j≤N ,j 	=i

(
ε

n+2
2(n–2)
ij

(
ln ε–1

ij
) n+2

2n + εij
)

+
N∑

i=1

⎧
⎨

⎩

λ–2
i ln2/3 λi if n = 6,

λ
– min(2, n–2

2 )
i if n 	= 6.

Proof Taking U =
∑N

i=1 αiδi, multiplying (Pε) by vε , and integrating on �, we obtain

∫

�

|∇vε|2 + μ

∫

�

v2
ε + μ

∑
αj

∫

�

δjvε =
∫

�

(U + vε)p+εvε . (22)

For the right-hand side in (22), we write

∫

�

(U + vε)p+εvε =
∫

�

Up+εvε + (p + ε)
∫

�

Up+ε–1v2
ε

+ O
(∫

�

|vε|p+1
)

+ O(n≤5)

(∫

�

Up–2|vε|3
)

=
∫

�

Up+εvε + (p + ε)
∫

�

Up+ε–1v2
ε + o

(‖vε‖2), (23)

where we have used Remark 2.2 and where the notation O(n≤5) means that the term appears
only if n ≤ 5.

However, using Lemma 2.1 and (4), we have

(p + ε)
∫

�

Up+ε–1v2
ε = p

N∑

j=1

∫

�

δ
4

n–2
j v2

ε + o
(‖vε‖2). (24)

For the other integral in (23), using Lemma 6.1, we see that, for n ≥ 6, we have

∫

�

Up+εvε =
N∑

i=1

α
p+ε

i

∫

�

δ
p+ε

i vε +
∑

i	=j

O
(∫

�

(δiδj)
p+ε

2 |vε|
)

. (25)

Using Lemmas 2.1, 6.2, and 6.4, we obtain

∫

�

(δiδj)
p+ε

2 |vε| ≤ c
∫

�

(δiδj)
p
2 |vε|

≤ c‖vε‖
(∫

�

(δiδj)
n

n–2

) n+2
2n ≤ c‖vε‖

[
ε

n
n–2
ij ln ε–1

ij
] n+2

2n . (26)

For the first term on the right-hand side of (25), using again Lemmas 6.2 and 6.4, we obtain

∫

�

δ
p+ε

i vε = cε
0λ

ε n–2
2

i

∫

�

δ
p
i vε + O

(

ε

∫

�

δ
p
i |vε| ln

(
1 + λ2

i |x – ai|2
)
)
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= cε
0λ

ε n–2
2

i

∫

�

δ
p
i vε + O

(

ε‖vε‖
(∫

Rn
δ

p+1
i ln

2n
n+2

(
1 + λ2

i |x – ai|2
)
) n+2

2n
)

= cε
0λ

ε
(n–2)

2
i

∫

�

δ
p
i vε + O

(
ε‖vε‖

)
. (27)

However, since vε ∈ Ea,λ, using Holder’s inequality and Lemma 6.7, it holds

∣
∣
∣
∣

∫

�

δ
p
i vε

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

�

–�δivε

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

∂�

∂δi

∂ν
vε

∣
∣
∣
∣ ≤ c

λ
(n–2)/2
i

∫

∂�

|vε|
|x – ai|n–1 ≤ c

(λidi)(n–2)/2 ‖vε‖. (28)

For n ≤ 5, using Lemma 6.1, we write

∫

�

Up+εvε =
N∑

i=1

α
p+ε

i

∫

�

δ
p+ε

i vε +
∑

i	=j

O
(∫

�

δ
p–1+ε

i δj|vε| +
∫

�

δiδ
p–1+ε

j |vε|
)

. (29)

Using Lemmas 6.2 and 6.6, we get (since 1 ≤ 2n/(n + 2) < 8n/(n2 – 4) for n ≤ 5)

∫

�

δ
p–1+ε

i δj|vε| ≤ c
∫

�

δ
p–1
i δj|vε| ≤ c‖vε‖

(∫

δ
8n/(n2–4)
i δ

2n/(n+2)
j

)(n+2)/(2n)

≤ c‖vε‖εij. (30)

Lastly, by easy computations, we have

∫

�

δj|vε| ≤ C‖vε‖
(∫

�

δ
2n/(n+2)
j

)(n+2)/(2n)

≤ C‖vε‖T(λj) (31)

with

T(λ) :=
(

1
λ(n–2)/2 if n ≤ 5;

ln2/3(λ)
λ2 if n = 6;

1
λ2 if n ≥ 7

)

. (32)

Combining Proposition 2.3 and the above estimates, we easily obtain Proposition 2.4. �

3 Estimate of the gradient in the neighborhood of bubbles
As our proof is based on an argument by contradiction, we will assume that problem (Pε)
has a solution u := uε in the form (3) and satisfying (4), and we will need to give careful
estimates of some integrals involved in our proof. In fact, for future use, we are going to
give some crucial estimates in a more general situation than ours. To this aim, for N ∈ N,
ε and η small positive reals, taking (α, a,λ) ∈ V(N , ε,η), where V(N , ε,η) is defined by (9),
and u =

∑N
i=1 αiδai ,λi + v with v ∈ Ea,λ, we need to evaluate the following expressions:

∫

�

∇u∇ψi + μ

∫

�

uψi –
∫

�

|u|p–1+εuψi ψi ∈
{

δi,λi
∂δi

∂λi
,

1
λi

∂δi

∂ai

}

, 1 ≤ i ≤ N . (33)

We start by dealing with the nonlinear integrals in (33).
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Proposition 3.1 Let n ≥ 3 and u :=
∑N

i=1 αiδai ,λi + v be such that (α, a,λ) ∈ V(N , ε,η) and
v ∈ Ea,λ. Then, for 1 ≤ i ≤ N , we have

∫

�

|u|p–1+εu
1
λi

∂δi

∂ai

= c2
∑

j 	=i

αj
1
λi

∂εij

∂ai

[∑

k=i,j

α
p–1+ε

k λ
ε n–2

2
k

]

+ O
(

R3,i +
∑

k 	=r

ε
n

n–2
kr ln ε–1

kr + ε2
kr

)

,

where

R3,i :=
∑

j 	=i

[
λj|ai – aj|ε

n+1
n–2
ij + εεij

]
+

1
(λidi)n/2

N∑

k=1

1
(λkdk)(n+2)/2

+ ‖v‖
(

‖v‖ + ε +
1

(λidi)n/2 +
∑

j 	=i

[
εij + ε

(n+2)/(2(n–2))
ij ln

(
ε–1

ij
)(n+2)/(2n)]

)

.

Proof To simplify notation, we write U =
∑N

j=1 αjδj and ψi = 1
λi

∂δi
∂ai

. We set

�v =
{

x ∈ � :
∣
∣v(x)

∣
∣ ≤ U(x)

}
and �c

v = � \ �v.

Using Lemma 6.1, we get

∫

�

|u|p–1+εuψi

=
∫

�

Up+εψi + (p + ε)
∫

�

Up–1+εvψi + O
(∫

�v

Up–2+εv2|ψi| +
∫

�c
v

|v|p+ε|ψi|
)

. (34)

First, from Lemmas 6.3 and 6.2, we obtain
∫

�v

Up–2+εv2|ψi| +
∫

�c
v

|v|p+ε|ψi| ≤ c
∫

�

Up–1v2 + c
∫

�

|v|p+1 ≤ c‖v‖2. (35)

Second, Lemmas 6.1 and 6.2 imply that

∫

�

Up–1+εvψi =
∫

�

(αiδi)p–1+εvψi + O
(∫

�i

(αiδi)p–2
(∑

j 	=i

αjδj

)

|v||ψi|
)

+ O
(∫

�c
i

(∑

j 	=i

αjδj

)p–1

|v||ψi|
)

, (36)

where �i = {x ∈ � :
∑

j 	=i αjδj(x) ≤ αiδi(x)} and �c
i = � \ �i.

To deal with the remaining term in (36), we distinguish two cases. For n ≥ 6, observe
that p – 1 := 4/(n – 2) ≤ 1. Thus, using Lemmas 6.3 and 6.4, it follows that

∫

�i

(αiδi)p–2
(∑

j 	=i

αjδj

)

|v||ψi| +
∫

�c
i

(∑

j 	=i

αjδj

)p–1

|v||ψi|

≤ C
∫

�i

(αiδi)p–1
(∑

j 	=i

αjδj

)

|v| + C
∫

�c
i

(∑

j 	=i

αjδj

)p–1

|v|δi
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≤ C
∑

j 	=i

∫

�

(δiδj)p/2|v| ≤ c‖v‖
(∫

�

(δiδj)n/(n–2)
)(n+2)/(2n)

≤ C‖v‖
∑

ε
(n+2)/(2(n–2))
ij ln

(
ε–1

ij
)(n+2)/(2n). (37)

For n ≤ 5, we have p – 1 > 1, and therefore, using (30), it holds

∫

�i

(αiδi)p–2
(∑

j 	=i

αjδj

)

|v||ψi| +
∫

�c
i

(∑

j 	=i

αjδj

)p–1

|v||ψi|

≤ c
∑

j 	=i

(∫

�

δ
p–1
i δj|v| +

∫

�

δ
p–1
j |v|δi

)

≤ c‖v‖
∑

εij. (38)

To complete estimate (36), using Lemmas 6.2. 6.3, 6.4, 6.7 and v ∈ Ea,λ, we obtain

∫

�

δ
p–1+ε

i vψi = cε
0λ

ε(n–2)/2
i

∫

�

δ
p–1
i vψi + O

(

ε

∫

�

δ
p–1
i |v||ψi| ln

(
1 + λ2

i |x – ai|2
)
)

= cε
0λ

ε(n–2)/2
i

[
1
p
〈∇ψi,∇v〉L2 –

∫

∂�

∂ψi

∂ν
v
]

+ O
(
ε‖v‖) (39)

= O
(

1
λn/2

i

∫

∂�

|v|
|x – ai|n + ε‖v‖

)

= O
(

‖v‖
[

ε +
1

(λidi)n/2

])

. (40)

It remains to estimate the first integral on the right-hand side of (34). To this aim, by
Lemma 6.1, we write

∫

�

Up+εψi =
∫

�

(αiδi)p+εψi + (p + ε)
∫

�

(αiδi)p+ε–1
(∑

j 	=i

αjδj

)

ψi +
∫

�

(∑

j 	=i

αjδj

)p+ε

ψi

+ O
(∫

�i

[

(αiδi)p–2+ε

(∑

j 	=i

αjδj

)2

+
(∑

j 	=i

αjδj

)p+ε]

|ψi|
)

+ O
(∫

�c
i

[

αiδi

(∑

j 	=i

αjδj

)p+ε–1

+ (αiδi)p–1+ε

(∑

j 	=i

αjδj

)]

|ψi|
)

. (41)

We are going to estimate each term of (41). First, for n ≥ 4, it follows that p – 1 ≤ 2. Using
Lemmas 6.2, 6.3, and 6.4, we obtain

∫

�i

[· · · ]|ψi| +
∫

�c
i

[· · · ]|ψi| ≤ c
∑

j 	=i

∫

�

(δiδj)
n

n–2 ≤ c
∑

j 	=i

ε
n

n–2
ij ln ε–1

ij , (42)

and for n = 3, using Lemmas 6.2, 6.3, and 6.6, it follows that

∫

�i

[· · · ]|ψi| +
∫

�c
i

[· · · ]|ψi| ≤ c
∑

j 	=i

∫

�

δ4
i δ

2
j + δ2

i δ
4
j ≤ c

∑

j 	=i

ε2
ij.
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Second, since ψi is odd and δi is even with respect to x – ai, using Lemmas 6.2, 6.3, and
6.4, we get

∫

�

(αiδi)p+εψi = O
(∫

�\B(ai ,di)
δ

p
i |ψi|

)

= O
(∫

�\B(ai ,di)

δ
p+1
i

λi|x – ai|
)

= O
(

1
(λidi)n+1

)

, (43)

where di := d(ai, ∂�).
Third, using Lemmas 6.2, 6.3, 6.4, and 6.6, we obtain

∫

�

δ
p+ε–1
i ψiδj

= cε
0λ

ε(n–2)
2

i

∫

�

δ
p–1
i ψiδj + O

(

ε

∫

�

δ
p
i δj ln

(
1 + λ2

i |x – ai|2
)
)

= cε
0λ

ε(n–2)
2

i

∫

Rn
δ

p–1
i ψiδj

+ O
(∫

Rn\�

δ
p
i δj

λi|x – ai| + ε

∫

�

(
δ

n
n–2
i δj

)
δ

2
n–2
i ln

(
1 + λ2

i |x – ai|2
)
)

= cε
0λ

ε(n–2)
2

i
c2

pλi

∂εij

∂ai
+ O

(

λj|ai – aj|ε
n+1
n–2
ij +

1
(λidi)(n+4)/2

1
(λjdj)(n–2)/2 + εεij

)

. (44)

Finally, using Lemmas 6.1, 6.2, and 6.3, we get

∫

�

(∑

j 	=i

αjδj

)p+ε

ψi

=
∑

j 	=i

α
p+ε

j

∫

�

δ
p+ε

j ψi + O
( ∑

k /∈{i,j}

∫

�

δkδ
p–1
j |ψi|

)

=
∑

j 	=i

α
p+ε

j cε
0λ

ε(n–2)
2

j

∫

�

δ
p
j ψi

+ O
(

ε

∫

�

δ
p
j δi ln

(
1 + λ2

j |x – aj|2
)

+
∑

k /∈{i,j}

∫

�

δkδ
p–1
j |ψi|

)

. (45)

On the other hand, using Lemmas 6.3, 6.4, and 6.6 we see that

∑

k /∈{i,j}

∫

�

δkδ
p–1
j |ψi| ≤

∑

l 	=r

∫

�

(δlδr)n/(n–2) ≤ c
∑

l 	=r

ε
n/(n–2)
lr ln ε–1

lr , if n ≥ 4, (46)

∑

k /∈{i,j}

∫

�

δkδ
p–1
j |ψi| ≤

∑

r 	=j

∫

�

δ4
j δ

2
r ≤ c

∑

l 	=r

ε2
lr , if n = 3,

∫

�

δ
p
j |δi| ln

(
1 + λ2

j |x – aj|2
) ≤

∫

�

(
δiδ

n/(n–2)
j

)
δ

2/(n–2)
j ln

(
1 + λ2

j |x – aj|2
) ≤ cεij, (47)

∫

�

δ
p
j ψi =

∫

Rn
δ

p
j ψi + O

(∫

Rn\�

δ
p
j δi

λi|x – ai|
)
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=
c2

λi

∂εij

∂ai
+ O

(

λj|ai – aj|ε
n+1
n–2
ij +

1

(λjdj)
(n+2)

2

1
(λidi)

n
2

)

. (48)

Combining the above estimates, the proof of Proposition 3.1 follows. �

Next, we are going to improve Proposition 3.1 in some particular cases. More precisely,
we need to improve the term

∑
ε

n/(n–2)
kr ln ε–1

kr in these cases.

Proposition 3.2 Let n ≥ 5, and for 1 ≤ i ≤ N , let Ni := {j : 1 ≤ j ≤ N , |ai – aj| → 0}, γ :=
min{|aj –ak|, j 	= k, j, k ∈ Ni}, and σ := max{|aj –ak|, j 	= k, j, k ∈ Ni}. Assume that γ /σ ≥ c > 0
and γ min{λk : k ∈ Ni} ≥ c > 0. Then, for 1 ≤ i ≤ N , we have

∫

�

|u|p–1+εu
1
λi

∂δi

∂ai
= c2

∑

j 	=i

αj
1
λi

∂εij

∂ai

[
α

p–1+ε

j λ
ε(n–2)

2
j + α

p–1+ε

i λ
ε(n–2)

2
i

]
+ O(R3,i + R4,i),

where R3,i is defined in Proposition 3.1 and

R4,i =
1

γ λi

∑

k 	=r

ε
n

n–2
kr +

∑

j 	=i

ε
n+1/2
n–2

ij +
1

γ λi

∑

j 	=i

ε
n–1/2
n–2

ij .

Proof The proof follows the proof of Proposition 3.1, but we need to improve estimates
(42) and (46). We remark that, since the distances |ak – aj|s are of the same order (that is
γ /σ ≥ c > 0) and γ min{λk : k ∈ Ni} ≥ c (by the assumption of the proposition), it follows
from Assertion (4) of Lemma 6.5 that εkj and (λkλjγ

2)(2–n)/2 are of the same order.
We start by improving (46). Let B� = B(a�,γ /4), we write for k /∈ {i, j} and i 	= j

∫

�

δkδ
p–1
j |ψi| =

∫

Bi

· · · +
∫

Bj

· · · +
∫

Bk

· · · +
∫

�\(Bi∪Bi∪Bk )
· · · := (I) + (II) + (III) + (IV ).

For the last one, using Lemma 6.3, it holds

(IV ) ≤ C
λ

(n–2)/2
k λn/2

i λ2
j

∫

�\(Bi∪Bi∪Bk )

dx
|x – ak|n–2|x – ai|n–1|x – aj|4

≤ C
λ

(n–2)/2
k λn/2

i λ2
j γ

n+1
≤ C

λiγ

∑

l 	=r

ε
n/(n–2)
lr .

Concerning the first one, it holds

(I) ≤ C
(λkγ 2) n–2

2 (λjγ 2)2

∫

Bi

dx

λ
n
2
i |x – ai|n–1

≤ C

λ
n–2

2
k λ

n
2
i λ2

j γ
n+1

≤ C
λiγ

∑

l 	=r

ε
n

n–2
lr ,

and in the same way we obtain

(II) + (III) ≤ C
λiγ

∑

l 	=r

ε
n

n–2
lr .

This completes the desired improvement for (46).
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Now, we will focus on the improvement for (42). Using Lemmas 6.2 and 6.3, we get

∫

�i

[· · · ]|ψi| +
∫

�c
i

[· · · ]|ψi|

≤ c
∑

j 	=i

∫

�

δ
n+1/2
n–2

j δ
n–1/2
n–2

i
1

λi|x – ai|

≤
∑

j 	=i

c
γ λi

∫

�\Bi

δ
n+1/2
n–2

j δ
n–1/2
n–2

i + c
∑

j 	=i

c

(γ 2λj)
n+1/2

2

∫

Bi

1
λi|x – ai|

λ
n–1/2
n–2

i

(1 + λ2
i |x – ai|2) n–1/2

n–2

≤
∑

j 	=i

c
γ λi

ε
n–1/2
n–2

ij + c
∑

j 	=i

c

(γ 2λj)
n+1/2

2

1

λ
n+1/2
n–2

i

≤
∑

j 	=i

c
γ λi

ε
n–1/2
n–2

ij + cε
n+1/2
n–2

ij ,

where we have used Lemma 6.6. This completes the improvement of (42). Hence the proof
of Proposition 3.2 follows. �

Next, we are going to deal with the linear terms in (33). We start by the second one,
namely, we prove the following.

Proposition 3.3 Let n ≥ 3 and u :=
∑N

i=1 αiδai ,λi +v be such that (α, a,λ) ∈ V(N , ε,η). Then,
for 1 ≤ i ≤ N , the following fact holds:

∣
∣
∣
∣

∫

�

u
1
λi

∂δi

∂ai

∣
∣
∣
∣ ≤ cR5,i with R5,i :=

1
λi

∑

j 	=i

εij +

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

| ln di|
λ2

i
+ ‖v‖ 1

λ3/2
i

if n = 3,
1

λ3
i di

+ ‖v‖ (lnλi)3/4

λ2
i

if n = 4,
1

λ2
i (λidi)n–3 + ‖v‖ 1

λ2
i

if n ≥ 5.

Proof Let ψi := 1
λi

∂δi
∂ai

. Observe that, for j 	= i, using Lemmas 6.3 and 6.6, it holds

∫

�

δj|ψi| ≤ c
∫

�

1
λi|x – ai|δjδi ≤ c

λi

(∫

�

(δjδi)
n–1
n–2

) n–2
n–1

(∫

�

1
|x – ai|n–1

) 1
n–1 ≤ c

λi
εij.

For j = i, let R > 0 be such that � ⊂ B(ai, R), it holds that

∣
∣
∣
∣

∫

�

δiψi

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

B(ai ,di)
δiψi +

∫

�\B(ai ,di)
δiψi

∣
∣
∣
∣ ≤ c

∫

�\B(ai ,di)

1
λi|x – ai|δ

2
i

≤ c
λ2

i

∫ λiR

λidi

tn–2

(1 + t2)n–2 ≤ c
( | ln di|

λ2
i

if n = 3;
1

λ2
i (λidi)n–3 if n ≥ 4

)

.

Finally, using again Lemma 6.3, it holds

∫

�

|v||ψi| ≤ c‖v‖
(∫

�

(
1

λi|x – ai|δi

) 2n
n+2

) n+2
2n
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≤ c‖v‖ 1
λ2

i

(∫ λiR

0

tn–1– 2n
n+2

(1 + t2)n(n–2)/(n+2)

) n+2
2n ≤ c‖v‖ ×

⎧
⎪⎪⎨

⎪⎪⎩

1/λ3/2
i if n = 3,

(lnλi)3/4/λ2
i if n = 4,

1/λ2
i if n ≥ 5.

Thus the proof follows. �

Next, we deal with the first linear term in (33).

Proposition 3.4 Let n ≥ 3 and u :=
∑N

i=1 αiδai ,λi + v be such that (α, a,λ) ∈ V(N , ε,η) and
v ∈ Ea,λ. Then, for 1 ≤ i ≤ N , the following fact holds:

∫

�

∇u · ∇ 1
λi

∂δi

∂ai
= c2

1
λi

∑

j 	=i

αj
∂εij

∂ai
+ O(R6,i) with

R6,i :=
1

(λidi)
n
2

∑

k

1
(λkdk) n–2

2
+

∑

j 	=i

λj|ai – aj|ε
n+1
n–2
ij .

Proof Since v ∈ Ea,λ, it follows that

∫

�

∇u · ∇ 1
λi

∂δi

∂ai

=
∑

1≤j≤N

αj

∫

�

∇δj · ∇ 1
λi

∂δi

∂ai

=
∑

1≤j≤N

αj

∫

Rn
∇δj∇ 1

λi

∂δi

∂ai
+ O

[(∫

Rn\�
|∇δj|2

)1/2(∫

Rn\�

∣
∣
∣
∣∇

1
λi

∂δi

∂ai

∣
∣
∣
∣

2)1/2]

=
∑

j 	=i

αj

(

c2
1
λi

∂εij

∂ai
+ O

(
λj|ai – aj|ε

n+1
n–2
ij

)
)

+ O
(

1
(λidi)

n
2

∑

j

1
(λjdj)

n–2
2

)

,

where we have used Lemma 6.4. This completes the proof. �

Combining Propositions 3.1, 3.3, and 3.4, we obtain the following balancing expression
involving the point of concentration ai.

Proposition 3.5 Let n ≥ 3 and u =
∑

j≤N αjδaj ,λj + v be such that (α, a,λ) ∈ V(N , ε,η) and
v ∈ Ea,λ. Then, for 1 ≤ i ≤ N , the following fact holds:

∫

�

∇u · ∇ 1
λi

∂δi

∂ai
+ μ

∫

�

u
1
λi

∂δi

∂ai
–

∫

�

|u|p–1+εu
1
λi

∂δi

∂ai

= c2
∑

j 	=i

αj
1
λi

∂εij

∂ai

[
1 – α

p–1+ε

j λ
ε(n–2)

2
j – α

p–1+ε

i λ
ε(n–2)

2
i

]
+ O(R35,i)

where R35,i := R3,i + R5,i + R6,i +
∑

k 	=r

(
ε

n
n–2
kr ln

(
ε–1

kr
)

+ ε2
kr

)
,

and where c2 is defined in Lemma 6.4 and R3,i, R5,i, R6,i are defined in Propositions 3.1, 3.3,
3.4, respectively.
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When the concentration points satisfy some properties, we can improve the previous
proposition. More precisely, combining Propositions 3.2, 3.3, and 3.4, we obtain the fol-
lowing.

Proposition 3.6 Let n ≥ 5 and u =
∑

j≤N αjδaj ,λj + v be such that (α, a,λ) ∈ V(N , ε,η) and
v ∈ Ea,λ. For i ≤ N , let Ni := {j : |ai – aj| → 0}, γ := min{|aj – ak|, j 	= k, j, k ∈ Ni} and σ :=
max{|aj – ak|, j 	= k, j, k ∈ Ni}. Assume that γ /σ ≥ c > 0 and γ min{λk : k ∈ Ni} ≥ c > 0. Then,
for 1 ≤ i ≤ N , the following fact holds:

∫

�

∇u · ∇ 1
λi

∂δi

∂ai
+ μ

∫

�

u
1
λi

∂δi

∂ai
–

∫

�

|u|p–1+εu
1
λi

∂δi

∂ai

= c2
∑

j 	=i

αj
1
λi

∂εij

∂ai

[
1 – α

p–1+ε

j λ
ε(n–2)

2
j – α

p–1+ε

i λ
ε(n–2)

2
i

]
+ O(R3,i + R4,i + R5,i + R6,i),

where c2 is defined in Lemma 6.4 and R3,i, R4,i, R5,i, R6,i are defined in Propositions 3.1, 3.2,
3.3, 3.4, respectively.

In the same way, we prove the following balancing expression involving the rate of the
concentration and the mutual interaction of bubbles εij.

Proposition 3.7 Let n ≥ 4 and u =
∑

j≤N αjδaj ,λj + v be such that (α, a,λ) ∈ V(N , ε,η) (with
di := d(ai, ∂�) ≥ c if n = 4) and v ∈ Ea,λ. Then, for 1 ≤ i ≤ N , the following fact holds:

∫

�

∇u · ∇λi
∂δi

∂λi
+ μ

∫

�

uλi
∂δi

∂λi
–

∫

�

|u|p–1+εuλi
∂δi

∂λi

= –c1ε – c(n)μ
lnσn (λi)

λ2
i

– c2
∑

j 	=i

λi
∂εij

∂λi

+ o
(

ε +
∑

k≤N

lnσn (λk)
λ2

k
+

∑

k 	=r

εkr

)

+ O
(

1
(λidi)(n–2)/2

∑ 1
(λkdk)(n–2)/2 + ‖v‖2

)

,

where c1 is defined in (49), c(n) is defined in (52) if n ≥ 5 and in (53) if n = 4 and σ4 = 1 and
σn = 0 for n ≥ 5, and c2 is defined in Lemma 6.4.

Proof We will follow the proof of Propositions 3.1, 3.3, and 3.4, and we will precise the
estimate of some integrals. In fact, in this case, we will use the function ψi := λi∂δi/∂λi.
Note that (34), (35), (36), (37), (38), and (39) hold in this case since they are based on the
fact that |ψi| ≤ cδi, which is also true with the new ψi. Some changes are needed for (40).
In fact, using Lemma 6.7, we have

1
p

∫

�

∇ψi∇v –
∫

∂�

∂ψi

∂ν
v = 0 + O

(
1

λ
(n–2)/2
i

∫

∂�

|v|
|x – ai|n–1

)

= O
(

1
(λidi)(n–2)/2 ‖v‖

)

.

Furthermore, (41) and (42) also hold true, but (43) becomes as follows (see (3.4) of [6]):

∫

�

δ
p+ε

i λi
∂δi

∂λi
= λ

ε(n–2)/2
i c1ε + O

(

ε2 +
1

(λidi)n

)

,
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where

c1 :=
(n – 2)2

4
c2n/(n–2)

0

∫

Rn

|x|2 – 1
(1 + |x|2)n+1 ln

(
1 + |x|2)dx > 0. (49)

Concerning (44), using Lemmas 6.2 and 6.4, it holds

∫

�

δ
p+ε–1
i ψiδj = cε

0λ
ε(n–2)

2
i

∫

Rn
δ

p–1
i ψiδj + O

(∫

Rn\�
δ

p
i δj + ε

∫

�

δjδ
n+2
n–2
i ln

(
1 + λ2

i |x – ai|2
)
)

= cε
0λ

ε(n–2)
2

i
c2

p
λi

∂εij

∂λi
+ O

(

ε
n

n–2
ij ln ε–1

ij +
1

(λidi)(n+2)/2
1

(λjdj)(n–2)/2 + εεij

)

.

In addition, (45), (46), and (47) hold. However, (48) becomes

∫

�

δ
p
j ψi =

∫

Rn
δ

p
j ψi + O

(∫

Rn\�
δ

p
j δi

)

= c2λi
∂εij

∂λi
+ O

(

ε
n

n–2
ij ln ε–1

ij +
1

(λjdj)
n+2

2 (λidi)
n–2

2

)

.

Hence the analogue of Proposition 3.1 becomes

∫

�

|u|p–1+εuλi
∂δi

∂λi
= c2

∑

j 	=i

αjλi
∂εij

∂λi

(
α

p–1+ε

i λ
ε n–2

2
i + α

p–1+ε

j λ
ε n–2

2
j

)

+ O
(∑

k 	=r

ε
n

n–2
kr ln ε–1

kr + ‖v‖2 + ε2 +
1

(λidi)n–2 +
∑ 1

(λkdk)n

)

. (50)

For the analogue of Proposition 3.4, it holds (since v ∈ Ea,λ)

∫

�

∇u∇λi
∂δi

∂λi
=

N∑

j=1

αj

(∫

�

δ
p
j λi

∂δi

∂λi
+

∫

∂�

∂δj

∂ν
λi

∂δi

∂λi

)

= αi

∫

Rn\�
δ

p
i λi

∂δi

∂λi
+

∑

j 	=i

αj

∫

�

δ
p
j λi

∂δi

∂λi
+

N∑

j=1

αj

∫

∂�

∂δj

∂ν
λi

∂δi

∂λi
.

Notice that, using Lemma 6.7, we have

∫

∂�

∣
∣
∣
∣
∂δj

∂ν

∣
∣
∣
∣λi

∣
∣
∣
∣
∂δi

∂λi

∣
∣
∣
∣ ≤ c

(λiλj)(n–2)/2

∫

∂�

1
|x – aj|n–1

1
|x – ai|n–2

≤ c
(λiλj)(n–2)/2

(∫

∂�

1
|x – aj|2(n–1)2/n

) n
2n–2

(∫

∂�

1
|x – ai|2n–2

) n–2
2n–2

≤ c
(λjdj)(n–2)/2

c
(λidi)(n–2)/2 .

Thus, using Lemma 6.4, we obtain

∫

�

∇u∇λi
∂δi

∂λi
=

∑

j 	=
αjc2λi

∂εij

∂λi

+ O
(∑

j 	=i

ε
n

n–2
ij ln ε–1

ij +
1

(λidi)(n–2)/2

∑ 1
(λkdk)(n–2)/2

)

. (51)
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It remains the analogue of Proposition 3.3. Using Lemma 6.2, we have

∫

�

uλi
∂δi

∂λi
= αi

∫

�

δiλi
∂δi

∂λi
+ O

(∫

�

|v|δi +
∑

j 	=i

∫

�

δjδi

)

.

The last integral is computed in Lemma 6.6, and the second one is computed in (31).
Concerning the first one, it depends on the dimension n. If n ≥ 5, then it holds

∫

�

δiλi
∂δi

∂λi
=

n – 2
2

c2
0

∫

Rn
λn–2

i
1 – λ2

i |x – ai|2
(1 + λ2

i |x – ai|2)n–1 + O
(∫

Rn\�
1

λn–2
i

1
|x – ai|2n–4

)

= –
c(n)
λ2

i
+ O

(
1

λ2
i (λidi)n–4

)

with c(n) :=
n – 2

2
c2

0

∫

Rn

|x|2 – 1
(1 + |x|2)n–1 > 0. (52)

However, for n = 4, let r, R > 0 be such that B(ai, r) ⊂ � ⊂ B(ai, R). (Note that, if ai is in a
compact set of �, then r will be independent of ai). It holds

∫

�

δiλi
∂δi

∂λi
=

n – 2
2

c2
0

∫

B(ai ,r)
λ2

i
1 – λ2

i |x – ai|2
(1 + λ2

i |x – ai|2)3 + O
(∫

B(ai ,R)\B(ai ,r)

1
λ2

i

1
|x – ai|4

)

= –c(n)
lnλi

λ2
i

+ O
(

1
λ2

i

)

with c(n) :=
n – 2

2
meas

(
S3)c2

0. (53)

Finally, combining (50), (51), (52), and (53), the proof of Proposition 3.7 follows. �

Lastly, we give the following expression involving the gluing parameters α′
is. Namely, we

have

Proposition 3.8 Let n ≥ 4 and u =
∑

j≤N αjδaj ,λj + v be such that (α, a,λ) ∈ V(N , ε,η) and
v ∈ Ea,λ. Then, for 1 ≤ i ≤ N , the following fact holds:

∫

�

∇u · ∇δi + μ

∫

�

uδi –
∫

�

|u|p–1+εuδi

= αiSn
(
1 – α

p–1+ε

i λ
ε n–2

2
i

)

+ O
(

ε + ‖v‖2 +
∑

εkr +
lnσn λi

λ2
i

+
∑ 1

(λkdk)n–2

)

.

Proof The proof can be done as the previous ones, and it is more easy. Hence we omit
it. �

4 Proof of the main results
This section is devoted to the proof of the main results of the paper. Their proof is basically
based on the precise estimates made in Sect. 3. We start by excluding the existence of
solutions that concentrate at a single interior point.
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4.1 Proof of Theorem 1.1
We argue by contradiction, assume that such a sequence of solutions (uε) exists. Thus the
solution uε will have the form (3) that is uε = αεδaε ,λε + vε and properties (4) are satisfied.
Furthermore, Lemma 2.1 and Proposition 2.4 hold true with N = 1. Hence, (αε , aε ,λε) ∈
V(1, ε,η) for small η > 0 and vε ∈ Eaε ,λε . Thus, using Propositions 3.7 and 2.4, we obtain
the following:

0 = –c1ε – c(n)μ
lnσn (λε)

λ2
ε

+ o
(

ε +
lnσn (λε

λ2
ε

)

,

which gives a contradiction. Hence the proof is completed.
In the next subsection, we give a partial characterization of the solutions that concen-

trate at interior points if there exist.

4.2 Proof of Theorem 1.2
Let (uε) be a sequence of solutions of (Pε) satisfying the assumptions of the theorem. Thus
the solution uε will have the form (3), that is, uε =

∑N
k=1 αk,εδak,ε ,λk,ε + vε and properties (4)

are satisfied. Furthermore, Lemma 2.1 and Proposition 2.4 hold true. In addition, Propo-
sitions 3.5–3.7 hold and the left-hand side in each proposition is equal to 0. For the sake
of simplicity, we will omit the index ε of the variables. Furthermore, without loss of the
generality, we can order the λis as follows:

λ1 ≤ λ2 ≤ · · · ≤ λN .

First, multiplying Proposition 3.7 with 2i and summing over i = 1, . . . , N , it holds (by using
Proposition 2.4 and Assertion (3) of Lemma 6.5)

∑

k 	=r

εkr ≤ c
(

ε +
lnσn (λ1)

λ2
1

)

, where σn =

⎧
⎨

⎩

1 if n = 4,

0 if n ≥ 5.
(54)

First, we prove Assertion (i) in the theorem, arguing by contradiction. Let j be such that
λj/λ1 is bounded and assume that |aj – ak| ≥ c > 0 for each k 	= j. Thus, we derive that
εkj ≤ c/(λjλk)(n–2)/2 ≤ c/λn–2

1 for each k 	= j. Now, writing Proposition 3.7 with i = j and
recalling that the left-hand side is 0, we obtain

–c1ε – c(n)μ
lnσn (λj)

λ2
j

= o
(

ε +
lnσn (λ1)

λ2
1

)

,

which gives a contradiction since λj and λ1 are of the same order. Thus Assertion (i) fol-
lows.

Second, we focus on the proof of Assertion (ii). In the sequel, we therefore assume that
n ≥ 5. Now, using Proposition 2.4, we get

‖vε‖2 ≤ C

(

ε2 +
N∑

i=1

1
λn–2

i
+

∑

1≤i,j≤N ,j 	=i

(
ε

n+2
n–2
ij

(
ln ε–1

ij
) n+2

n + ε2
ij
)
)

+ C
N∑

i=1

⎧
⎨

⎩

λ–4
i ln4/3 λi if n = 6,

λ
– min(4,n–2)
i if n 	= 6.

(55)
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Note that for n ≥ 6 we have 2n/(n – 2) < n – 2 and for n ≥ 5 we have 2 > n/(n – 2). This
implies that

ε2 = o
(
εn/(n–2)) ∀n ≥ 5 and λ2–n

i = o
(
λ

–2n/(n–2)
1

) ∀n ≥ 6. (56)

Now, using (54), (55), and (56), the estimate of ‖vε‖2 can be written as

‖vε‖2 = O(Rv) where Rv := o
(
εn/(n–2)) +

⎧
⎨

⎩

O(1/λ3
1) if n = 5,

o(1/λ2n/(n–2)
1 ) if n ≥ 6.

Furthermore, the remaining term in Proposition 3.5 can be written as

R35,i = o
(

ε(n–1)/(n–2) +
1

λ
2(n–1)/(n–2)
1

+
∑

j 	=i

1
λi

∣
∣
∣
∣
∂εij

∂ai

∣
∣
∣
∣

)

+ O
(

1
λi

∑

j 	=i

εij

)

. (57)

Now, we will focus on Assertion (ii). Arguing by contradiction, assume that λN /λ1 is
bounded. From the smallness of the ε′

ijs, we deduce that λi|ai – aj| → ∞ for each j 	= i. Let
γ := min{|aj – a1| : j 	= i} > 0. Since the λ′

ks are of the same order, without loss of generality,
we can assume that γ = |a1 – ai0 | for some i0 	= 1. Let N1 := {j : |aj – a1| → 0}. Note that
1 ∈ N1 and Assertion (i) implies that N1 contains at least another index. Since we have
assumed that λN /λ1 is bounded, it follows that

ε1j ≤ 1
(λ1λj)(n–2)/2|a1 – aj|n–2 ≤ c

(λ1λi0 )(n–2)/2|a1 – ai0 |n–2 ≤ cε1i0 , ∀2 ≤ j ≤ N . (58)

Now, we need to introduce the points that are very close to a1. Let us define N ′
2 := {j ∈ N1 :

|aj – a1|/γ → ∞} and N2 := N1 \ N ′
2. We remark that the εijs, for i, j ∈ N2 with i 	= j, are of

the same order (in the sense that c ≤ εij/εkr ≤ c′ for each i, j, k, r ∈ N2).
Let a be such that

∑
j∈N2

(aj – a) = 0. It is easy to see that |aj – a| ≤ cγ for each j ∈
N2. Hence it follows that (by using the fact that λN /λ1 is bounded and Assertion (8) of
Lemma 6.5)

λi|ai – a| ≤ c
√

λ1λi0 |ai0 – a1| ≤ cε–1/(n–2)
1i0 ∀i ∈ N2. (59)

Combining Propositions 3.8, 2.4, and 3.5 and using (57), we derive that, for n ≥ 5 and for
each i ∈ N2,

1
λi

∑

j 	=i

∂εij

∂ai

= o
(

ε(n–1)/(n–2) +
1

λ
2(n–1)/(n–2)
1

+
1
λi

∑

j 	=i

∣
∣
∣
∣
∂εij

∂ai

∣
∣
∣
∣

)

+ O
(

1
λi

∑

j 	=i

εij

)

∀i ≤ N . (60)

Since the λjs are of the same order, using (54) and Assertions (1) and (8) of Lemma 6.5, we
get

1
λi

∑

j 	=i

∣
∣
∣
∣
∂εij

∂ai

∣
∣
∣
∣ ≤ c

λi|ai – aj|εij ≤ cε(n–1)/(n–2)
ij ≤ cε(n–1)/(n–2) +

c
λ

2(n–1)/(n–2)
1

,
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1
λi

εij ≤ γ εij
√

λ1λi0 |a1 – ai0 |
≤ cγ

(
ε

1/(n–2)
1io εij

)
= o

(
ε

(n–1)/(n–2)
1io + ε

(n–1)/(n–2)
ij

)
.

Multiplying (60) by λi(a – ai) and summing over i ∈ N2, we obtain

∑

i∈N2

∑

j 	=i

∂εij

∂ai
(a – ai) = o

(∑

i∈N2

λi|ai – a|
(

ε(n–1)/(n–2) +
1

λ
2(n–1)/(n–2)
1

))

. (61)

To proceed further, we split the above sum on j into three blocks.
Block 1: i, j ∈ N2 with j 	= i. In this group, using Assertions (1) and (8) of Lemma 6.5, we

observe that

∂εij

∂ai
(a – ai) +

∂εij

∂aj
(a – aj) =

∂εij

∂ai
(aj – ai)

= (n – 2)λiλj|ai – aj|2ε
n

n–2
ij = (n – 2)εij

(
1 + o(1)

)
. (62)

Block 2: i ∈ N2 and j /∈ N1, that is, |ai – aj| ≥ c > 0. In this case, using Assertion (1) of
Lemma 6.5, we obtain

∣
∣
∣
∣
∂εij

∂ai

∣
∣
∣
∣|a – ai| = (n – 2)λiλj|ai – aj||a – ai|εn/(n–2)

ij ≤ |a – ai|
(λiλj)(n–2)/2 = o(ε1i0 ). (63)

Block 3: i ∈ N2 and j ∈ N1 \ N2. In this group, using Assertion (8) of Lemma 6.5, the fact
that |ai – ā| ≤ Cγ for each i ∈ N2 and |ai – aj| � |a1 – ai0 |, we get

∣
∣
∣
∣
∂εij

∂ai

∣
∣
∣
∣|a – ai| ≤ c|a – ai|

(λiλj)(n–2)/2|ai – aj|n–1 = o
( |a – ai|

(λ1λi0 )(n–2)/2|a1 – ai0 |n–1

)

= o(ε1i0 ). (64)

Combining estimates (62), (63), (64), and (61), we deduce that

∑

k 	=j,k,j∈N2

εkj ≤ o
(

ε
–1/(n–2)
1i0

(

ε(n–1)/(n–2) +
1

λ
2(n–1)/(n–2)
1

))

,

which implies

ε1i0 = o
(

ε +
1
λ2

1

)

. (65)

Putting (58) and (65) in Proposition 3.7 with i = 1 and using the fact that uε is a solution
of (Pε) (which implies that the left-hand side of the proposition is 0), we obtain

–c1ε – c(n)
μ

λ2
1

= o
(

ε +
1
λ2

1

)

, (66)

which presents a contradiction.
Hence the proof of the theorem is completed.
In the next subsection, we use Theorem 1.2 and the precise estimates of Sect. 3 to ex-

clude the case of the existence of solutions with two or three interior blow-up points.
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4.3 Proof of Theorem 1.3
We argue by contradiction. Assume that such a sequence of solutions (uε) exists. Thus
the solution uε will have the form (3) that is uε =

∑N
k=1 αk,εδak,ε ,λk,ε + vε with N ∈ {2, 3} and

properties (4) are satisfied. Furthermore, Lemma 2.1 and Proposition 2.4 hold true. As in
the previous proof, without loss of the generality, we can assume that λ1 ≤ · · · ≤ λN .

We first prove the theorem in the case of two interior blow-up points.

Proof of Theorem 1.3 in the case of N = 2 and n ≥ 5 The proof will be decomposed into
three steps. The first one is a direct consequence of Theorem 1.2.

Step 1. λ2/λ1 → ∞ and |a1 – a2| → 0.
The second one is as follows.
Step 2. There exists a positive constant η1 > 0 such that λ1|a1 – a2| ≥ η1.
To prove Step 2, arguing by contradiction, we assume that λ1|a1 – a2| → 0 as ε → 0.

Thus, using Assertion (7) of Lemma 6.5, Proposition 3.7 with i = 1 implies

–c1ε – c(n)
μ

λ2
1

– c2
n – 2

2
ε12 = o

(

ε +
1
λ2

1
+ ε12

)

,

which cannot occur (since ε > 0 and μ > 0). Hence Step 2 follows.
Step 3. Proof of the theorem in the case mentioned above: on the one hand, using As-

sertions (1) and (4) of Lemma 6.5, we get

1
λ1

∣
∣
∣
∣
∂ε12

∂a1

∣
∣
∣
∣ ≥ c

λ1|a1 – a2|ε12 ≥ c

√
λ2

λ1
ε

(n–1)/(n–2)
12 . (67)

On the other hand, applying Proposition 3.5 and using (57), we obtain

1
λ1

∣
∣
∣
∣
∂ε12

∂a1

∣
∣
∣
∣ ≤ cR35,1 = o

(

ε(n–1)/(n–2) +
1

λ
2(n–1)/(n–2)
1

+
1
λ1

∣
∣
∣
∣
∂ε12

∂a1

∣
∣
∣
∣

)

+ O
(

1
λ1

ε12

)

.

However, using (67), we have

1
λ1

ε12 = |a1 – a2| 1
λ1|a1 – a2|ε12 = o

(
1
λ1

∣
∣
∣
∣
∂ε12

∂a1

∣
∣
∣
∣

)

.

We derive that

ε12 = o
(

ε +
1
λ2

1

)

.

Putting this information in Proposition 3.7 with i = 1, we derive (66), which gives a con-
tradiction. Hence the proof of the theorem is complete in the case of N = 2 and n ≥ 5. �

Proof of Theorem 1.3 in the case of N = 3 and n ≥ 6 To make the proof clearer, we will split
it into several claims. The first one is a direct consequence of Theorem 1.2.

Claim 1. λ3/λ1 → ∞, there exists k ∈ {2, 3} such that |a1 – ak| → 0 and (54) holds true.
Before stating the second claim, we notice that, since uε is a solution of (Pε), the left-

hand side of Propositions 3.5, 3.7, and 3.8 becomes 0. Thus, using (54), Propositions 2.4,
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3.5, and 3.7, we obtain

(Ei) – c1ε – c(n)
μ

λ2
i

– c2
∑

j 	=i

λi
∂εij

∂λi
= o

(

ε +
1
λ2

1

)

∀1 ≤ i ≤ N ,

(Fi) – c2
∑

j 	=i

1
λi

∂εij

∂ai

= O
(

ε2 +
1
λ4

1

)

+ o
(∑

j 	=i

1
λi

∣
∣
∣
∣
∂εij

∂ai

∣
∣
∣
∣

)

+ O
(

1
λi

∑

j 	=i

εij

)

∀1 ≤ i ≤ N .

The second claim is as follows.
Claim 2. There exists a positive constant η1 such that λ1|a1 – a2| ≥ η1.
To prove Claim 2, arguing by contradiction, we assume that λ1|a1 – a2| → 0. The small-

ness of ε12 implies that λ1/λ2 → 0. Computing (E3) – (E1) and using Lemma 6.5, it holds

c(n)
μ

λ2
1

+
n – 2

2
c2ε12 +

n – 2
2

c2ε23 + c2

(

–λ3
∂ε13

∂λ3
+ λ1

∂ε13

∂λ1

)

= o
(

ε +
1
λ2

1

)

.

Now, using Assertion (2) of Lemma 6.5, we derive that

1
λ2

1
; ε12; ε23 = o(ε).

Putting this information in (E2), we obtain a contradiction. Hence the proof of this claim
is complete.

Next, we prove the following claim.
Claim 3. There exists a positive constant η2 such that λ1|a1 – a3| ≥ η2.
Arguing by contradiction, assume that λ1|a1 – a3| → 0. Using Claim 2, we see that |a1 –

a3|/|a1 – a2| → 0. We distinguish two cases.
First case: λ2/λ1 → ∞. Observe that, in this case, Claim 2 implies that λ2|a1 – a2| → ∞.

Therefore λ2|a2 – a3| → ∞ (since |a1 – a3| = o(|a1 – a2|)). Using Lemma 6.5, (E2) – (E1)
implies

c(n)
μ

λ2
1

+
n – 2

2
c2ε13 +

n – 2
2

c2ε23 + c2

(

–λ2
∂ε12

∂λ2
+ λ1

∂ε12

∂λ1

)

= o
(

ε +
1
λ2

1

)

.

Using Assertion (2) of Lemma 6.5, we derive that

1
λ2

1
; ε13; ε23 = o(ε).

Putting this information in (E3), we obtain a contradiction. Hence the proof of Claim 3
follows in this case.

Second case: λ2/λ1 is bounded. In this case, the smallness of ε12 implies that λj|a1 –a2| →
∞ for j = 1, 2. Therefore λ2|a2 – a3| → ∞ (since |a1 – a3| = o(|a1 – a2|)). Note that, using
Lemma 6.5, we obtain

ε23 ≤ 1
(λ2λ3|a2 – a3|2)(n–2)/2 ≤ c

(
λ1

λ3

)(n–2)/2 1
(λ2λ1|a2 – a1|2)(n–2)/2 ≤ cε13ε12,



Ben Ayed and El Mehdi Boundary Value Problems         (2023) 2023:90 Page 25 of 34

1
λ2

∣
∣
∣
∣
∂ε23

∂a2

∣
∣
∣
∣ = (n – 2)λ3|a2 – a3|εn/(n–2)

23 ≤ cε23

λ2|a2 – a3| ≤ cε23

λ2|a2 – a1| ≤ Cε
1/(n–2)
12 ε23.

Putting this information in (F2) and using (54), we obtain

1
λ2

∣
∣
∣
∣
∂ε12

∂a2

∣
∣
∣
∣ ≤ c

λ2

∣
∣
∣
∣
∂ε23

∂a2

∣
∣
∣
∣ + c

(

ε2 +
1
λ4

1

)

≤ c
(

ε2 +
1
λ4

1

)

.

On the other hand, using Lemma 6.5 and the fact that λ2/λ1 is bounded, we get

1
λ2

∣
∣
∣
∣
∂ε12

∂a2

∣
∣
∣
∣ = (n – 2)λ1|a2 – a1|εn/(n–2)

12 ≥ cε(n–1)/(n–2)
12 .

Thus

ε12 = o
(

ε +
1
λ2

1

)

. (68)

Putting this information in (E1), using the fact that λ1|a1 – a3| → 0 and Lemma 6.5, we
obtain

–c1ε – c(n)
μ

λ2
1

–
n – 2

2
c̄2ε13 = o

(

ε +
1
λ2

1

)

,

which gives a contradiction. Hence the proof of Claim 3 also follows in this case. This
completes the proof of Claim 3.

Now, we state and prove Claim 4.
Claim 4. There exists a positive constant η3 such that |a1 – a2|/|a1 – a3| ≥ η3.
Arguing by contradiction, assume that |a1 – a2| = o(|a1 – a3|). Using Lemma 6.5, we

observe that

1
λ1

∣
∣
∣
∣
∂ε12

∂a1

∣
∣
∣
∣ ≥ cε12

λ1|a1 – a2]
≥ cε(n–1)/(n–2)

12 ,

ε13 ≤ 1
(λ1λ3|a1 – a3|2)(n–2)/2 = o

(
1

(λ2λ1|a2 – a1|2)(n–2)/2

)

= o(ε12), (69)

1
λ1

∣
∣
∣
∣
∂ε13

∂a1

∣
∣
∣
∣ ≤ cε13

λ1|a1 – a3]
= o

(
cε12

λ1|a1 – a2]

)

.

Thus, (F1) implies that

1
λ1

∣
∣
∣
∣
∂ε12

∂a1

∣
∣
∣
∣

(
1 + o(1)

)
= O

(

ε2 +
1
λ4

1

)

,

which shows that (68) holds. Putting (69) and (68) in (E1), we obtain (66), which gives a
contradiction. Hence the proof of Claim 4 follows.

Next, we prove the following.
Claim 5. There exists a positive constant η4 > 0 such that |a1 – a3|/|a1 – a2| ≥ η4.
Arguing by contradiction, assume that |a1 – a3| = o(|a1 – a2|). First, observe that

ε23 ≤ 1
(λ2λ3|a2 – a3|2)(n–2)/2 = o

(
1

(λ2λ1|a2 – a1|2)(n–2)/2

)

= o(ε12), (70)

where we have used in the last inequality Claim ! and Assertion (8) of Lemma 6.5.
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Second, we distinguish three cases and we will prove that all these cases cannot occur.
First case: λ2/λ1 remains bounded. Using Lemma 6.5 and (70), it holds

1
λ2

∣
∣
∣
∣
∂ε12

∂a2

∣
∣
∣
∣ ≥ cε12

λ2|a1 – a2]
≥ cε(n–1)/(n–2)

12 ,

1
λ2

∣
∣
∣
∣
∂ε23

∂a2

∣
∣
∣
∣ ≤ cε23

λ2|a2 – a3| = o
(

ε12

λ2|a1 – a2|
)

.

Therefore, using (F2), we get

1
λ2

∣
∣
∣
∣
∂ε12

∂a2

∣
∣
∣
∣

(
1 + o(1)

)
= O

(

ε2 +
1
λ4

1

)

,

which implies that (68) holds in this case. Now, taking (E3 – E2 – E1) and using (70), (68),
we obtain

c1ε + c(n)
μ

λ2
1

+ c(n)
μ

λ2
2

+ c2

(

–λ3
∂ε13

∂λ3
+ λ1

∂ε13

∂λ1

)

= o
(

ε +
1
λ2

1

)

. (71)

Using Assertion (2) of Lemma 6.5, we obtain a contradiction. Hence this case cannot occur.
Second case: λ2/λ1 → ∞ and ε13 = o(ε12). In this case, taking (E2 – E1 – E3) and using

(70), we get

c1ε + c(n)
μ

λ2
1

+ c2

(

–λ2
∂ε12

∂λ2
+ λ1

∂ε12

∂λ1

)

= o
(

ε +
1
λ2

1

)

.

Again, using Assertion (2) of Lemma 6.5, we obtain a contradiction. Hence this case cannot
also occur.

Third case: λ2/λ1 → ∞ and ε13 ≥ cε12 for some positive constant c.
Using assertions (1) and (4) of Lemma 6.5, it follows that

1
λ1

∣
∣
∣
∣
∂ε13

∂a1

∣
∣
∣
∣ ≥ cλ3|a1 – a3|εn/(n–2)

13 ≥ c
λ1|a1 – a3|ε13 (72)

≥ c

√
λ3

λ1

1√
λ1λ3|a1 – a3|ε13 � ε

n–1
n–2
13

and

1
λ1

∣
∣
∣
∣
∂ε12

∂a1

∣
∣
∣
∣ ≤ cλ2|a1 – a2|εn/(n–2)

12 ≤ c
λ1|a1 – a2|ε12 ≤ c

λ1|a1 – a2|ε12

≤ c
λ1|a1 – a2|ε13 � c

λ1|a1 – a3|ε13 ≤ c
λ1

∣
∣
∣
∣
∂ε13

∂a1

∣
∣
∣
∣,

where we have used in the last line the fact that |a1 – a3| = o(|a1 – a2|) and (72).
Therefore, using (F1), we get

1
λ1

∣
∣
∣
∣
∂ε13

∂a1

∣
∣
∣
∣

(
1 + o(1)

)
= O

(

ε2 +
1
λ4

1

)

,
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which implies that

ε12; ε13 = o
(

ε +
1
λ2

1

)

. (73)

Thus, putting this information in (E1), we easily obtain a contradiction. Thus this case
cannot also occur. Therefore, the proof of Claim 5 follows.

Now, we state and prove the following.
Claim 6. There exists a positive constant η5 such that |a2 – a3|/|a2 – a1| ≥ η5.
Arguing by contradiction, assume that |a2 – a3| = o(|a1 – a2|). Multiplying (F1) by a1–a2

|a1–a2| ,
we obtain

(

–c2
1
λ1

∂ε12

∂a1
– c2

1
λ1

∂ε13

∂a1

)
a1 – a2

|a1 – a2|

= O
(

ε2 +
1
λ3

1

)

+ o
(∑

j 	=1

∣
∣
∣
∣

1
λ1

∂ε1j

∂a1

∣
∣
∣
∣

)

+ O
(

1
λ1

∑

j 	=1

ε1j

)

. (74)

However, by Assertion (1) of Lemma 6.5, we have

(

–
c2

λ1

∂ε12

∂a1
–

c2

λ1

∂ε13

∂a1

)
a1 – a2

|a1 – a2|
= (n – 2)

(
λ2|a1 – a2|ε

n
n–2
12 + λ3|a1 – a3|

(
1 + o(1)

)
ε

n
n–2
13

)

≥ cε(n–1)/(n–2)
12 + cε(n–1)/(n–2)

13 . (75)

Combining (74) and (75), we derive that

ε12; ε13 = o
(

ε +
1
λ2

1

)

.

Putting this information in (E1), we obtain (66), which gives a contradiction. Hence the
proof of Claim 6 follows.

Now, we deal with the following claim.
Claim 7. There exists a positive constant η6 such that λ2/λ3 ≥ η6.
Arguing by contradiction, assume that λ2/λ3 → 0. Thus it follows that

ε13 ≤ 1
(λ1λ3|a1 – a3|2)(n–2)/2 = o

(
1

(λ1λ2|a2 – a1|2)(n–2)/2

)

= o(ε12), (76)

1
λ1

∣
∣
∣
∣
∂ε13

∂a1

∣
∣
∣
∣ ≤ cε13

λ1|a1 – a3| <<
ε12

λ1|a1 – a2| ≤ c
λ1

∣
∣
∣
∣
∂ε12

∂a1

∣
∣
∣
∣.

Thus (F1) implies that

ε
(n–1)/(n–2)
12 ≤ cε12√

λ1λ2|a2 – a1| ≤ cε12

λ1|a2 – a1| ≤ 1
λ1

∣
∣
∣
∣
∂ε12

∂a1

∣
∣
∣
∣ ≤ c

(

ε2 +
1
λ4

1

)

,

which implies (68). Putting (68) and (76) in (E1), we get (66), which gives a contradiction.
Thus the proof of Claim 7 follows.



Ben Ayed and El Mehdi Boundary Value Problems         (2023) 2023:90 Page 28 of 34

Lastly, we are going to prove the theorem in the cases mentioned above. Combining the
previous claims, we get

ε23 ≤ 1
(λ2λ3|a2 – a3|2)(n–2)/2 = o

(
1

(λ1λ3|a1 – a3|2)(n–2)/2

)

= o(ε13) (77)

1
λ3

∣
∣
∣
∣
∂ε23

∂a3

∣
∣
∣
∣ ≤ cε23

λ3|a2 – a3| <<
cε13

λ3|a1 – a3| ≤ c
λ3

∣
∣
∣
∣
∂ε13

∂a3

∣
∣
∣
∣. (78)

Thus, using Proposition 3.6 for i = 3, we derive that

1
λ3

∣
∣
∣
∣
∂ε13

∂a3

∣
∣
∣
∣

(
1 + o(1)

)
= O(R3,3 + R4,3 + R5,3 + R6,3).

Observe that, since n ≥ 6, easy computations show that

R3,3 + R4,3 + R5,3 + R6,3 = o
(

ε
n

n–2 + λ
– 2n

n–2
1 +

1
λ3

∣
∣
∣
∣
∂ε13

∂a3

∣
∣
∣
∣

)

and
1
λ3

∣
∣
∣
∣
∂ε13

∂a3

∣
∣
∣
∣ ≥ cεn/(n–2)

13 .

We derive that

ε13 = o
(

ε +
1
λ2

1

)

.

Putting this information and (77) in (E1 + E3 – E2), we obtain (66), which gives a contra-
diction. Hence the proof of the theorem is complete. �

5 Conclusion
By using delicate estimates near the “standard” bubbles, we have provided some necessary
conditions to be satisfied by the concentration parameters. The careful analysis of these
balancing conditions allows us to observe a new phenomenon in the higher dimensional
case: the nonexistence of solutions of (Pε) that blow up at one or two or three interior
points. This stands in strong contrast to the fact that if n = 3, then solutions to (Pε) exist
with interior blow-up points [23]. However, some questions remain open:

(i) Do the results of Theorem 1.3 remain true for all n ≥ 4?
(ii) Are there any solutions of (Pε) that blow up, as ε goes to zero, at N interior points

with N ≥ 4 and for all dimension n ≥ 4?
(iii) What happens if we put in front of the nonlinear term of (Pε) a nonconstant

function K?

Appendix
In this appendix we collect several estimates needed throughout the paper. We start with
the following auxiliary analysis formulae. Their proofs follow from a Taylor expansion with
Lagrange remainder.

Lemma 6.1 For 1 < α < 3 and β > 0, we have
(1) (a + b)α = aα + αaα–1b + O(aα–2b2χb≤a + bαχa≤b),
(2) (a + b)α = aa + αaα–1b + bα + O([aα–2b2 + bα]χb≤a + [bα–1a + aα–1b]χa≤b),
(3) (a + b)α = aα + bα + O(aα–1bχb≤a + abα–1χa≤b),
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(4) (a + b)β = aβ + O(aβ–1bχb≤a + bβχa≤b.).

Next, we give the following estimate.

Lemma 6.2 For ε lnλ small and a ∈ �, for each x ∈ �, it holds

δε
a,λ(x) = cε

0λ
ε n–2

2

(

1 – ε
n – 2

2
ln

(
1 + λ2|x – a|2)

)

+ O
(
ε2 ln2(1 + λ2|x – a|2)) = 1 + o(1).

Proof By the definition of δa,λ, we have

δε
a,λ(x) = cε

0λ
ε n–2

2 exp

(

–ε
n – 2

2
ln

(
1 + λ2|x – a|2)

)

.

Using the fact that � is bounded and Taylor’s expansion, we easily derive the desired re-
sult. �

By easy computations, we easily obtain the following result.

Lemma 6.3 For all x ∈ �, it holds

(i)
1
λ

∂δa,λ

∂a
(x) = (n – 2)

λ(x – a)
1 + λ2|x – a|2 δa,λ(x) =

⎧
⎨

⎩

O(δa,λ(x)),

O( δa,λ(x)
λ|x–a| ),

(ii) λ
∂δa,λ

∂λ
(x) =

n – 2
2

δa,λ(x)
1 – λ2|x – a|2
1 + λ2|x – a|2 = O

(
δa,λ(x)

)
.

Next, we give the following estimates.

Lemma 6.4 We have

(1)
∫

�

(δiδj)n/(n–2) ≤ Cε
n/(n–2)
ij ln ε–1

ij ,

(2)
∫

�

δ
2n

n–2 –β

i lnγ
(
1 + λ2|x – a|2) ≤ C

λ
β n–2

2
i

∀β ∈ [0,
n

n – 2
) ∀γ ≥ 0,

(3)
∫

Rn\B(a,r)
δ

(2n)/(n–2)
a,λ ≤ C

(λr)n ,

(4)
∫

Rn
δ

n+2
n–2
i

1
λj

∂δj

∂aj
=

n + 2
n – 2

∫

Rn
δ

4
n–2
j

1
λj

∂δj

∂aj
δi = c2

1
λj

∂εij

∂aj
+ O

(
λi|ai – aj|ε

n+1
n–2
ij

)
,

(5)
∫

Rn
δ

n+2
n–2
j λi

∂δi

∂λi
=

n + 2
n – 2

∫

Rn
δjδ

4
n–2
i λi

∂δi

∂λi
= c2λi

∂εij

∂λi
+ O

(
ε

n
n–2
ij ln ε–1

ij
)
,

where c2 :=
∫

Rn
c2n/(n–2)

0
(1+|x|2)(n+2)/2 .

Proof (1), (4), and (5) are extracted from estimates E2 (page 4), F11 (page 22), and F16
(page 23) of [5] respectively. However, (2) and (3) follow by using standard computa-
tions. �

Now, we state the following properties.
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Lemma 6.5 We have

(1)
1
λj

∂εij

∂aj
= (n – 2)λi(ai – aj)εn/(n–2)

ij and λj
∂εij

∂λj
= –

n – 2
2

εij

(

1 – 2
λi

λj
ε

2/(n–2)
ij

)

,

(2) – λj
∂εij

∂λj
+ λi

∂εij

∂λi
≥ 0 if λi ≤ λj,

(3) – 2λj
∂εij

∂λj
– λi

∂εij

∂λi
≥ cεij if λi ≤ λj and – λj

∂εij

∂λj
– λi

∂εij

∂λi
≥ 0,

(4)
c

(λiλj|ai – aj|2) n–2
2

≤ εij ≤ 1
(λiλj|ai – aj|2) n–2

2
if λi ≤ λj and λi|ai – aj| ≥ C,

(5) c
(

λi

λj

) n–2
2 ≤ εij ≤

(
λi

λj

) n–2
2

if λi ≤ λj and λi|ai – aj| ≤ C,

(6) – λj
∂εij

∂λj
=

n – 2
2

εij + O
(
ε

n/(n–2)
ij

)
if λi/λj 	→ ∞,

(7) εij =
(

λi

λj

) n–2
2 (

1 + o(1)
)

and λi
∂εij

∂λi
=

n – 2
2

εij
(
1 + o(1)

)
if λi ≤ λj

and λi|ai – aj| → 0,

(8) εij =
1 + o(1)

(λiλj|ai – aj|2)(n–2)/2 if λi and λj are of the same order,

(9) – λj
∂εij

∂λj
=

n – 2
2

εij
(
1 + o(1)

)
if λj|ai – aj| → ∞.

Proof Claim (1) follows immediately from the definition of εij (see (4)). Concerning Claim
(2), using the second assertion of Claim (1), we get, for λi ≤ λj,

–λj
∂εij

∂λj
+ λi

∂εij

∂λi
= (n – 2)εn/(n–2)

ij

(
λj

λi
–

λi

λg

)

≥ 0,

which completes the proof of Claim (2). In the same way, we have

–λj
∂εij

∂λj
– λi

∂εij

∂λi
= (n – 2)εn/(n–2)

ij
(
λiλj|ai – aj|2

)
,

which implies the second assertion of Claim (3). Furthermore, for λi ≤ λj, we have

–λj
∂εij

∂λj
=

n – 2
2

εij

(

1 –
λi

λj
ε

2/(n–2)
ij

)

=
n – 2

2
εij

(
1 + o(1)

)
,

which completes the proof of Claim (3).
Now, assuming that λi ≤ λj and λi|ai – aj| ≥ C, we see that

1 ≤ ε
–2/(n–2)
ij

λiλj|ai – aj|2 =
1

λ2
j |ai – aj|2 +

1
λ2

i |ai – aj|2 + 1 ≤ c.

Hence the proof of Claim (4) is completed.
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Concerning Claim (5), we observe that if λi ≤ λj and λi|ai – aj| ≤ C, we have

1 ≤ λi

λj
ε

–2/(n–2)
ij = 1 +

λ2
i

λ2
j

+ λ2
i |ai – aj|2 ≤ c.

Thus Claim (5) follows.
Notice that Claim (6) follows immediately from the second assertion of Claim (1).
Concerning Claim (7), observe that if λi ≤ λj and λi|ai –aj| → 0, then from the smallness

of εij it follows that λi/λj is very small. Thus

λiλj|ai – aj|2 =
(
λ2

i |ai – aj|2
)λj

λi
= o

(
λj

λi

)

.

Hence Claim (7) follows.
Now, note that if λi and λj are of the same order, then the smallness of εij implies that

λiλj|ai – aj|2 is very large. Hence Claim (8) follows.
Finally, if λi|ai – aj| → ∞, then we have

λi

λj
ε

2/(n–2)
ij =

1

1 +
λ2

j
λ2

i
+ λ2

j |ai – aj|2
→ 0,

which implies Claim (9), and therefore the proof of the lemma is completed. �

We end this appendix by proving the following two useful results.

Lemma 6.6 Let n ≥ 3.
(1) For 1 ≤ β < n/(n – 2) and λi ≤ λj, it holds

∫

�

(δiδj)β ≤ Cε
β

ij

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
λ
β(n–2)
i

+ |ai – aj|β(n–2) if 2β(n – 2) < n,

|ai – aj|β(n–2)| ln |ai – aj|| + 1
λ
β(n–2)
i

lnλi if 2β(n – 2) = n,

|ai – aj|n–β(n–2) + 1
λ

n–β(n–2)
i

if 2β(n – 2) > n.

(2) Let 1 ≤ α and 1 ≤ β be such that α 	= β and (i): α+β = 2n/(n–2) or (ii): α+β < 2n/(n–2).
Then it holds

∫

�

δα
i δ

β

j ≤ Cε
min(α,β)
ij ;

∫

�

δα
i δ

β

j = o
(
ε

min(α,β)
ij

)
in case (ii).

Proof We remark that, for β = n/(n – 2), the estimate of Claim (1) is already given in
Lemma 6.4. Here, we need to improve this estimate when β < n/(n – 2). Furthermore, the
case 2β(n – 2) < n occurs only when n = 3 and β < 3/2, and the case 2β(n – 2) = n occurs
only if n = 4 and β = 1 or n = 3 and β = 3/2.

First, we focus on proving Claim (1).
Note that, if 2β(n – 2) < n (this case can occur only if n = 3 and β < 3/2), in this case, it

holds
∫

�

(δiδj)β ≤ c
(λiλj)β(n–2)/2

(∑

k=i,j

∫

�

dx
|x – ak|2β(n–2)

)

≤ cεβ

ij

(
1

λ
β(n–2)
i

+ |ai – aj|β(n–2)
)

.
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Thus, in the sequel of the proof, we consider 2β(n – 2) ≥ n. We distinguish two
cases.

Case 1. λi|ai – aj| ≤ M, where M is a large constant. In this case, by Lemma 6.5, we
know that εij and (λi/λj)(n–2)/2 have the same order. Let Bj := B(aj, 4M/λi). Observe that,
for x ∈ � \ Bj, we have |x – ai| ≥ c|x – aj|. Thus

∫

�

(δiδj)β ≤ C
(

λi

λj

)β n–2
2

∫

Bj

dx
|x – aj|β(n–2) +

c
(λiλj)β

n–2
2

∫

�\Bj

dx
|x – aj|2β(n–2)

≤ Cε
β

ij
1

λ
n–β(n–2)
i

+ Cε
β

ij
1

λ
β(n–2)
i

⎧
⎨

⎩

lnλi if 2β(n – 2) = n,

λ
2β(n–2)–n
i if 2β(n – 2) > n.

Hence the result in this case.
Case 2. λi|ai – aj| ≥ M. In this case, Lemma 6.5 implies that (λiλj|ai – aj|2)(2–n)/2 and εij

have the same order. For k = i, j, let Bk = B(ak , |ai – aj|/4). Observe that

∫

�

(δiδj)β ≤ 1
(λiλj|ai – aj|2)β(n–2)/2

∑

k∈{i,j}

∫

Bk

dx
|x – ak|β(n–2) +

(∫

�\Bi

δ
2β

i

) 1
2
(∫

�\Bj

δ
2β

j

) 1
2

≤ Cε
β

ij |ai – aj|n–β(n–2) +
∏

k=i,j

(
1

λ
β(n–2)
k

∫

�\Bk

1
|x – ak|2β(n–2)

)1/2

≤ Cε
β

ij |ai – aj|n–β(n–2)

+ Cε
β

ij |ai – aj|β(n–2)

⎧
⎨

⎩

| ln |ai – aj|| if 2β(n – 2) = n,

|ai – aj|n–2β(n–2) if 2β(n – 2) > n.

Hence the result follows in this case also.
Hence the proof of Claim (1) is complete. Concerning Claim (2), it follows from Claim

(d) of Lemma 2.2 of [8] when the assumption (i) is satisfied. However, when (ii) is satisfied
(assume that α < β), let γ := (α + β)/2, it follows that γ < n/(n – 2) and γ – α = (β – α)/2.
Thus, using Holder’s inequality and Claim (1), it holds

∫

�

δα
i δ

β

j =
∫

�

(δiδj)αδ
β–α

j ≤
(∫

�

(δiδj)γ
)α/γ (∫

�

δ
γ /2
j

)(γ –α)/γ

= o
(
εα

ij
)
.

Hence the proof is complete. �

Lemma 6.7 For a ∈ � and β > 0, it holds

∫

∂�

1
|a – y|n–1+β

dy ≤ c
d(a, ∂�)β

.

Proof We remark that if a is far away from the boundary, then the result is immediate.
Hence, we focus on the case where da := d(a, ∂�) is small. Let a be the projection of a at
the boundary. Thus, we have

∫

∂�

1
|a – y|n–1+β

dy ≤ c
∫

∂�

1
(d2

a + |a – y|2)(n–1+β)/2 dy
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≤ c
dn–1+β

a

∫

∂�∩B(a,1)

1
(1 + d–2

a |a – y|2)(n+1)/2 dy + c

≤ c
dβ

a

∫

Rn–1

1
(1 + |y|2)(n–1+β)/2 dy + c ≤ c

dβ
a

. �
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