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Abstract
In this paper, we study the initial boundary value problem for the following
viscoelastic wave equation with Balakrishnan–Taylor damping and a delay term
where the relaxation function satisfies g′(t)≤ –ξ (t)gr(t), t ≥ 0, 1≤ r < 3

2 . The main goal
of this work is to study the global existence, general decay, and blow-up result. The
global existence has been obtained by potential-well theory, the decay of solutions of
energy has been established by introducing suitable energy and Lyapunov
functionals, and a blow-up result has been obtained with negative initial energy.
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1 Introduction
In this paper, we consider the following initial-boundary value problem with a delay term

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

vtt – (a + b‖∇v‖2
2 + α

∫

�
∇v∇vt dx)�v

+
∫ t

0 g(t – s)�v(s) ds + μ1vt + μ2vt(t – τ ) = |v|p–2v, x ∈ �, t > 0,

v(x, t) = 0, x ∈ ∂�, t > 0,

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ �,

vt(x, t – τ ) = f0(x, t – τ ), x ∈ �, t ∈ [0, τ ),

(1.1)

where � ⊂ R
n is a bounded domain with sufficiently smooth boundary ∂�. p ≥ 4, a, b,

α,μ1 are fixed positive constants, μ2 is a real number, τ > 0 represents the time delay, and
g is a positive function.

In the absence of the Balakrishnan–Taylor damping (α = 0), Problem (1.1) is reduced to
the well-known nonlinear wave equation with b = g = 0 and a Kirchhof-type wave equation
with g = 0, which has been extensively studied, see for instance [5, 8, 13, 24, 30, 31, 35,
38, 41, 42] and the references therein. Balakrishnan–Taylor damping (α 	= 0), g = 0, and
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μ1 = μ2 = 0, was initially proposed by Balakrishnan and Taylor [2], and Bass and Zes [3].
It is related to the panel flutter equation and to the spillover problem. So far, it has been
studied by many authors, we refer the interested readers to [12, 15, 32, 39, 43, 44] and the
references therein. Zarai and Tatar [44] studied the following problem

vtt –
(

a + b‖∇v‖2
2 + σ

∫

�

∇v∇vt dx
)

�v +
∫ t

0
h(t – s)�v(s) ds = 0. (1.2)

They proved the global existence and the polynomial decay of the problem. Exponential
decay and blow up of the solution to the problem were established in Tatar and Zarai [39].

It is well known that time-delay effects often appear in many chemical, physical, and eco-
nomical phenomena because these phenomena depend not only on the present state but
also on the past history of the system. Nicaise and Pignotti [33] considered the following
wave equation with a delay term

vtt – �v + μ1vt + μ2vt(t – τ ) = 0. (1.3)

They obtained some stability results in the case 0 < μ2 < μ1. Then, they extended the result
to the time-dependent delay case in the work of Nicaise and Pignotti [34]. Kirane and Said-
Houari [23] considered a viscoelastic wave equation with time delay

vtt – �v +
∫ t

0
g(t – s)�v(s) ds + μ1vt + μ2vt(t – τ ) = 0. (1.4)

They proved the global well posedness of solutions and established the decay rate of energy
for 0 < μ2 < μ1. Kafini et al. [17] investigated the following nonlinear wave equation with
delay

vtt – div
(|∇v|m–2∇v

)
+ μ1vt + μ1vt(t – τ ) = b|v|p–2v. (1.5)

They proved the blow-up result of solutions with negative initial energy and p ≥ m, and we
refer the interested readers to [9, 10, 18, 27] and the references therein. For the viscoelastic
wave equation with Balakrishnan–Taylor damping and time delay, Lee et al. [25] studied
the following equation

vtt –
(

a + b‖∇v‖2
2 + σ

∫

�

∇v∇vt dx
)

�v

+
∫ t

0
g(t – s)�v(s) ds + μ0vt + μ1vt(t – τ ) = 0 (1.6)

and established a general energy decay result by suitable Lyapunov functionals. Gheraibia
et al. [14] considered the following equation

vtt –
(

a + b‖∇v‖2
2 + α

∫

�

∇v∇vt dx
)

�v + σ (t)
∫ t

0
g(t – s)�v(s) ds + μ1|vt|m–2vt

+ μ2
∣
∣vt(t – τ )

∣
∣m–2vt(t – τ ) = 0 (1.7)
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and proved the general decay result of the solution in the case |μ2| < μ1. For the related
works of PDEs with time delay, see for instance [6, 7, 11, 16, 19–22, 26, 28, 36, 37, 40] and
the references therein.

Motivated by the previous work, in this paper, we consider the problem (1.1) and under
suitable assumptions on the relaxation functions g , we prove the global existence, general
decay and the finite-time blow-up results of the solutions.

The outline of this paper is as follows: In Sect. 2, we give some preliminary results. In
Sect. 3, we obtain the global existence of the solution of (1.1). Section 4 and Sect. 5 cover
the general decay and blow-up of solutions, respectively.

2 Some preliminaries
In this section, we give some notation for function spaces and preliminary lemmas. Denote
by ‖ · ‖p and ‖ · ‖H1 to the usual Lp(�) norm and H1(�) norm, respectively.

For the relaxation function g , we assume
(A1): g : R+ →R

+ is a nonincreasing differentiable function satisfying

a –
∫ ∞

0
g(s) ds := l ≥ 0. (2.1)

(A2): There exist a nonincreasing differentiable function ξ with ξ (0) > 0 satisfying

g(t) ≥ 0, g ′(t) ≤ –ξ (t)gr(t), t ≥ 0, 1 ≤ r <
3
2

. (2.2)

(A3): The constant p satisfies

p ≥ 4, if n = 1, 2, 4 ≤ p ≤ 2(n – 1)
n – 2

, if n ≥ 3. (2.3)

(A4): The constants μ1 and μ2 satisfy

|μ2| < μ1.

Assume further that g satisfies

∫ ∞

0
g(s) ds <

a(p – 2)
p – 2 + (1/2η)

. (2.4)

Lemma 2.1 (Sobolev–Poincare inequality [1]). Let q be a number with 2 ≤ q < ∞ (n = 1, 2)
or 2 ≤ q < 2n

n–2 (n ≥ 3), then, there is a constant c∗ = c∗(�, q) such that

‖v‖q ≤ c∗‖∇v‖2 for v ∈ H1
0 (�).

By using direct calculations, we have

∫ t

0
g(t – s)

∫

�

v(s) dsvt(t) dx = –
1
2

d
dt

[

(g ◦ v)(t) –
∥
∥v(t)

∥
∥2

2

∫ t

0
g(s) ds

]

–
1
2

g(t)
∥
∥v(t)

∥
∥2

2 +
1
2
(
g ′ ◦ v

)
(t), (2.5)
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where

(g ◦ v)(t) =
∫ t

0
g(t – s)

∥
∥v(t) – v(s)

∥
∥2

2 ds.

To deal with the time-delay term, motivated by Nicaise and Pignotti [33], we introduce a
new variable

z(x,ρ, t) = vt(x, t – τρ), x ∈ �,ρ ∈ (0, 1), t > 0, (2.6)

which gives us

τzt(x,ρ, t) + zρ(x,ρ, t) = 0, in � × (0, 1) × (0,∞). (2.7)

Then, problem (1.1)is equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vtt – (a + b‖∇v‖2
2 + α

∫

�
∇v∇vt dx)�v

+
∫ t

0 g(t – s)�v(s) ds + μ1vt + μ2z(1, t) = |v|p–2v, x ∈ �, t > 0,

τzt(ρ, t) + zρ(ρ, t) = 0, x ∈ �, ρ ∈ (0, 1), t > 0,

z(ρ, 0) = f0(–τρ), x ∈ �, ρ ∈ (0, 1),

v(x, t) = 0, x ∈ ∂�, t > 0,

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ �.

(2.8)

Let ζ be a positive constant satisfying

τ |μ2| ≤ ζ ≤ τ
(
2μ1 – |μ2|

)
. (2.9)

We first state a local existence theorem that can be established.

Theorem 2.2 Let (A1)–(A4) hold. Then, for every (v0, v1) ∈ H1
0 (�) × L2(�), f0 ∈ L2((�) ×

(0, 1)), there exists a unique local solution of the problem (1.1) in the class

v ∈ C
(
[0, T]; H1

0 (�)
)∩C1([0, T]; L2(�)

)
, vt ∈ C

(
[0, T]; H1

0 (�)
)∩L2([0, T] × (�)

)
.

Now, we define the energy associated with problem (2.8) by

E(t) =
1
2
‖vt‖2

2 +
1
2

(

a –
∫ t

0
g(s) ds

)

‖∇v‖2
2 +

b
4
‖∇v‖4

2 +
1
2

(g ◦ ∇v)(t)

+
ζ

2

∫ 1

0

∥
∥z(ρ, t)

∥
∥2

2 dρ –
1
p
‖v‖p

p. (2.10)

Lemma 2.3 Let (v, z) be a solution of problem (2.8). Then,

E′(t) ≤ 1
2
(
g ′ ◦ ∇v

)
(t) – c0

(‖vt‖2
2 +

∥
∥z(1, t)

∥
∥2

2

)
. (2.11)



Gheraibia and Boumaza Boundary Value Problems         (2023) 2023:93 Page 5 of 17

Proof Multiplying the first equation in (2.8) by vt , integrating over �, and using (2.5), we
obtain

d
dt

[
1
2
‖vt‖2

2 +
1
2

(

a –
∫ t

0
g(s) ds

)

‖∇v‖2
2 +

b
4
‖∇v‖4

2 +
1
2

(g ◦ ∇v)(t) –
1
p
‖v‖p

p

]

= –α

(
1
2

d
dt

‖∇v‖2
2

)2

–
1
2

g(t)‖∇v‖2
2 –

1
2
(
g ′ ◦ ∇v

)
(t)

– μ1‖vt‖2
2 – μ2

∫

�

z(1, t)vt dx. (2.12)

Multiplying the second equation in (2.8) by ζ z and integrating over � × (0, 1), we obtain

ζ

2
d
dt

∫

�

∫ 1

0

∣
∣z(ρ, t)

∣
∣2 dρ dx = –

ζ

2τ

∫

�

∫ 1

0

∂

∂ρ

∣
∣z(ρ, t)

∣
∣2 dρ dx

=
ζ

2τ

(‖vt‖2
2 –

∥
∥z(1, t)

∥
∥2

2

)
. (2.13)

Using Young’s inequality, we have

–μ2

∫

�

z(1, t)vt dx ≤ |μ2|
2

∥
∥z(1, t)

∥
∥2

2 +
|μ2|

2
‖vt‖2

2. (2.14)

Combining (2.12), (2.13), and (2.14), we obtain

E′(t) ≤ –α

(
1
2

d
dt

‖∇v‖2
2

)2

+
1
2
(
g ′ ◦ ∇v

)
(t) –

1
2

g(t)‖∇v‖2
2

– c0
(‖vt‖2

2 +
∥
∥z(1, t)

∥
∥2

2

)
, (2.15)

where c0 = min{μ1 – ζ

2τ
– |μ2|

2 , ζ

2τ
– |μ2|

2 }, which is positive by (2.9). The proof is com-
plete. �

Next, we define the functionals

I(t) =
(

a –
∫ t

0
g(s) ds

)

‖∇v‖2
2 +

b
2
‖∇v‖4

2 + (g ◦ ∇v)(t)

+ ζ

∫ 1

0

∥
∥z(ρ, t)

∥
∥2

2 dρ – ‖v‖p
p (2.16)

and

J(t) =
1
2

(

a –
∫ t

0
g(s) ds

)

‖∇v‖2
2 +

b
4
‖∇v‖4

2 +
1
2

(g ◦ ∇v)(t)

+
ζ

2

∫ 1

0

∥
∥z(ρ, t)

∥
∥2

2 dρ –
1
p
‖v‖p

p. (2.17)

Then, it is obvious that

E(t) =
1
2
‖vt‖2

2 + J(t). (2.18)
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3 Global existence
In this section, we will prove that the global existence of the solution to (1.1) is in time.

Lemma 3.1 Assume that (A1), (A3)–(A4) hold, and for any (v0, v1) ∈ H1
0 (�) × L2(�), such

that

I(0) > 0 and β =
cp
∗
l

[
2p

l(p – 2)
E(0)

] p–2
2

< 1, (3.1)

then,

I(t) > 0, ∀t > 0. (3.2)

Proof Since I(0) > 0, then by the continuity of v, there exists a time Tm > 0 such that

I(t) ≥ 0, ∀t ∈ [0, Tm]. (3.3)

From (2.16) and (2.17), we have

J(t) =
p – 2

2p

[(

a –
∫ t

0
g(s) ds

)

‖∇v‖2
2 +

b
2
‖∇v‖4

2 + (g ◦ ∇v)(t) + ζ

∫ 1

0

∥
∥z(ρ, t)

∥
∥2

2 dρ

]

+
1
p

I(t)

≥ p – 2
2p

[(

a –
∫ t

0
g(s) ds

)

‖∇v‖2
2 +

b
2
‖∇v‖4

2 + (g ◦ ∇v)(t) + ζ

∫ 1

0

∥
∥z(ρ, t)

∥
∥2

2 dρ

]

≥ p – 2
2p

[(

a –
∫ t

0
g(s) ds

)

‖∇v‖2
2

]

. (3.4)

Thus, from (A1), (2.11), (2.18), and (3.4), we obtain

l‖∇v‖2
2 ≤

(

a –
∫ t

0
g(s) ds

)

‖∇v‖2
2

≤ 2p
p – 2

J(t) ≤ 2p
p – 2

E(t) ≤ 2p
p – 2

E(0), ∀t ∈ [0, Tm]. (3.5)

Exploiting Lemma 2.1, (3.1), and (3.5), we obtain

‖v‖p
p ≤ cp

∗‖∇v‖p
2 ≤ cp

∗
l

(
2p

l(p – 2)
E(0)

) p–2
2

l‖∇v‖2
2

= βl‖∇v‖2
2 <

(

a –
∫ t

0
g(s) ds

)

‖∇v‖2
2. (3.6)

Hence, we can obtain

I(t) > 0, ∀t ∈ [0, Tm].

By repeating the procedure, Tm is extended to T . The proof is complete. �
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Theorem 3.2 Assume that the conditions of Lemma 3.1 hold, then the solution (1.1) is
global and bounded.

Proof It suffices to show that ‖vt‖2
2 +‖∇v‖2

2 is bounded independently of t. By using (2.11),
(2.18), and (3.5), we obtain

E(0) ≥ E(t) = J(t) +
1
2
‖vt‖2

2 ≥ p – 2
2p

(
l‖∇v‖2

2
)

+
1
2
‖vt‖2

2. (3.7)

Therefore, we have

‖vt‖2
2 + ‖∇v‖2

2 ≤ K1E(0), (3.8)

where K1 is a positive constant. �

4 General decay
In this section, we prove the general decay result by constructing a suitable Lyapunov
functional.

Theorem 4.1 Let (v0, v1) ∈ H1
0 (�) × L2(�). Assume that (A1)–(A4) hold. Then, there exist

two positive constants K and k such that the solution of problem (1.1) satisfies, for all ∀t ≥
t0,

E(t) ≤ Ke–k
∫ t

t0
ξ (s) ds, r = 1, (4.1)

E(t) ≤ K
[

1
∫ t

t0
ξ 2r–1(s) ds + 1

]1/(2r–2)

, r > 1. (4.2)

Moreover, if

∫ +∞

0

[
1

tξ 2r–1(t) + 1

]1/(2r–2)

dt < +∞, 1 < r <
3
2

, (4.3)

then

E(t) ≤ K
[

1
∫ t

t0
ξ r(s) ds + 1

]1/r–1

, r > 1. (4.4)

For this goal, we set

F(t) := E(t) + ε�(t), (4.5)

where ε is a positive constant to be specified later and

�(t) =
∫

�

vvt dx +
α

4
‖∇v‖4

2. (4.6)

In order to show our stability result, we need the following lemmas:
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Lemma 4.2 Let (v, z) be a solution of problem (2.8). Then, there exist two positive constants
α1 and α2 such that

α1F(t) ≤ E(t) ≤ α2F(t), (4.7)

for ε > 0 small enough.

Lemma 4.3 Assume that g satisfies (A1) and (A2), then

∫ ∞

0
ξ (t)g1–θ (t) dt ≤ +∞, ∀θ < 2 – r.

Corollary 4.4 ([4]) Assume that g satisfies (A1) and (A2), and v is the solution of (1.1),
then

ξ (t)(g ◦ ∇u)(t) ≤ [
–E′(t)

] 1
2r–1 .

Lemma 4.5 Let (v, z) be a solution of problem (2.8). Then, the functional F(t) satisfies

F ′(t) ≤ –k1E(t) + k2(g ◦ ∇v)(t), ∀t ≥ t0, (4.8)

where k1 and k2 are some positive constants.

Proof Taking a derivation of (4.5), using (2.8), and Lemma 2.3, we obtain

F ′(t) = E′(t) + ε

∫

�

v2
t dx + ε

∫

�

vvtt dx + εα‖∇v‖2
2

∫

�

∇v∇vt dx

≤ –(c0 – ε)‖vt‖2
2 – c0

∥
∥z(1, t)

∥
∥2

2 – εa‖∇v‖2
2 – εb‖∇v‖4

2 + ε‖v‖p
p

+ ε

∫

�

∇v
∫ t

0
g(t – s)∇v(s) ds dx – εμ1

∫

�

vvt dx – εμ2

∫

�

z(1, t)v dx. (4.9)

By using Hölder’s, Young’s, Sobolev–Poincare inequalities, and (A1), we obtain

∫

�

∇v
∫ t

0
g(t – s)∇v(s) ds dx ≤ (

η + (a – l)
)‖∇v‖2

2 +
(a – l)

4η
(g ◦ ∇v)(t) (4.10)

and

μ1

∫

�

vvt dx ≤ ημ2
1c2

∗‖∇v‖2
2 +

1
4η

‖vt‖2
2 (4.11)

and

μ2

∫

�

z(1, t)v dx ≤ ημ2
2c2

∗‖∇v‖2
2 +

1
4η

∥
∥z(1, t)

∥
∥2

2. (4.12)

Combining (4.10)–(4.12) and (4.9), we obtain

F ′(t) ≤ –
{

c0 – ε

(

1 +
1

4η

)}

‖vt‖2
2 –

{

c0 –
ε

4η

}
∥
∥z(1, t)

∥
∥2

2 – εb‖∇v‖4
2

– ε
{

l – η
(
1 + μ2

1c2
∗μ

2
2c2

∗
)}‖∇v‖2

2 +
(a – l)

4η
(g ◦ ∇v)(t) + ε‖v‖p

p. (4.13)
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At this point, we choose η and ε so small that (4.7) remains valid and

l – η
(
1 + μ2

1c2
∗μ

2
2c2

∗
)

> 0, c0 – ε

(

1 +
1

4η

)

> 0, c0 –
ε

4η
> 0.

Consequently, inequality (4.13) becomes

F ′(t) ≤ –k1E(t) + k2(g ◦ ∇v)(t), ∀t ≥ t0, (4.14)

where ki, i = 1, 2. are some positive constants. �

Now, we are ready to prove Theorem 4.1.
Proof of Theorem 4.1. Multiplying (4.14) by ξ (t), we obtain

ξ (t)F ′(t) ≤ –k1ξ (t)E(t) + k2ξ (t)(g ◦ ∇u)(t), ∀t ≥ t0. (4.15)

4.1 Case: r = 1
Using (A2) and (2.11), then inequality (4.14) becomes

ξ (t)F ′(t) ≤ –k1ξ (t)E(t) + k2ξ (t)(g ◦ ∇v)(t)

≤ –k1ξ (t)E(t) – k2
(
g ′ ◦ ∇v

)
(t)

≤ –k1ξ (t)E(t) – 2k2E′(t).

(4.16)

We choose G(t) = ξ (t)F(t) + 2k2E(t) that is equivalent to E(t) because of (4.7). Then, from
(4.16) we can obtain

G′(t) ≤ –k0ξ (t)E(t) ≤ –kξ (t)G(t), ∀t ≥ t0. (4.17)

A simple integration of (4.17), leads to

G(t) ≤ G(t0)e–k
∫ t

t0
ξ (s) ds, ∀t ≥ t0, (4.18)

which implies

E(t) ≤ Ke–k
∫ t

t0
ξ (s) ds, ∀t ≥ t0. (4.19)

4.2 Case: r > 1
Applying Corollary 4.4, then inequality (4.15) becomes

ξ (t)F ′(t) ≤ –k1ξ (t)E(t) + k2
[
–E′(t)

]1/(2r–1), ∀t ≥ t0. (4.20)

Multiplying (4.20) by ξν(t)Eν(t) where ν = 2r – 2, we have

ξν+1(t)Eν(t)F ′(t)

≤ –k1ξ
ν+1(t)Eν+1(t) + k2ξ

ν(t)Eν(t)
[
–E′(t)

]1/(ν+1), ∀t ≥ t0. (4.21)
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Using Young’s inequality with q = ν + 1 and q∗ = ν+1
ν

, yields

ξν+1(t)Eν(t)F ′(t)

≤ –k1ξ
ν+1(t)Eν+1(t) + k2

[
ηξν+1(t)Eν+1(t) – CηE′(t)

]

= –(k1 – ηk2)ξν+1(t)Eν+1(t) – CηE′(t), ∀t ≥ t0. (4.22)

At this point, we choose η < k1
k2

and recall that ξ ′(t) ≤ 0 and E′(t) ≤ 0, we obtain

(
ξν+1EνF

)′(t) ≤ ξν+1(t)Eν(t)F ′(t)

≤ –k3ξ
ν+1(t)Eν+1(t) – k4E′(t), ∀t ≥ t0,

which implies

(
ξν+1EνF + k4F

)′(t) ≤ –k3ξ
ν+1(t)Eν+1(t), ∀t ≥ t0. (4.23)

We choose G(t) = ξν+1(t)Eν(t)F(t) + k4E(t) that is equivalent to E(t). Then,

G′(t) ≤ –k3ξ
ν+1(t)Gν+1(t)

= –k3ξ
2r–1(t)G2r–1(t), ∀t ≥ t0. (4.24)

A simple integration of (4.24) and using the fact that G(t) ∼ E(t), leads to

E(t) ≤ K
[

1
∫ t

t0
ξ 2r–1(s) ds + 1

]1/(2r–2)

, ∀t ≥ t0. (4.25)

4.3 Case: 1 < r < 3/2
To establish (4.4), we note that from simple calculations show that (4.2) and (4.3) yield

∫ ∞

t0

E(t) < ∞.

Next, let

σ (t) =
∫ t

0

∥
∥∇v(t) – ∇v(t – s)

∥
∥2

2 ds,

then, we have

σ (t) ≤ c
∫ t

0

[∥
∥∇v(t)

∥
∥2

2 +
∥
∥∇v(t – s)

∥
∥2

2

]
ds ≤ c

∫ t

0

[
E(t) + E(t – s)

]
ds ≤ 2c

∫ t

0
E(t – s) ds

= 2c
∫ t

0
E(s) ds ≤ 2c

∫ ∞

0
E(s) ds < ∞.
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Applying Jensens’s inequality for the second term on the right-hand side of (4.15) and
using (A2), we obtain

ξ (t)F ′(t) ≤ –k1ξ (t)E(t) + k2ξ (t)(g ◦ ∇v)(t)

= –k1ξ (t)E(t) + k2
σ (t)
σ (t)

∫ t

0

[
ξ r(s)gr(s)

] 1
r
∥
∥∇v(t) – ∇v(t – s)

∥
∥2

2 ds

≤ –k1ξ (t)E(t) + k2σ (t)
[

1
σ (t)

∫ t

0
ξ r(s)gr(s)

∥
∥∇v(t) – ∇v(t – s)

∥
∥2

2 ds
] 1

r

≤ –k1ξ (t)E(t) + k2σ
r–1

r (t)ξ r–1(0)
[∫ t

0
ξ (s)gr(s)

∥
∥∇v(t) – ∇v(t – s)

∥
∥2

2 ds
] 1

r

≤ –k1ξ (t)E(t) + k2

[∫ t

0
–g ′(s)

∥
∥∇v(t) – ∇v(t – s)

∥
∥2

2 ds
] 1

r

≤ –k1ξ (t)E(t) + k2
[
–E′(t)

] 1
r .

(4.26)

Multiplying (4.26) by ξν(t)Eν(t), where ν = r – 1, we have

ξν+1(t)Eν(t)F ′(t) ≤ –k1ξ
ν+1(t)Eν+1(t) + k2ξ

ν(t)Eν(t)
[
–E′(t)

] 1
ν+1 , ∀t ≥ t0. (4.27)

The remainder of the proof is similar to (4.2). The proof is complete.

5 Blow up
In this section, we state and prove the blow up of the solution to problem (1.1) with neg-
ative initial energy.

Let

H(t) = –E(t), (5.1)

where E(0) < 0. From (5.1) and (2.11) we have

H ′(t) = –E′(t) ≥ c0
(‖vt‖2

2 +
∥
∥z(1, t)

∥
∥2

2

) ≥ 0 (5.2)

and H(t) is an increasing function. Using (2.10) and (5.1), we obtain

0 < H(0) ≤ H(t) ≤ 1
p
‖v‖p

p. (5.3)

Moreover, similar to the work of Messaoudi [29], we can obtain the following lemma that
is needed later.

Lemma 5.1 Suppose that (A1), (A3), (A4), (2.4), and E(0) < 0 hold. Then, we have, for any
2 ≤ s ≤ p,

‖v‖s
p ≤ C

(

–H(t) – ‖vt‖2
2 – ‖∇v‖4

2 – (g ◦ ∇v)(t) –
∫ 1

0

∥
∥z(ρ, t)

∥
∥2

2 dρ + ‖v‖p
p

)

,
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where C is a positive constant.

Theorem 5.2 Let the conditions of Lemma 5.1 hold. Then, the solution of problem (1.1)
blows up in finite time.

Proof Set

�(t) = H1–σ (t) + ε

∫

�

vvt dx +
α

4
‖∇v‖4

2, (5.4)

where ε > 0 is a small constant that will be chosen later, and

0 < σ ≤ min

{
p – 2

2p
,

p – 2
p

}

. (5.5)

Taking a derivative of (5.4) and using the first equation in (2.8), we have

�′(t) = (1 – σ )H–σ (t)H ′(t) + ε

∫

�

v2
t dx + ε

∫

�

vvtt dx + α‖∇u‖2
2

∫

�

∇u∇ut dx

= (1 – σ )H–σ (t)H ′(t) + ε‖vt‖2
2 – εa‖∇v‖2

2 – εb‖∇v‖4
2 + ε‖v‖p

p

+ ε

∫

�

∇v
∫ t

0
g(t – s)∇v(s) ds dx – εμ1

∫

�

vvt dx – εμ2

∫

�

z(1, t)v dx. (5.6)

Applying Hölder’s and Young’s inequalities, for η, δ > 0, we have

∫

�

∇v
∫ t

0
g(t – s)∇v(s) ds dx ≥

(

1 –
1

4η

)(∫ t

0
g(s) ds

)

‖∇v‖2
2 – η(g ◦ ∇v)(t), (5.7)

μ1

∫

�

vvt dx ≤ δμ2
1‖v‖2

2 +
1
4δ

‖vt‖2
2 ≤ δμ2

1‖v‖2
2 +

1
4c0δ

H ′(t) (5.8)

and

μ2

∫

�

z(1, t)v dx ≤ δμ2
2‖v‖2

2 +
1
4δ

∥
∥z(1, t)

∥
∥2

2 ≤ δμ2
2‖v‖2

2 +
1

4c0δ
H ′(t). (5.9)

Combining these estimates (5.7)–(5.9) and (5.6), we obtain

�′(t) ≥
{

(1 – σ )H–σ (t) –
ε

2c0δ

}

H ′(t) + ε‖vt‖2
2 – εb‖∇v‖4

2 + ε‖v‖p
p

– ε

{

a –
(

1 –
1

4η

)(∫ t

0
g(s) ds

)}

‖∇v‖2
2 – εδ

(
μ2

1 + μ2
2
)‖v‖2

2

– εη(g ◦ ∇v)(t). (5.10)

Applying (2.10) to the last term ‖v‖p
p on the right-hand side of (5.10) and using (5.1), we

see that

�′(t) ≥
{

(1 – σ )H–σ (t) –
ε

2c0δ

}

H ′(t) + ε

(
p
2

+ 1
)

‖vt‖2
2 + εb

(
p
4

– 1
)

‖∇v‖4
2

+ ε

{

a
(

p
2

– 1
)

–
(

p
2

– 1 +
1

4η

)∫ t

0
g(s) ds

}

‖∇v‖2
2 + ε

(
p
2

– η

)

(g ◦ ∇v)(t)
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– εδ
(
μ2

1 + μ2
2
)‖v‖2

2 + ε
pζ

2

∫ 1

0

∥
∥z(ρ, t)

∥
∥2

2 dρ + εpH(t), (5.11)

for some number η with 0 < η < p/2. By recalling (2.4), the estimate (5.11) reduces to

�′(t) ≥
{

(1 – σ )H–σ (t) –
ε

2c0δ

}

H ′(t) + ε

(
p
2

+ 1
)

‖vt‖2
2 + εc1‖∇v‖4

2

+ εc2‖∇v‖2
2 + εc3(g ◦ ∇v)(t) – εδ

(
μ2

1 + μ2
2
)‖v‖2

2

+ ε
pζ

2

∫ 1

0

∥
∥z(ρ, t)

∥
∥2

2 dρ + εpH(t), (5.12)

where

c1 = b
(

p
4

– 1
)

> 0, c2 = a
(

p
2

– 1
)

–
(

p
2

– 1 +
1

4η

)∫ t

0
g(s) ds > 0, c3 =

p
2

– η > 0.

Therefore, by taking δ = H(t)σ /2c0k, where k > 0 is to be specified later, and exploiting
(5.3), we se that

H(t)σ‖v‖2
2 ≤ 1

pσ
‖v‖σp

p ‖v‖2
2 ≤ c2

p

pσ
‖v‖σp+2

p . (5.13)

Substituting (5.13) into (5.12), we obtain

�′(t) ≥ {
(1 – σ ) – εk

}
H–σ (t)H ′(t) + ε

(
p
2

+ 1
)

‖vt‖2
2 + εc1‖∇v‖4

2

+ εc2‖∇v‖2
2 + εc3(g ◦ ∇v)(t) + εc4‖v‖p

p – ε
c5

k
‖v‖σp+2

p

+ ε
pζ

2

∫ 1

0

∥
∥z(ρ, t)

∥
∥2

2 dρ + εpH(t), (5.14)

where c5 = (c2
p(μ2

1 + μ2
2))/2c0pσ . From (5.5) and Lemma 5.1, for s = σp + 2 ≤ p, we de-

duce

‖v‖σp+2
p ≤ C

(

–H(t) – ‖vt‖2
2 – ‖∇v‖4

2 – (g ◦ ∇v)(t) –
∫ 1

0

∥
∥z(ρ, t)

∥
∥2

2 dρ + ‖v‖p
p

)

. (5.15)

Combining (5.15) with (5.14), we obtain

�′(t) ≥ {
(1 – σ ) – εk

}
H–σ (t)H ′(t) + ε

(
p
2

+ 1 +
c5

k
C

)

‖vt‖2
2 + εc2‖∇v‖2

2

+ ε

(

c1 +
c5

k
C

)

‖∇v‖4
2 + ε

(

c3 +
c5

k
C

)

(g ◦ ∇v)(t) –
c5

k
C‖v‖p

p

+ ε

(
pζ

2
+

c5

k
C

)∫ 1

0

∥
∥z(ρ, t)

∥
∥2

2 dρ + ε

(

p +
c5

k
C

)

H(t). (5.16)

Subtracting and adding εγ H(t) on the right-hand side of (5.16), using (2.10) and (5.1), we
deduce

�′(t) ≥ {
(1 – σ ) – εk

}
H–σ (t)H ′(t) + ε

(
p
2

–
γ

2
+ 1 +

c5

k
C

)

‖vt‖2
2
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+ ε

(

c2 – a
γ

2

)

‖∇v‖2
2 + ε

(

c1 – b
γ

4
+

c5

k
C

)

‖∇v‖4
2

+ ε

(

c3 –
γ

2
+

c5

k
C

)

(g ◦ ∇v)(t) +
(

γ

p
–

c5

k
C

)

‖v‖p
p

+ ε

(
pζ

2
–

γ ζ

2
+

c5

k
C

)∫ 1

0

∥
∥z(ρ, t)

∥
∥2

2 dρ

+ ε

(

p – γ +
c5

k
C

)

H(t) + εγ E1. (5.17)

First, we fix γ such that

0 < γ < min

{

p,
2c2

a
,

4c1

b
, 2c3,

}

.

Secondly, we take k large enough such that

γ

p
–

c5

k
C > 0.

Once k is fixed, we select ε > 0 small enough so that

(1 – σ ) – εk > 0, and �(0) = H1–σ (0) + ε

∫

�

v0v1 dx +
α

4
‖∇v0‖4

2 > 0.

Therefore, we obtain from (5.17) that

�′(t) ≥ ω

(

‖vt‖2
2 + ‖∇v‖2

2 + ‖∇v‖4
2 + (g ◦ ∇v)(t)

+
∫ 1

0

∥
∥z(ρ, t)

∥
∥2

2 dρ + ‖v‖p
p + H(t)

)

, (5.18)

where ω is a positive constant.
We now estimate �(t) 1

1–σ . By Hölder’s inequality, we have
∣
∣
∣
∣

∫

�

vvt dx
∣
∣
∣
∣ ≤ ‖v‖2‖vt‖2 ≤ C1‖v‖p‖vt‖2, (5.19)

which implies

∣
∣
∣
∣

∫

�

vvt dx
∣
∣
∣
∣

1
1–σ ≤ C1‖v‖ 1

1–σ
p ‖vt‖

1
1–σ
2 . (5.20)

Young’s inequality yields

∣
∣
∣
∣

∫

�

vvt dx
∣
∣
∣
∣

1
1–σ

C1
(‖v‖

μ
1–σ
p + ‖vt‖

ϑ
1–σ
2

)
, (5.21)

for 1
μ

+ 1
ϑ

= 1. To obtain μ

1–σ
= 2

1–2σ
≤ p, by (5.5), we take ϑ = 2(1 – σ ). Therefore, (5.21)

becomes

∣
∣
∣
∣

∫

�

vvt dx
∣
∣
∣
∣

1
1–σ

C1
(‖v‖s

p + ‖vt‖2
2
)
,
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where s = 2
1–2σ

. Using Lemma 5.1, we obtain

∣
∣
∣
∣

∫

�

vvt dx
∣
∣
∣
∣

1
1–σ ≤ C1

(

H(t) + ‖vt‖2
2 + ‖∇v‖4

2 + (g ◦ ∇v)(t)

+
∫ 1

0

∥
∥z(ρ, t)

∥
∥2

2 dρ + ‖v‖p
p

)

. (5.22)

Combining (5.4) and (5.22), we obtain

�
1

1–σ (t) =
(

H1–σ (t) + ε

∫

�

vvt dx +
α

4
‖∇v‖4

2

) 1
1–σ

≤ c6

(

H(t) + ‖vt‖2
2 + ‖∇v‖4

2 + (g ◦ ∇v)(t)

+
∫ 1

0

∥
∥z(ρ, t)

∥
∥2

2 dρ + ‖v‖p
p + ‖∇v‖ 4

1–σ
2

)

. (5.23)

We note from (3.8) and (5.3) that

‖∇v‖ 4
1–σ
2 ≤ (

K1E(0)
) 2

1–σ ≤ (
K1E(0)

) 2
1–σ

H(t)
H(0)

. (5.24)

It follows from (5.23) and (5.24) that

�
1

1–σ (t) ≤ c7

(

H(t) + ‖vt‖2
2 + ‖∇v‖4

2 + (g ◦ ∇v)(t) +
∫ 1

0

∥
∥z(ρ, t)

∥
∥2

2 dρ + ‖v‖p
p

)

. (5.25)

Combining (5.25) with (5.18), we find that

�′(t) ≥ κ�
1

1–σ (t), t ≥ 0. (5.26)

A simple integration of (5.26) over (0, t) yields

�
σ

1–σ (t) ≥ 1
�– σ

1–σ (0) – κσ t
1–σ

.

Consequently, the solution of problem (1.1) blows up in finite time T∗ and T∗ ≤
1–σ

κσ�
σ

1–σ (0)
. �
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