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Abstract
Introducing a new generalized multivariate Mittag-Leffler function which is a
generalization of the multivariate Mittag-Leffler function, we derive a sufficient
condition for the uniqueness of solutions to a brand new boundary value problem of
the fractional nonlinear partial integro-differential equation using Banach’s fixed point
theorem and Babenko’s technique. This has many potential applications since
uniqueness is an important topic in many scientific areas, and the method used
clearly opens directions for studying other types of equations and corresponding
initial or boundary value problems. In addition, we use Python which is a high-level
programming language efficiently dealing with the summation of multi-indices to
compute approximate values of the generalized Mittag-Leffler function (it seems
impossible to do so by any existing integral representation of the Mittag-Leffler
function), and provide an example showing applications of key results derived.
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1 Introduction
Partial differential equations have played an important role in various scientific areas, such
as physics and engineering [1–8]. There are many interesting studies on uniqueness and
existence of solutions, based on the theory of fixed points, for fractional nonlinear PDEs
and corresponding initial or boundary value problems, as well as for integral equations
[9, 10]. Ouyang and Zhu et al. [11–13] studied the time fractional PDEs given below:

⎧
⎪⎪⎨

⎪⎪⎩

c∂α

∂tα u(t, x) – a(t) ∂2

∂x2 u(t, x) = v(t, u(τ1(t), x), . . . , u(τl(t), x)), t ∈ [0, T0],

u(t, x) = 0, (t, x) ∈ [0, T0] × ∂�,

u(0, x) = ψ(x), x ∈ �,
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where 0 < α ≤ 1, the function a(t) is a diffusion coefficient, l is a positive integer, � ⊂ Rl is
a bounded domain with a smooth boundary ∂�, ψ ∈ L2(�), and the function v : [0, T0] ×
Rl → R satisfies certain conditions. Ouyang [11] investigated the existence of the local
solutions using Leray–Schauder’s fixed point theorem. Additionally, Zhu et al. [12, 13]
converted the above time fractional partial differential equations into a form of the time
fractional differential equations in the Banach space L2(�), and, using Banach’s fixed point
theorem and strict contraction principle, derived results on the existence and uniqueness.

Let a(x) ∈ C[0, T], g : [0, T] × R → R, and f : C[0, T] → R. Very recently, Li [14] studied
the uniqueness of solutions for the following nonlinear integro-differential equation with
a nonlocal boundary condition and variable coefficients for l < α ≤ l + 1:

⎧
⎪⎪⎨

⎪⎪⎩

CDαu(x) + a(x)Iβu(x) = g(x, u(x)), x ∈ [0, T],

u(0) = –f (u), u′′(0) = · · · = u(l)(0) = 0,
∫ T

0 u(x) dx = λ,

(1.1)

where λ is a constant. In particular for l = 1, equation (1.1) turns out to be
⎧
⎨

⎩

CDαu(x) + a(x)Iβu(x) = g(x, u(x)), x ∈ [0, T],

u(0) = –f (u),
∫ T

0 u(x) dx = λ.

This paper aims to study the uniqueness of solutions for the following new equation
with 0 < α ≤ 1 and m = 1, 2, . . . , in the space S([0, 1]2):

⎧
⎨

⎩

c∂α

∂tα u(t, x) +
∑m

i=1 λiI
γi
t Iβi

x u(t, x) = v(t, x, u(t, x)), γi ≥ 0,βi ≥ 0,

u(0, x) + u(1, x) – ψ(x) = 0, (t, x) ∈ [0, 1]2,
(1.2)

where all λi are constants, ψ(x) is a continuous function on [0, 1], and v : [0, 1]2 × R → R is
a function which satisfies conditions to be given. Equation (1.2) with its initial condition
is new and, to the best of our knowledge, has never been investigated earlier.

The remainder of the paper is organized in the following manor. Section 3 studies the
uniqueness of solutions for equation (1.2) by the newly introduced generalized multivari-
ate Mittag-Leffler function and Banach’s fixed point theory. Section 4 presents a demon-
strative example which illuminates applications of the key results based on the value of a
generalized multivariate Mittag-Leffler function calculated by our Python code. Finally, in
Sect. 5, we provide a summary of the work.

2 Preliminaries
We define Iα

t as the partial Riemann–Liouville fractional integral of order α > 0 [15, 16]
given by

(
Iα

t u
)
(t, x) =

1

(α)

∫ t

0
(t – s)α–1u(s, x) ds,

and c∂α

∂tα as the partial Liouville–Caputo fractional derivative of order α > 0 [15] by

(
c∂

α

∂tα
u
)

(t, x) =
1


(1 – α)

∫ t

0
(t – s)–αu′

s(s, x) ds, 0 < α ≤ 1.
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From [17, 18], we have for 0 < α ≤ 1,

(
I0

t u
)
(t, x) = u(t, x),

Iα
t

(
c∂

α

∂tα
u
)

(t, x) = u(t, x) – u(0, x).

The set S([0, 1]2) is a Banach space equipped with the following norm:

‖u‖ = sup
t∈[0,1],x∈[0,1]

∣
∣u(t, x)

∣
∣ for u ∈ S

(
[0, 1]2),

where u is continuous on [0, 1]2.

Definition 1 A generalized multivariate Mittag-Leffler function is defined by the following
series:

E(β1,...,βm),δ
(α1,...,αm),ε(ζ1, . . . , ζm)

=
∞∑

l=0

∑

l1+···+lm=l
l1≥0,...,lm≥0

(
l

l1, . . . , lm

)
ζ

l1
1 · · · ζ lm

m

(α1l1 + · · · + αmlm + ε)
(β1l1 + · · · + βmlm + δ)

,

where αi, ε, δ > 0,βi ≥ 0, ζj ∈ C for 1 ≤ j ≤ m and

(
l

l1, . . . , lm

)

=
l!

l1! · · · lm!
.

In particular,

E(0,...,0),1
(α1,...,αm),ε(ζ1, . . . , ζm) = E(α1,...,αm),ε(ζ1, . . . , ζm)

=
∞∑

l=0

∑

l1+···+lm=l
l1≥0,...,lm≥0

(
l

l1, . . . , lm

)
ζ

l1
1 · · · ζ lm

m

(α1l1 + · · · + αmlm + ε)

,

which is the multivariate Mittag-Leffler function given in [19] since 
(1) = 1. Moreover,

E0,1
α,ε(ζ ) = Eα,ε(ζ ) =

∞∑

l=0

ζ l


(αl + ε)
, ζ ∈ C,

which is the well-known two-parameter Mittag-Leffler function.

Babenko’s approach [20] is a highly effective method that can be employed to solve var-
ious integral and differential equations [9, 17] by treating a bounded integral operator as a
“normal” variable and using the inverse operator to deduce solutions. The method itself is
similar to the Laplace transform while working on differential and integral equations with
constant coefficients, but it can be applied to equations with continuous and bounded
variable coefficients. To show this approach, we will consider the following equation in
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the space C[0, 1] (the space of all continuous functions on [0, 1]) for constants a and b:

⎧
⎨

⎩

cDβ
0 u(t) + acDβ1

0 u(t) + bIα
0 u(t) = t2, 0 < β1 < β ≤ 1,α > 0,

u(0) = 0,
(2.1)

where

cDβ
0 u(t) =

1

(1 – β)

∫ t

0
(t – s)–βu′(s) ds

and

Iα
0 u(t) =

1

(α)

∫ t

0
(t – s)α–1u(s) ds.

Obviously,

Iβ
0
(

cDβ
0 u(t)

)
= u(t) – u(0) = u(t).

Applying Iα
0 to equation (2.1), we have

(
1 + aIβ–β1

0 + bIβ+α
0

)
u(t) = Iβ

0 t2 =
2


(β + 3)
tβ+2.

Considering the inverse operator of (1 + aIβ–β1
0 + bIβ+α

0 ), we informally get by Babenko’s
technique

u(t) =
2


(β + 3)
(
1 + aIβ–β1

0 + bIβ+α
0

)–1tβ+2

=
2


(β + 3)

∞∑

n=0

(–1)n(aIβ–β1
0 + bIβ+α

0
)ntβ+2

=
2


(β + 3)

∞∑

n=0

(–1)n
∑

n1+n2=n

(
n

n1, n2

)

an1 I(β–β1)n1
0 bn2 I(β+α)n2

0 tβ+2

= 2
∞∑

n=0

(–1)n
∑

n1+n2=n

(
n

n1, n2

)

an1 bn2
tn1(β–β1)+n2(β+α)+β+2


((β – β1)n1 + (β + α)n2 + β + 3)

= 2tβ+2
∞∑

n=0

(–1)n
∑

n1+n2=n

(
n

n1, n2

)

an1 bn2
t(β–β1)n1+(β+α)n2


((β – β1)n1 + (β + α)n2 + β + 3)
,

using

I(β–β1)n1+(β+α)n2
0 tβ+2 =


(β + 3)t(β–β1)n1+(β+α)n2+β+2


((β – β1)n1 + (β + α)n2 + β + 3)
.

This implies that

‖u‖ ≤ 2
∞∑

n=0

∑

n1+n2=n

(
n

n1, n2

) |a|n1 |b|n2


((β – β1)n1 + (β + α)n2 + β + 3)
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= 2E(β–β1,β+α),β+3
(|a|, |b|) < +∞,

which gives that the series solution

u(t) = 2tβ+2
∞∑

n=0

(–1)n
∑

n1+n2=n

(
n

n1, n2

)

an1 bn2
t(β–β1)n1+(β+α)n2


((β – β1)n1 + (β + α)n2 + β + 3)

is an element in C[0, 1].

3 Uniqueness of solutions
Theorem 2 Let ψ ∈ C[0, 1], λi be real constants, βi,γi ≥ 0 for all i = 1, 2, . . . , m, and v :
[0, 1]2 × R → R be a continuous and bounded function. In addition, we assume that 0 <
α ≤ 1 and

q = 1 –
1
2

m∑

i=1

|λi|

(γi + α + 1)
(βi + 1)

E(β1,...,βm),1
(γ1+α,...,γm+α),1

(|λ1|, . . . , |λm|) > 0.

Then u(t, x) is a solution to equation (1.2) if and only if it satisfies the following integral
equation in the space S([0, 1]2):

u(t, x) =
∞∑

l=0

(–1)l
∑

l1+···+lm=l
l1≥0,...,lm≥0

(
l

l1, . . . , lm

)

λ
l1
1 · · ·λlm

m

× Il1(α+γ1)+···+lm(α+γm)+α
t Iβ1l1+···+βmlm

x v(t, x, u)

–
1
2

∞∑

l=0

(–1)l
∑

l1+···+lm=l
l1≥0,...,lm≥0

(
l

l1, . . . , lm

)

λ
l1
1 · · ·λlm

m

× Il1(α+γ1)+···+lm(α+γm)
t Iα

t=1Iβ1l1+···+βmlm
x v(t, x, u)

+
1
2

∞∑

l=0

(–1)l
∑

l1+···+lm=l
l1≥0,...,lm≥0

(
l

l1, . . . , lm

)

λ
l1
1 · · ·λlm

m

× Il1(α+γ1)+···+lm(α+γm)
t Iβ1l1+···+βmlm

x ψ(x)

+
1
2

m∑

i=1

λi

∞∑

l=0

(–1)l
∑

l1+···+lm=l
l1≥0,...,lm≥0

(
l

l1, . . . , lm

)

λ
l1
1 · · ·λlm

m

× Il1(α+γ1)+···+lm(α+γm)
t Iβ1l1+···+βmlm

x Iγi+α

t=1 Iβi
x u. (3.1)

Furthermore,

‖u‖ ≤ 1
q

E(β1,...,βm),1
(γ1+α,...,γm+α),α+1

(|λ1|, . . . , |λm|) sup
(t,x)∈[0,1]×[0,1]u∈R

∣
∣v(t, x, u)

∣
∣

+
1

2q

(
1


(α + 1)
+ 1

)

E(β1,...,βm),1
(γ1+α,...,γm+α),1

(|λ1|, . . . , |λm|)

×
(

sup
(t,x)∈[0,1]×[0,1]u∈R

∣
∣v(t, x, u)

∣
∣ + max

x∈[0,1]

∣
∣ψ(x)

∣
∣
)

< +∞.
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Proof Applying Iα
t to equation (1.2), we get

Iα
t

c∂
α

∂tα
u(t, x) +

m∑

i=1

λiI
α+γi
t Iβi

x u(t, x) = Iα
t v

(
t, x, u(t, x)

)
.

This implies that

u(t, x) – u(0, x) +
m∑

i=1

λiI
α+γi
t Iβi

x u(t, x) = Iα
t v

(
t, x, u(t, x)

)
, and

u(1, x) – u(0, x) +
m∑

i=1

λiI
α+γi
t=1 Iβi

x u(t, x) = Iα
t=1v

(
t, x, u(t, x)

)
.

Using

–u(0, x) – u(1, x) = –ψ(x),

we get

u(0, x) =
1
2
ψ(x) +

1
2

m∑

i=1

λiI
α+γi
t=1 Iβi

x u(t, x) –
1
2

Iα
t=1v

(
t, x, u(t, x)

)
.

This further implies that

(

1 +
m∑

i=1

λiI
α+γi
t Iβi

x

)

u(t, x)

= Iα
t v

(
t, x, u(t, x)

)
+

1
2
ψ(x) +

1
2

m∑

i=1

λiI
α+γi
t=1 Iβi

x u(t, x) –
1
2

Iα
t=1v

(
t, x, u(t, x)

)
.

Using Babenko’s method, we deduce that

u(t, x)

=

(

1 +
m∑

i=1

λiI
α+γi
t Iβi

x

)–1

×
(

Iα
t v

(
t, x, u(t, x)

)
+

1
2
ψ(x) +

1
2

m∑

i=1

λiI
α+γi
t=1 Iβi

x u(t, x) –
1
2

Iα
t=1v

(
t, x, u(t, x)

)
)

=
∞∑

l=0

(–1)l

( m∑

i=1

λiI
α+γi
t Iβi

x

)l

×
(

Iα
t v

(
t, x, u(t, x)

)
+

1
2
ψ(x) +

1
2

m∑

i=1

λiI
α+γi
t=1 Iβi

x u(t, x) –
1
2

Iα
t=1v

(
t, x, u(t, x)

)
)

=
∞∑

l=0

(–1)l
∑

l1+···+lm=l
l1≥0,...,lm≥0

(
l

l1, . . . , lm

)

λ
l1
1 · · ·λlm

m I(α+γ1)l1+···+(α+γm)lm
t Iβ1l1+···+βmlm

x
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×
(

Iα
t v

(
t, x, u(t, x)

)
+

1
2
ψ(x) +

1
2

m∑

i=1

λiI
α+γi
t=1 Iβi

x u(t, x) –
1
2

Iα
t=1v

(
t, x, u(t, x)

)
)

=
∞∑

l=0

(–1)l
∑

l1+···+lm=l
l1≥0,...,lm≥0

(
l

l1, . . . , lm

)

λ
l1
1 · · ·λlm

m

× Il1(α+γ1)+···+lm(α+γm)+α
t Iβ1l1+···+βmlm

x v(t, x, u)

–
1
2

∞∑

l=0

(–1)l
∑

l1+···+lm=l
l1≥0,...,lm≥0

(
l

l1, . . . , lm

)

λ
l1
1 · · ·λlm

m

× Il1(α+γ1)+···+lm(α+γm)
t Iα

t=1Iβ1l1+···+βmlm
x v(t, x, u)

+
1
2

∞∑

l=0

(–1)l
∑

l1+···+lm=l
l1≥0,...,lm≥0

(
l

l1, . . . , lm

)

λ
l1
1 · · ·λlm

m

× Il1(α+γ1)+···+lm(α+γm)
t Iβ1l1+···+βmlm

x ψ(x)

+
1
2

m∑

i=1

λi

∞∑

l=0

(–1)l
∑

l1+···+lm=l
l1≥0,...,lm≥0

(
l

l1, . . . , lm

)

λ
l1
1 · · ·λlm

m

× Il1(α+γ1)+···+lm(α+γm)
t Iβ1l1+···+βmlm

x Iγi+α

t=1 Iβi
x u,

by the multinomial theorem. We will now show that u ∈ S([0, 1]2). Indeed,

‖u‖ ≤
∞∑

l=0

∑

l1+···+lm=l
l1≥0,...,lm≥0

(
l

l1, . . . , lm

) |λ1|l1 · · · |λm|lm

(l1(α + γ1) + · · · + lm(α + γm) + α + 1)

× 1

(l1β1 + · · · + lmβm + 1)

sup
(t,x)∈[0,1]×[0,1],u∈R

∣
∣v(t, x, u)

∣
∣

+
1

2
(α + 1)

∞∑

l=0

∑

l1+···+lm=l
l1≥0,...,lm≥0

(
l

l1, . . . , lm

) |λ1|l1 · · · |λm|lm

(l1(α + γ1) + · · · + lm(α + γm) + 1)

× 1

(l1β1 + · · · + lmβm + 1)

sup
(t,x)∈[0,1]×[0,1],u∈R

∣
∣v(t, x, u)

∣
∣

+
1
2

∞∑

l=0

∑

l1+···+lm=l
l1≥0,...,lm≥0

(
l

l1, . . . , lm

)

× |λ1|l1 · · · |λm|lm

(l1(α + γ1) + · · · + lm(α + γm) + 1)
(l1β1 + · · · + lmβm + 1)

max
x∈[0,1]

∣
∣ψ(x)

∣
∣

+
1
2

m∑

i=1

|λi|

(γi + α + 1)
(βi + 1)

∞∑

l=0

∑

l1+···+lm=l
l1≥0,...,lm≥0

(
l

l1, . . . , lm

)

× |λ1|l1 · · · |λm|lm

(l1(α + γ1) + · · · + lm(α + γm) + 1)
(l1β1 + · · · + lmβm + 1)

‖u‖.
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Since

q = 1 –
1
2

m∑

i=1

|λi|

(γi + α + 1)
(βi + 1)

E(β1,...,βm),1
(γ1+α,...,γm+α),1

(|λ1|, . . . , |λm|) > 0,

we come to

‖u‖ ≤ 1
q

E(β1,...,βm),1
(γ1+α,...,γm+α),α+1

(|λ1|, . . . , |λm|) sup
(t,x)∈[0,1]×[0,1]u∈R

∣
∣v(t, x, u)

∣
∣

+
1

2q

(
1


(α + 1)
+ 1

)

E(β1,...,βm),1
(γ1+α,...,γm+α),1

(|λ1|, . . . , |λm|)

×
(

sup
(t,x)∈[0,1]×[0,1]u∈R

∣
∣v(t, x, u)

∣
∣ + max

x∈[0,1]

∣
∣ψ(x)

∣
∣
)

< +∞,

since v is bounded. Hence u ∈ S([0, 1]2). This marks the completion of the proof. �

Theorem 3 Let ψ ∈ C[0, 1], λi be real constants, γi,βi ≥ 0 for all i = 1, 2, . . . , m, and v :
[0, 1]2 × R → R be a bounded and continuous function that satisfies the following Lipschitz
condition for M > 0:

∣
∣v(t, x, u1) – v(t, x, u2)

∣
∣ ≤M|u1 – u2|, u1, u2 ∈ R.

Furthermore, we suppose that 0 < α ≤ 1 and

W = ME(β1,...,βm),1
(γ1+α,...,γm+α),α+1

(|λ1|, . . . , |λm|)

+
1
2

(
M


(α + 1)
+

m∑

i=1

|λi|

(γi + α + 1)
(βi + 1)

)

E(β1,...,βm),1
(γ1+α,...,γm+α),1

(|λ1|, . . . , |λm|) < 1.

Then there is a unique solution in the space S([0, 1]2) to equation (1.2).

Proof Let T be the mapping defined on the space S([0, 1]2) by

(T u)(t, x) =
∞∑

l=0

(–1)l
∑

l1+···+lm=l
l1≥0,...,lm≥0

(
l

l1, . . . , lm

)

λ
l1
1 · · ·λlm

m

× Il1(α+γ1)+···+lm(α+γm)+α
t Iβ1l1+···+βmlm

x v(t, x, u)

–
1
2

∞∑

l=0

(–1)l
∑

l1+···+lm=l
l1≥0,...,lm≥0

(
l

l1, . . . , lm

)

λ
l1
1 · · ·λlm

m

× Il1(α+γ1)+···+lm(α+γm)
t Iα

t=1Iβ1l1+···+βmlm
x v(t, x, u)

+
1
2

∞∑

l=0

(–1)l
∑

l1+···+lm=l
l1≥0,...,lm≥0

(
l

l1, . . . , lm

)

λ
l1
1 · · ·λlm

m

× Il1(α+γ1)+···+lm(α+γm)
t Iβ1l1+···+βmlm

x ψ(x)
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+
1
2

m∑

i=1

λi

∞∑

l=0

(–1)l
∑

l1+···+lm=l
l1≥0,...,lm≥0

(
l

l1, . . . , lm

)

λ
l1
1 · · ·λlm

m

× Il1(α+γ1)+···+lm(α+γm)
t Iβ1l1+···+βmlm

x Iγi+α

t=1 Iβi
x u.

From the proof of Theorem 2, we claim that T u ∈ S([0, 1]2). We will prove that T is con-
tractive. In fact, for u1, u2 ∈ S([0, 1]2), we get from Theorem 2 that

‖T u1 – T u2‖ ≤ME(β1,...,βm),1
(γ1+α,...,γm+α),α+1

(|λ1|, . . . , |λm|)‖u1 – u2‖

+
M

2
(α + 1)
E(β1,...,βm),1

(γ1+α,...,γm+α),1
(|λ1|, . . . , |λm|)‖u1 – u2‖

+
1
2

m∑

i=1

|λi|

(γi + α + 1)
(βi + 1)

E(β1,...,βm),1
(γ1+α,...,γm+α),1

(|λ1|, . . . , |λm|)‖u1 – u2‖

= W‖u1 – u2‖,

by noting that

∣
∣v(t, x, u1) – v(t, x, u2)

∣
∣ ≤M|u1 – u2|.

Since W < 1, there is a unique solution to equation (1.2) in the space S([0, 1]2) by Banach’s
fixed point theorem. Hence Theorem 3 follows. �

4 Example
Example 4 Consider the following equation with a boundary condition:

⎧
⎪⎪⎨

⎪⎪⎩

c∂0.5

∂t0.5 u(t, x) + 1
15 I1.5

t I0.5
x u(t, x) + 1

21 I2.5
t I1.1

x u(t, x)

= 1
18 cos(txu) + t2 + sin x,

u(0, x) + u(1, x) = x2 + 1, (t, x) ∈ [0, 1] × [0, 1].

(4.1)

Then there is a unique solution in the space S([0, 1]2) to equation (4.1).

Proof Let

v(t, x, u) =
1

18
cos(txu) + t2 + sin x.

Obviously,

∣
∣v(t, x, u1) – v(t, x, u2)

∣
∣ ≤ 1

18
∣
∣cos(txu1) – cos(txu2)

∣
∣ ≤ 1

18
|u1 – u2|,

for all u1, u2 ∈ R, by noting that (t, x) ∈ [0, 1] × [0, 1]. Therefore M = 1/18, and

β1 = 0.5, β2 = 1.1,

α = 0.5, γ1 = 1.5, γ2 = 2.5,

λ1 =
1

15
, λ2 =

1
21

,
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from equation (4.1). We evaluate the following W given in Theorem 3 via Python language
to get

W =
1

18
E(0.5,1.1),1

(1.5+0.5,2.5+0.5),0.5+1

(
1

15
,

1
21

)

+
1
2

(
1

18
(0.5 + 1)
+

1
15
(1.5 + 0.5 + 1)
(0.5 + 1)

+
1

21
(2.5 + 0.5 + 1)
(1.1 + 1)

)

× E(0.5,1.1),1
(1.5+0.5,2.5+0.5),1

(
1

15
,

1
21

)

≈ 0.120560441333871 < 1.

By Theorem 3, the result follows. �

Remark 5 The Python language is quite useful when computing the values of the multi-
variate Mittag-Leffler function or the newly introduced generalized multivariate Mittag-
Leffler function. These functions appear often in many fields and play an important role
in studying integral or differential equations with various conditions, as well as in finding
approximate solutions, such as for equation (2.1) as an example.

5 Conclusion
We have obtained a sufficient condition for uniqueness of solution to the new bound-
ary value problem (1.2) involving double integral operators by using the new generalized
multivariate Mittag-Leffler function, Babenko’s approach, as well as by applying Banach’s
fixed point theorem. Moreover, we made use of the Python language to aid in finding the
approximate value of a generalized Mittag-Leffler function, which currently seems un-
feasible to do so by any existing integral representations of the Mittag-Leffler function.
Finally, we presented an example that applies the results of the key theorems derived. The
technique used certainly works for different types of PDE and corresponding initial or
boundary value problems.
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