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Abstract
In this paper, we consider a class of fractional Choquard equations with indefinite
potential

(–�)αu + V(x)u =
[∫

RN

M(εy)G(u)
|x – y|μ dy

]
M(εx)g(u), x ∈R

N ,

where α ∈ (0, 1), N > 2α, 0 <μ < 2α, ε is a positive parameter. Here (–�)α stands for
the fractional Laplacian, V is a linear potential with periodicity condition, andM is a
nonlinear reaction potential with a global condition. We establish the existence and
concentration of ground state solutions under general nonlinearity by using
variational methods.
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1 Introduction and main result
In this paper, we deal with a class of nonlinear fractional Choquard equations with indef-
inite potential

(–�)αu + V (x)u =
[∫

RN

M(εy)G(u)
|x – y|μ dy

]
M(εx)g(u), x ∈R

N , (1.1)

where ε > 0 is a parameter, α ∈ (0, 1), N > 2α, (–�)α stands for the fractional Laplacian
operator, the nonlinear function G is the primitive function of g with subcritical growth.
The operator (–�)α is nonlocal and can be defined by

(–�)αu(x) = –
CN ,α

2

∫

RN

u(x + y) + u(x – y) – 2u(x)
|y|N+2α

dy, ∀x ∈R
N ,

where CN ,α is a suitable normalization constant. We recall that the problem (1.1) is
inspired by the study of standing wave solutions for the time-dependent nonlinear

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13661-023-01786-3
https://crossmark.crossref.org/dialog/?doi=10.1186/s13661-023-01786-3&domain=pdf
mailto:liudong@xnu.edu.cn
http://creativecommons.org/licenses/by/4.0/


Liao et al. Boundary Value Problems         (2023) 2023:99 Page 2 of 24

Schrödinger equation

i�
∂�

∂t
= �

2α(–�)α� +
(
V (x) + E

)
� –

(|x|–μ ∗ |�|q)|�|q–2� , (x, t) ∈ R
N ×R, (1.2)

where i is the imaginary unit, � is the Planck constant, and � represents the wave function
of the state of an electron.

Regarding the applications of equation (1.2), we recall that fractional Laplacian opera-
tors are the infinitesimal generators of Lévy stable diffusion processes. They have appli-
cation in several areas such as anomalous diffusion of plasmas, probability, finance, and
population dynamics. For more details on the application background, we refer to Apple-
baum [4] and the monograph [24] of Molica Bisci–Rădulescu–Servadei.

When α = 1, problem (1.1) becomes the usual Choquard equation. The early existence
and symmetry results were established by Lions [21] and Lieb–Loss [20]. After the cele-
brated work [20, 21], the existence and qualitative and asymptotic properties of nontrivial
solutions for the Choquard equation or its generalized version have been extensively in-
vestigated by using various methods of nonlinear analysis (such as the variational method,
moving plane method, Lyapunov–Schmidt reduction method, and shooting method). We
refer the readers to [2, 5, 7, 14, 25, 26, 29, 30, 35, 43, 44] and the references therein.

For the case α ∈ (0, 1), during the recent years, problem (1.1) has attracted consider-
able interest, the literature related to this equation is numerous and encompasses several
interesting lines of research in nonlinear analysis, including existence, multiplicity, con-
centration, and qualitative properties of solutions. Let us now briefly recall some related
results in this direction.

In [10], d’Avenia–Siciliano–Squassiona studied some results involving existence, regu-
larity, and asymptotic of the solutions for the fractional Choquard equation with constant
potential

(–�)su + ωu =
[

1
|x|μ ∗ |u|p

]
|u|p–2u, x ∈R

N ,

where ω > 0. The analyticity, uniqueness, and radial symmetry of ground state solu-
tions were investigated by Frank–Lenzmann [13]. Later on, under general source terms,
Shen–Gao–Yang [32] proved the existence result of ground state solutions for a frac-
tional Choquard equation involving a nonlinearity satisfying Berestycki–Lions-type con-
ditions. Without any symmetry property, Chen–Liu [8] established the existence of pos-
itive ground state solutions by using the usual Nehari manifold and concentration com-
pactness principle. We also refer to Zhang–Wu [41] for the existence result of nodal solu-
tions.

Recently, there have been some results for fractional Choquard equations with critical
growth; we mention the works of Mukherjee–Sreenadh [27] for an analogous Brezis–
Nirenberg-type problem; He–Rădulescu [17] for a small linear perturbation problem;
Guan–Rădulescu–Wang [16] for the existence of positive bounded solutions. Moreover,
concerning the semiclassical analysis of the singularly perturbed problem

ε2α(–�)αu + V (x)u = εμ–N
[

1
|x|μ ∗ G(u)

]
g(u), x ∈ R

N ,
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the papers [3, 6, 15, 19, 36, 37] showed the existence or multiplicity of semiclassical
solutions which concentrate around the local or global minimum points of the linear
potential V . For other related results involving the qualitative and asymptotic analy-
sis of nontrivial solutions to nonlocal elliptic equations, we also refer to the papers
[12, 18, 28, 31, 34, 38–40] and the references therein.

We would like to emphasize that, in the works mentioned above, the authors dealt only
with the case where the potential V is a constant or positive function, in the sense that
the corresponding energy functional is strongly definite, which has the mountain pass
geometry structure in general. In the variational framework of strongly definite functional,
the classical Nehari manifold method and mountain pass theory are available. However,
as far as we know, there are very few works considering the case where the potential V (x)
as in problem (1.1) is indefinite (or sign-changing), which motivates the present work to
consider this case.

Concerning the indefinite potential case, we would like to mention the recent work done
by Fang–Ji [11] in which the authors first considered the fractional Schrödinger equation
under the condition (V ) and proved that the fractional Schrödinger operator (–�)α + V
has a purely continuous spectrum which is bounded below and consists of closed disjoint
intervals, see [11, Theorem 1.1]. So in this framework, we know that the energy functional
of problem (1.1) is strongly indefinite, which has a more complicated geometry structure
than that of a strongly definite functional. In the sense we can see that zero is no longer a
local minimum point of the energy functional, and then the usual Nehari manifold method
and mountain pass theorem do not work for this case.

Under the variational framework of strongly indefinite potential, motivated by the work
of Alves–Germano [1], Chen–Ji [9] proved the existence and concentration of solutions to
fractional Schrödinger equation, which extend the relevant ones in [1] from the classical
to fractional Schrödinger equation. Very recently, Zhang–Yuan–Wen [42] investigated the
fractional Choquard equation with a pure power nonlinearity, and obtained the existence
and concentration properties of ground state solutions. We also mention the recent paper
[23] in which the existence and asymptotics of ground states to the fractional Schrödinger
equations with indefinite and Hardy potentials are discussed.

Motivated by the above works, in the present paper, we aim to study further the existence
and some properties of ground state solutions of the fractional Choquard equation (1.1)
under a more general nonlinearity. To be more precise, the interest in the study of this
paper is twofold: one is to establish the existence of ground state solutions to problem
(1.1); the other is to study the asymptotics of these solutions as ε → 0.

Before stating our results, let us give some suitable conditions about the potentials V ,
M, and the nonlinearity g . We first assume that V and M satisfy the following conditions:

(V ) V ∈ C(RN ,R) is ZN -periodic, 0 /∈ σ ((–�)α + V ) and σ ((–�)α + V ) ∩ (–∞, 0) �= ∅,
where σ denotes the spectrum of Schrödinger operator (–�)α + V ;

(M) M ∈ C(RN ,R) and 0 < infx∈RN M(x) ≤ M∞ := lim|x|→+∞ M(x) < M(0) =
maxx∈RN M(x).

Meanwhile, we suppose that the nonlinearity g satisfies the following conditions:
(g1) g(u) = o(|u|) as |u| → 0;
(g2) There exist c0 > 0 and q ∈ (2, 2N–2μ

N–2α
) such that

∣∣g(u)
∣∣ ≤ c0

(
1 + |u|q–1) for all u ∈R;
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(g3) G(u) ≥ 0 for all u ∈R and G(u)
|u|2 → +∞ as |u| → +∞;

(g4) u �→ g(u)
|u| is strictly increasing on (–∞, 0) and on (0, +∞).

The main result of this paper is the following theorem.

Theorem 1.1 Assume that (V ), (M) and (g1)–(g4) are satisfied, then
(a) there exists ε0 > 0 such that problem (1.1) has a ground state solution uε for each

ε ∈ (0, ε0);
(b) if xε ∈R

N denotes a global maximum point of |uε |, then

lim
ε→0

M(εxε) = M(0);

(c) uε(x + xε) → u as ε → 0, where u is a ground state solution of the limit equation

(–�)αu + V (x)u = M(0)2
[∫

RN

G(u)
|x – y|μ dy

]
g(u), x ∈R

N .

The features of this paper are the following:
• The problem combines the multiple effects generated by the indefinite potential, re-

action potential, and general nonlinearity;
• The strong indefiniteness of the energy functional together with the double nonlocality

bring some difficulties in our analysis;
• The lack of compactness due to the unboundedness of the domain leads to the fact

that the energy functional does not satisfy the necessary compactness property.
Let us explain shortly the strategies of the proof of Theorem 1.1. Based on the above

features, firstly, we intend to make use of the method of generalized Nehari manifold de-
veloped by Szulkin–Weth [33] to conquer the difficulty caused by the strong indefiniteness
feature. Secondly, we must verify that the energy functional satisfies a necessary compact-
ness condition at some minimax level. This goal will be achieved by doing a finer analysis
and using the energy comparison argument to establish some relationships of the ground
state energy value between the original problem and certain auxiliary problems. Finally, in
order to characterize the concentration property of solutions, we need to draw upon the
Moser iteration arguments to show the L∞-estimate. Summarizing, the results included in
the present paper complement several recent contributions to the study of concentration
of solutions to the fractional Choquard equation.

2 Variational setting and preliminaries
Throughout this paper, for the sake of simplicity we will use the following notations:

• Lq(RN ) (1 ≤ q < ∞) denotes the Lebesgue space with the norm ‖ · ‖q = (
∫
RN |u|q dx)1/q;

• (·, ·)2 denotes the usual L2(RN ) inner product;
• c, ci, Ci denote positive constants possibly different in different places.
In the following we introduce the variational framework of the fractional Sobolev space

and some comprehensive presentations of the space can be found in the book [24].
For any α ∈ (0, 1), the norm of the fractional Sobolev space Dα,2(RN ), which is the com-

pletion of C∞
0 (RN ), is

[u]2
Dα,2 =

∫∫

RN ×RN

|u(x) – u(y)|2
|x – y|N+2α

dx dy.
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Based on this, we can define the following fractional Sobolev space Hα(RN ):

Hα
(
R

N)
=

{
u ∈ L2(

R
N)

:
∫∫

RN ×RN

|u(x) – u(y)|2
|x – y|N+2α

dx dy < +∞
}

,

and the corresponding norm is

‖u‖0 =
[∫∫

RN ×RN

CN ,α

2
|u(x) – u(y)|2
|x – y|N+2α

dx dy +
∫

RN
|u|2 dx

] 1
2

.

Furthermore, Hα(RN ) can also be represented as

Hα
(
R

N)
=

{
u ∈ L2(

R
N)

: (–�)
α
2 u ∈ L2(

R
N)}

,

with the norm of the form

‖u‖0 =
[∫

RN

∣∣(–�)
α
2 u

∣∣2 + |u|2 dx
] 1

2
.

Next we define the energy functional associated with problem (1.1), namely

Jε(u) =
1
2

∫

RN

[∣∣(–�)
α
2 u

∣∣2 + V (x)|u|2]dx

–
∫∫

RN ×RN

M(εx)G(u(x))M(εy)G(u(y))
|x – y|μ dx dy

=
1
2
((

(–�)α + V (x)
)
u, u

)
2 –

∫∫

RN ×RN

M(εx)G(u(x))M(εy)G(u(y))
|x – y|μ dx dy.

(2.1)

It is well known that the potential V is bounded inR
N due to the continuity of V . LetL :=

(–�)α + V . From (V ), we know that L is self-adjoint and has a purely continuous spectrum
which is bounded below and consists of closed disjoint intervals, see [11, Theorem 1.1].
Furthermore, by (V ) again, we get the following orthogonal decomposition:

L2 := L2(
R

N)
= L– ⊕ L+, u = u+ + u–,

in this case, L is positive definite (resp. negative definite) in L+ (resp. L–). Let |L| denote
the absolute value of L, and let |L| 1

2 represent the square root of L. We define the working
space E = D(|L| 1

2 ). Then E is a Hilbert space, with the inner product of the following form:

(u, v) =
(|L| 1

2 u, |L| 1
2 v

)
2 =

∫

RN
|L| 1

2 u|L| 1
2 v dx,

and the corresponding norm is ‖u‖ = (u, u) 1
2 . Obviously, from (V ), the two norms ‖ · ‖ and

‖ · ‖0 are equivalent. Therefore, E = Hα(RN ). Furthermore, by the decomposition of L2, we
have

E = E– ⊕ E+, where E± = E ∩ L±,
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which is orthogonal with respect to the two inner products (·, ·)2 and (·, ·). Moreover, the
polar decomposition of L yields that

Lu– = –|L|u–, Lu+ = |L|u+ for all u = u+ + u– ∈ E.

Define the following bilinear map A(u, v):

A(u, v) =
∫

RN
(–�)

α
2 u(–�)

α
2 v + V (x)uv dx.

For every u ∈ E, from the above decomposition, we obtain that

A(u, u) = A
(
u+, u+)

+ A
(
u–, u–)

and

A
(
u+, u+)

=
(
u+, u+)

, A
(
u–, u–)

= –
(
u–, u–)

.

Therefore, we can rewrite functional (2.1) in the following form:

Jε(u) =
1
2
(∥∥u+∥∥2 –

∥∥u–∥∥2) – �ε(u),

where

�ε(u) =
∫∫

RN ×RN

M(εx)G(u(x))M(εy)G(u(y))
|x – y|μ dx dy.

Moreover, according to the conclusion in [24], we have the following embedding prop-
erty.

Lemma 2.1 Let α ∈ (0, 1) and N > 2α. Then there is a constant ĉ = ĉ(α, N) > 0 such that

‖u‖2
2∗
α (RN ) ≤ ĉ–1[u]2

Dα,2 , ∀u ∈ E,

where 2∗
α = 2N/(N – 2α). The embedding E ↪→ Lp(RN ) is continuous for all p ∈ [2, 2∗

α] and
E ↪→ Lp

loc(RN ) is compact for all p ∈ [2, 2∗
α).

We also get the following Lion’s compactness lemma from the monograph [24].

Lemma 2.2 Suppose that the sequence {un} is bounded in E, and for every r > 0 there holds

lim
n→∞ sup

y∈RN

∫

Br (y)
|un|2 dx = 0,

then un → 0 in Lq(RN ) for all q ∈ (2, 2∗
α).

Since we will treat the nonlocal problem (1.1) with Choquard term, the classical Hardy–
Littlewood–Sobolev inequality [22] will be frequently used throughout this paper. Hence
we present the following Hardy–Littlewood–Sobolev inequality.
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Lemma 2.3 (Hardy–Littlewood–Sobolev inequality [22]) Let 1 < r, t < +∞ and 0 < μ < N
be such that 1

r + 1
t + μ

N = 2. If φ ∈ Lr(RN ) and ψ ∈ Lt(RN ), then there exists a sharp constant
C(N ,μ, r, t) > 0, independent of φ and ψ , such that

∫∫

RN ×RN

φ(x)ψ(y)
|x – y|μ dx dy ≤ C(N ,μ, r, t)‖φ‖r‖ψ‖t .

From (g1) and (g2), we can deduce that for any ε > 0, there exists Cε > 0 such that

∣∣g(u)
∣∣ ≤ ε|u| + Cε |u|q–1 and

∣∣G(u)
∣∣ ≤ ε

2
|u|2 +

Cε

q
|u|q. (2.2)

Accordingly, we use (2.2), as well as Lemmas 2.1 and 2.3, to obtain the following estimate:

∫∫

RN ×RN

G(u(x))G(u(y))
|x – y|μ dx dy ≤ C(N ,μ, r, t)

∥∥G(u)
∥∥

r

∥∥G(u)
∥∥

t

≤ c1

[∫

RN

(
ε|u|2 + cε |u|q)dx

] 2
r

≤ ε‖u‖4
2r + c2‖u‖2q

qr .

(2.3)

Since 2 < q < 2N–2μ

N–2α
< 2N–μ

N–2α
, we obtain rq ∈ (2, 2∗

α) and 2r ∈ (2, 2∗
α). According to Lemma 2.1,

we obtain
∫∫

RN ×RN

G(u(x))G(u(y))
|x – y|μ dx dy ≤ ε‖u‖4 + c3‖u‖2q. (2.4)

Therefore, we get the following relation:

∫∫

RN ×RN

M(εx)G(u(x))M(εy)G(u(y))
|x – y|μ dx dy

≤ M(0)2
∫∫

RN ×RN

G(u(x))G(u(y))
|x – y|μ dx dy (2.5)

≤ ε‖u‖4 + c4‖u‖2q.

Based on the above discussion, it is easy to see that Jε ∈ C1(E,R), and the critical points
of the functional Jε are weak solutions of problem (1.1). Then, for each u, v ∈ E, we have

〈
J ′

ε (u), v
〉
=

∫

RN
(–�)

α
2 u(–�)

α
2 v dx +

∫

RN
V (x)uv dx –

〈
� ′

ε(u), v
〉
,

where

〈
� ′

ε(u), v
〉
=

∫∫

RN ×RN

M(εy)G(u)
|x – y|μ M(εx)g(u)v dx dy.

Using Lemmas 2.1 and 2.3, and combining some standard arguments, we can check the
following lemma.

Lemma 2.4 The functional �ε is weakly sequentially lower semicontinuous and � ′
ε is

weakly sequentially continuous.
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3 The autonomous problem
We will use the limit problem to prove the main results, and next we introduce some
important results for the autonomous problem. For any π > 0, in this section we consider
the following autonomous problem:

(–�)αu + V (x)u = π2
[∫

RN

G(u)
|x – y|μ dy

]
g(u), x ∈R

N , (3.1)

where V satisfies the condition in (V ). Meanwhile, we define the corresponding functional
as follows:

Jπ (u) =
1
2
(∥∥u+∥∥2 –

∥∥u–∥∥2) –
π2

2

∫∫

RN ×RN

G(u(x))G(u(y))
|x – y|μ dx dy.

Similar to the discussion in Sect. 2, we conclude that Jπ ∈ C1(E,RN ), and the critical
points of functional Jπ correspond to the weak solutions of the problem (3.1).

In order to establish the existence of ground state solutions for the problem (3.1),
we will apply the generalized Nehari manifold method developed by Szulkin and Weth
[33]. In the following we introduce the generalized Nehari–Pankov manifold Nπ of the
form

Nπ =
{

u ∈ E\E– :
〈
J ′

π (u), u
〉

= 0 and
〈
J ′

π (u), v
〉

= 0,∀v ∈ E–}
,

and set the ground state energy dπ of functional Jπ on Nπ as follows:

dπ = inf
u∈Nπ

Jπ (u).

Furthermore, for every u ∈ E\E–, we also define the subspace

E(u) = E– ⊕Ru = E– ⊕Ru+,

and the convex subset

Ê(u) = E– ⊕ [0, +∞)u = E– ⊕ [0, +∞)u+.

Lemma 3.1 Let u ∈ Nπ , then for each v ∈X := {su + w : s ≥ –1, w ∈ E–} and v �= 0, we have

Jπ (u + v) < Jπ (u).

Furthermore, u is a unique global maximum of Jπ |̂E(u).

Proof We apply the arguments in the proof of [33, Proposition 2.3] to prove this lemma.
First, we notice that for each u ∈ Nπ , we have

0 =
〈
J ′

π (u),ϕ
〉

= A(u,ϕ) – π2
∫∫

RN ×RN

G(u)
|x – y|μ g(u)ϕ dx dy for all ϕ ∈ E(u).
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Let v = su + w ∈X , then u + v = (1 + s)u + w ∈ Ê(u). Computing directly, we have

Jπ (u + v) – Jπ (u)

=
1
2
[
A(u + v, u + v) – A(u, u)

]

+
π2

2

[∫∫

RN ×RN

G(u)G(u)
|x – y|μ dx dy –

∫∫

RN ×RN

G(u + v)G(u + v)
|x – y|μ dx dy

]

= –
‖w‖2

2
+ A

(
u, s

(
s
2

+ 1
)

u + (1 + s)w
)

+
π2

2

[∫∫

RN ×RN

G(u)G(u)
|x – y|μ dx dy –

∫∫

RN ×RN

G(u + v)G(u + v)
|x – y|μ dx dy

]

= –
‖w‖2

2
+ π2

∫

RN

[(∫

RN

G(u(y))
|x – y|μ dy

)
g
(
u(x)

)(
s
(

s
2

+ 1
)

u + (1 + s)w
)

+
1
2

(∫

RN

G(u)
|x – y|μ dyG(u)

)
–

1
2

(∫

RN

G(u + v)
|x – y|μ dy

)
G(u + v)

]
dx

= –
‖w‖2

2
+ π2

∫

RN
ĝ(s, u, v) dx,

where

ĝ(s, u, v) =
(∫

RN

G(u)
|x – y|μ dy

)
g(u)

(
s
(

s
2

+ 1
)

u + (1 + s)w
)

+
1
2

(∫

RN

G(u)
|x – y|μ dy

)
G(u) –

1
2

(∫

RN

G(u + v)
|x – y|μ dy

)
G(u + v).

According to the argument in [33, Lemma 2.2], we conclude that ĝ(s, u, v) < 0, and then we
can obtain that Jπ (u + v) < Jπ (u). Hence, u is a unique global maximum of Jπ |̂E(u). �

Lemma 3.2 If � ⊂ E+ \ {0} is a compact subset, then there exists R > 0 such that Jπ < 0 on
E(u) \ BR(0) for each u ∈ �.

Lemma 3.3 We have the following conclusions:
(i) there exists κ > 0 such that dπ ≥ infSκ Jπ > 0, where Sκ := {u ∈ E+ : ‖u‖ = κ};

(ii) for each u ∈ Nπ , ‖u+‖ ≥ max{‖u–‖,
√

2dπ } > 0.

Proof (i) For each u ∈ E+, it follows that

Jπ (u) =
1
2
‖u‖2 –

π2

2

∫∫

RN ×RN

G(u(x))G(u(y))
|x – y|μ dx dy.

Observe that

∫∫

RN ×RN

G(u(x))G(u(y))
|x – y|μ dx dy = o

(‖u‖2) as u → 0.

Hence, we find that there exists a small constant κ such that infSκ Jπ > 0 when ‖u‖ = κ .
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On the other hand, for each u ∈ Nπ , there is s > 0 such that s‖u‖ = κ , and then su ∈
Ê(u)∩Sκ . It is easy to check thatJπ (u) = maxv∈Ê(u) Jπ (v) ≥ Jπ (su) according to Lemma 3.1,
so infNπ Jπ ≥ infSκ Jπ > 0.

(ii) Let u ∈ Nπ , it is easy to see that

0 < dπ ≤ 1
2
∥∥u+∥∥2 –

1
2
∥∥u–∥∥2 –

π2

2

∫∫

RN ×RN

G(u(x))G(u(y))
|x – y|μ dx dy

≤ 1
2
∥∥u+∥∥2 –

1
2
∥∥u–∥∥2,

therefore, ‖u+‖ ≥ max{‖u–‖,
√

2dπ } > 0, finishing the proof. �

Following the idea of the proof of [33, Lemma 2.6], we can establish the uniqueness of a
maximum point of Jπ restricted to Ê(u) without proof.

Lemma 3.4 For any u ∈ E\E–, the set Nπ ∩ Ê(u) has a unique element m̂π (u), which is the
global maximum of Jπ |̂E(u).

Moreover, employing Lemmas 3.1 and 3.4, we have the following consequence.

Lemma 3.5 For any u ∈ E\E–, there exists a unique pair (t,ϕ) with t ∈ (0, +∞) and ϕ ∈ E–

such that tu + ϕ ∈ Nπ ∩ Ê(u) and

Jπ (tu + ϕ) = max
w∈Ê(u)

Jπ (w).

Lemma 3.6 The functional Jπ is coercive on Nπ for each π > 0, that is, Jπ (u) → +∞ as
‖u‖ → +∞.

Proof Arguing by contradiction, we may assume that there exists a sequence {un} ⊂
Nπ such that Jπ (un) ≤ C for some C > 0 as ‖un‖ → +∞. Set wn := un

‖un‖ , then using
Lemma 3.3(ii), we obtain ‖u+

n‖ ≥ ‖u–
n‖, ‖w+

n‖2 ≥ ‖w–
n‖2, and ‖w+

n‖2 ≥ 1
2 . In the following

we show that there exist a sequence {yn} ⊂ Z
N , R > 0, and δ > 0 such that

∫

BR(yn)

∣∣w+
n
∣∣2 dx ≥ δ. (3.2)

If this is not true, Lemma 2.2 yields that w+
n → 0 in Lq(RN ) for q ∈ (2, 2∗

α). From Lemmas 2.1
and 2.3, for each θ > 0, we obtain

∫∫

RN ×RN

G(θw+
n)G(θw+

n)
|x – y|μ dx dy ≤ εθ4∥∥w+

n
∥∥4

2r + Cθ2q∥∥w+
n
∥∥2q

qr → 0.

Hence, we derive from the above fact that

C ≥ Jπ

(
θw+

n
)

=
1
2
θ2∥∥w+

n
∥∥2 –

π2

2

∫∫

RN ×RN

g(θw+
n)G(θw+

n)
|x – y|μ dx dy

≥ θ2

4
–

π2

2

∫∫

RN ×RN

G(θw+
n)G(θw+

n)
|x – y|μ dx dy → θ2

4
,

which is impossible since θ is arbitrary. Therefore, we get that (3.2) holds.
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We define ũn(x) := un(x + yn), and then w̃n(x) := wn(x + yn). So, we infer from (3.2) that
w̃+

n ⇀ w̃+ �= 0. Note that ũn(x) = w̃n(x)‖ũn‖, thus ũn(x) → +∞ a.e. in R
N as ‖ũn‖ = ‖un‖ →

+∞. Taking advantage of Fatou’s lemma, we get

1
‖un‖2

∫∫

RN ×RN

G(un)G(un)
|x – y|μ dx dy

=
1

‖un‖2

∫∫

RN ×RN

G(un)G(un)
|x – y|μ dx dy

=
∫∫

RN ×RN

G(un)
|x – y|μ

G(un)
‖un‖2 dx dy =

∫∫

RN ×RN

G(ũn)
|x – y|μ

G(ũn)
|ũn|2 |w̃n|2 dx dy

≥
∫

[ũn �=0]

[∫

RN

G(ũn)
|x – y|μ dy

]
G(ũn)
|ũn|2 |w̃n|2 dx → +∞,

where [ũn �= 0] denotes the usual Lebesgue measure of the set {x ∈ R
N : ũn(x) �= 0}. Thus,

we have

0 ≤ Jπ (un)
‖un‖2 =

1
2
∥∥w+

n
∥∥2 –

1
2
∥∥w–

n
∥∥2 –

π2

2‖un‖2

∫∫

RN ×RN

G(un)G(un)
|x – y|μ dx dy

≤ 1
2

–
π2

2‖un‖2

∫∫

RN ×RN

G(un)G(un)
|x – y|μ dx dy → –∞.

So, we obtain a contradiction. The proof is completed. �

In the following, we introduce the method of generalized Nehari manifold developed by
Szulkin and Weth [33]. For this, define the mapping

m̂π : E+\{0} → Nπ and mπ = m̂π |S+ ,

with the inverse of mπ being

m–1
π : Nπ → S+, m–1

π (u) =
u+

‖u+‖ ,

where S+ = {u ∈ E+ : ‖u‖ = 1}. From now on, let us consider the reduction functional Îπ :
E+\{0} →R and the restriction Iπ : S+ →R given by

Îπ (u) = Jπ

(
m̂π (u)

)
and Iπ = Îπ |S+ ,

which are continuous by Lemma 2.8 in [33]. The following result establishes some signif-
icant properties involving the reduced functionals Îπ and Iπ , which play a crucial role in
our arguments. And their proofs follow the proofs of [33, Proposition 2.9, Corollary 2.10].

Lemma 3.7 We have the following important results:
(a) Îπ ∈ C1(E+\{0},R) and for u, v ∈ E+ and u �= 0,

〈̂
I ′
π (u), v

〉
=

‖m̂π (u)+‖
‖u‖

〈
J ′

π

(
m̂π (u)

)
, v

〉
.
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(b) Iπ ∈ C1(S+,R) and for each u ∈ S+ and v ∈ Tu(S+) = {w ∈ E+ : (u, w) = 0},

〈
I ′
π (u), v

〉
=

∥∥m̂π (u)+∥∥〈
J ′

π

(
m̂π (u)

)
, v

〉
.

(c) {un} is a (PS)-sequence for Iπ if and only if {m̂π (un)} is a (PS)-sequence for Jπ .
(d) u ∈ S+ is a critical point of Iπ if and only if m̂π (u) ∈ Nπ is a critical point of Jπ .

Moreover, the corresponding values of Iπ and Jπ coincide and

inf
S+

Iπ = inf
Nπ

Jπ = dπ .

Furthermore, in view of Lemma 3.5, the ground state energy value dπ has a minimax
characterization given by

dπ = inf
Nπ

Jπ = inf
u∈E+\{0}

max
v∈Ê(u)

Jπ (v). (3.3)

The existence result of ground state solutions of problem (3.1) is the following:

Lemma 3.8 Assume that (V ) and (g1)–(g4) hold. Then problem (3.1) has at least one
ground state solution.

Proof We note that Lemma 3.3 shows that dπ > 0. If u ∈ Nπ with Jπ (u) = dπ , it is easy to
see that m–1

π (u) ∈ S+ is a minimizer of functional Iπ , and hence it is a critical point of Iπ .
Then, u is a critical point of the functionalJπ according to Lemma 3.7. In the following, we
want to prove that there exists a minimizer ũ ∈ Nπ such that Jπ (ũ) = dπ . Indeed, applying
Ekeland’s variational principle, there exists a sequence {vn} ⊂ S+ such that Iπ (vn) → dπ

and I ′
π (vn) → 0 as n → ∞. Set un = m̂π (vn) ∈ Nπ for all n ∈ N, then from Lemma 3.7 we

can infer that Jπ (un) → dπ and J ′
π (un) → 0. Moreover, Lemma 3.6 shows that {un} is

bounded. Next we claim that

lim
n→∞

sup
y∈RN

∫

B1(y)
|un|2 dx > 0.

If not, Lemma 2.2 yields that un → 0 in Lq(RN ) for any q ∈ (2, 2∗
α). Hence, according to

Lemma 2.3, we deduce that
∫∫

RN ×RN

G(un)
|x – y|μ

[
g(un)un – G(un)

]
dx dy = on(1),

and we also have

dπ + on(1) = Jπ (un) –
1
2
〈
J ′

π (un), un
〉

=
π2

2

∫∫

RN ×RN

G(un)
|x – y|μ

[
g(un)un – G(un)

]
dx dy

= on(1).

Evidently, this is impossible since dπ > 0. Thus, there exist {yn} ⊂ Z
N and δ > 0 such that

∫

B1+
√

N (yn)
|un|2 dx ≥ δ.
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We define ũn(x) = un(x + yn), then it follows that

∫

B1+
√

N (0)
|ũn|2 dx ≥ δ. (3.4)

According to the periodicity condition, we can conclude that ‖ũn‖ = ‖un‖ and

Jπ (ũn) → dπ and J ′
π (ũn) → 0. (3.5)

Passing to a subsequence, we get that ũn ⇀ ũ in E, ũn → ũ in Lq
loc(RN ) for q ∈ (2, 2∗

α),
and ũn(x) → ũ(x) a.e. on R

N . Hence, combining (3.4) with (3.5), we know that ũ �= 0 and
J ′

π (ũ) = 0, which implies that ũ ∈ Nπ and Jπ (ũ) ≥ dπ .
On the other hand, it follows from (g4) and Fatou’s lemma that

dπ = lim
n→∞

[
Jπ (ũn) –

1
2
〈
J ′

π (ũn), ũn
〉]

= lim
n→∞

π2

2

∫∫

RN ×RN

G(ũn)
|x – y|μ

[
g(ũn)ũn – G(ũn)

]
dx dy

≥ π2

2

∫∫

RN ×RN

G(ũ)
|x – y|μ

[
g(ũ)ũ – G(ũ)

]
dx dy

= Jπ (ũ) –
1
2
〈
J ′

π (ũ), ũ
〉

= Jπ (ũ),

which shows that Jπ (ũ) ≤ dπ . Thus, Jπ (ũ) = dπ and ũ is a critical point of Jπ , which
implies that ũ is a ground state solution of problem (3.1), completing the proof of the
lemma. �

4 Proof of Theorem 1.1
4.1 Existence of ground state solutions
In the following we will give a proof of the existence of ground state solutions for problem
(1.1). As before, we define the associated generalized Nehari manifold

Nε :=
{

u ∈ E\E– :
〈
J ′

ε (u), u
〉

= 0 and
〈
J ′

ε (u),ϕ
〉

= 0,∀ϕ ∈ E–}

and the ground state energy value

dε = inf
Nε

Jε .

We also define the mapping

m̂ε : E+\{0} → Nε and mε = m̂ε |S+ ,

with the inverse of mε being

m–1
ε : Nε → S+, m–1

ε (u) =
u+

‖u+‖ .
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Then, the reduction functional Îε : E+\{0} →R and the restriction Iε : S+ →R are defined
by

Îε(u) = �ε

(
m̂ε(u)

)
and Iε = Îε |S+ .

Employing the same arguments explored in Sect. 3, we can check that all relevant conclu-
sions in Sect. 3 remain true for Jε , dε , Nε , m̂ε , mε , Îε , and Iε , respectively.

Similar to the proof of Lemma 3.5, we can conclude that for every u ∈ E\E–, there is only
one point in Nε ∩ Ê(u), and then there exists a unique pair t ≥ 0 and ϕ ∈ E– such that

Jε(tu + ϕ) = max
v∈Ê(u)

Jε(v)

and

0 < dε = inf
Nε

Jε = inf
u∈E+\{0}

max
v∈Ê(u)

Jε(v).

Consider the limit problem

(–�)αu + V (x)u = M(0)2
[∫

RN

G(u)
|x – y|μ dy

]
g(u), x ∈ R

N . (4.1)

Moreover, for convenience, we denote J0 = JM(0), d0 = dM(0), and N0 = NM(0).
In the next step we shall establish an important relation between dε and d0.

Lemma 4.1 limε→0 dε = d0.

Proof Let dεn = Jεn (un) be the ground state energy of Jεn for un ∈ E. From Lemma 3.5, we
can deduce that there exists a unique pair (tn,ϕn) with tn ∈ [0, +∞) and ϕn ∈ E– such that
tnu+

n + ϕn ∈ N0 and

J0
(
tnu+

n + ϕn
)

= max
u∈Ê(un)

J0(u).

In view of the definition of d0, we conclude that

d0 ≤ J0
(
tnu+

n + ϕn
)

= Jεn

(
tnu+

n + ϕn
)

+
1
2

∫∫

RN ×RN

M(εny)G(tnu+
n + ϕn)M(εnx)G(tnu+

n + ϕn)
|x – y|μ dx dy

–
1
2

∫∫

RN ×RN

M(0)G(tnu+
n(y) + ϕn(y))M(0)G(tnu+

n + ϕn)
|x – y|μ dx dy

≤ dεn +
1
2

∫

RN ×RN

M(εny)G(tnu+
n + ϕn)M(εnx)G(tnu+

n + ϕn)
|x – y|μ dx dy

–
1
2

∫∫

RN ×RN

M(0)G(tnu+
n + ϕn)M(0)G(tnu+

n + ϕn)
|x – y|μ dx dy.
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Letting εn → 0 as n → ∞, for each n ∈ N we have M(εnx) ≤ M(0), therefore, combining
with the above inequality, we obtain d0 ≤ dεn for any n ∈N.

On the other hand, employing Lemma 3.8, we can conclude that problem (4.1) has a
ground state solution u0. According to Lemma 3.5, we know that there exist tn ∈ [0, +∞)
and ϕn ∈ E– such that tnu+

0 + ϕn ∈ Nεn and

max
u∈Ê(u0)

Jεn (u) = Jεn

(
tnu+

0 + ϕn
) ≥ dεn ≥ d0 > 0, ∀n ∈ N.

Moreover, by Lemma 3.2, the sequence {tnu+
0 + ϕn} is bounded. Thus, we can assume that

tn → t0 and ϕn ⇀ ϕ in E– and

dεn ≤ Jεn

(
tnu+

0 + ϕn
)
.

Therefore, applying Fatou’s lemma, we get

d0 = lim inf
n→∞ dεn ≤ lim sup

n→∞
dεn ≤ lim sup

n→∞
Jεn

(
tnu+

0 + ϕn
)

≤ lim sup
n→∞

[
1
2

t2
n
∥∥u+

0
∥∥2 –

1
2
‖ϕn‖2

–
1
2

∫∫

RN ×RN

M(εny)G(tnu+
0 + ϕn)M(εnx)G(tnu+

0 + ϕn)
|x – y|μ dx dy

]

≤ 1
2

t2
0
∥∥u+

0
∥∥2 –

1
2
‖ϕ‖2

–
M(0)2

2

∫∫

RN ×RN

G(t0u+
0 + ϕ(x))G(t0u+

0 + ϕ)
|x – y|μ dx dy

= J0
(
t0u+

0 + ϕ
) ≤ J0(u0) = d0,

which implies that limε→0 dε = d0, ending the proof. �

From the above discussion, we obtain the conclusion J0(t0u+
0 + ϕ) = J0(u0) = d0, hence

t0u+
0 +ϕ and u0 are elements of N0 ∩ Ê(u0). Applying Lemma 3.5, we can deduce that there

is only one point in N0 ∩ Ê(u0), thus t0u+
0 + ϕ = u0 and tn → t0 = 1, ϕn ⇀ ϕ = u–

0 .

Lemma 4.2 There exists ε0 > 0 such that for any ε ∈ (0, ε0), we have dε < dM∞ .

Proof First, we can obtain that M(0) > M∞ from the assumption (M). So it is easy to see
that dM∞ > d0. Using Lemma 4.1, we find that there is ε0 > 0 such that dε < dM∞ for any
ε ∈ (0, ε0). �

Now we give the existence result of ground state solutions of problem (1.1) as follows.

Lemma 4.3 Assume that (V ), (M), and (g1)–(g4) hold. Then problem (1.1) has a ground
state solution for each ε ∈ (0, ε0).

Proof Following the proof of Lemma 3.8 and using Lemma 3.7, we have to prove that there
exists u ∈ Nε such that Jε(u) = dε . Observe that, by Lemma 3.7, we know that there exists
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{un} ⊂ Nε such that Jε(un) → dε and J ′
ε (un) → 0, moreover, up to a subsequence, we can

assume that un ⇀ u in E. Evidently, J ′
ε (u) = 0.

In the following we show that u �= 0 and Jε(u) = dε . It follows from Lemma 3.3 that

on(1) =
〈
J ′

ε (un), u+
n
〉

=
∥∥u+

n
∥∥2 –

∫∫

RN ×RN

M(εy)G(un(y))
|x – y|μ M(εx)g(un)u+

n dx dy

≥ 2dε –
∫∫

RN ×RN

M(εy)G(un(y))
|x – y|μ M(εx)g(un)u+

n dx dy,

which implies that

∫∫

RN ×RN

M(εy)G(un(y))
|x – y|μ M(εx)g(un)u+

n dx dy ≥ 2dε > 0.

Therefore, there exist a sequence {yn} ⊂ Z
N , R > 0, and δ > 0 such that

∫

BR(yn)

∣∣u+
n
∣∣2 dx ≥ δ, ∀n ∈N. (4.2)

Otherwise, according to Lemma 2.2, we directly get a contradiction.
We claim that the sequence {yn} is bounded in R

N . Arguing by contradiction, we assume
that {yn} is unbounded and |yn| → +∞ as n → ∞. We set wn(x) := un(x + yn), then wn ⇀ w,
and (4.2) implies that w �= 0. For any ψ ∈ C∞

0 (RN ), computing directly, we have

on(1) =
〈
J ′

ε (un),ψ(x – yn)
〉

=
∫

RN

[
(–�)αun(x)ψ(x – yn) + V (x)un(x)ψ(x – yn)

]
dx

–
∫∫

RN ×RN

M(εy)G(un)
|x – y|μ M(εx)g(un)ψ(x – yn) dx dy

=
∫

RN

[
(–�)αwn(x)ψ(x) + V (x)wn(x)ψ(x)

]
dx

–
∫∫

RN ×RN

M(εy + εyn)G(wn(y))
|x – y|μ M(εx + εyn)g(wn)ψ dx dy.

(4.3)

Taking the limit n → +∞, we obtain

∫

RN

[
(–�)αwψ + V (x)wψ

]
dx –

∫∫

RN ×RN

M∞G(w)
|x – y|μ M∞g(w)ψ dx dy

=
〈
J ′

∞(w),ψ
〉

= 0, ∀ψ ∈ C∞
0

(
R

N)
.

From the density of C∞
0 (RN ) in E, we derive that

∫

RN

[
(–�)αwφ + V (x)wφ

]
dx –

∫∫

RN ×RN

M∞G(w)
|x – y|μ M∞g(w)φ dx dy

=
〈
J ′

∞(w),φ
〉

= 0, ∀φ ∈ E,
(4.4)
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which implies that w is a nontrivial solution of problem (3.1) with π = M∞ and w ∈ NM∞ .
It follows from Fatou’s lemma that

dM∞ ≤ JM∞ (w) = JM∞ (w) –
1
2
〈
J ′

M∞ (w), w
〉

=
1
2

∫∫

RN ×RN

M∞G(w)
|x – y|μ M∞

[
g(w)w – G(w)

]
dx dy

≤ lim inf
n→∞

1
2

∫∫

RN ×RN

Mn(εny)G(wn)
|x – y|μ Mn(εnx)

[
g(wn)wn – G(wn)

]
dx dy

= lim inf
n→∞

1
2

∫∫

RN ×RN

M(εy)G(un)
|x – y|μ M(εx)

[
g(un)un – G(un)

]
dx dy

= lim inf
n→∞

[
Jε(un) –

1
2
〈
J ′

ε (un), un
〉]

= dε ,

where Mn(εnx) = M(εnx + εnyn) and Mn(εny) = M(εny + εnyn). Thus we deduce that dM∞ ≤
dε for all ε > 0. However, according to Lemma 4.2, we know that dε < dM∞ for ε < ε0, a
contradiction. Thus, {yn} is bounded, and then there is R0 > 0 such that B1+

√
N (yn) ⊂ BR0 (0)

for all n ∈N, so we have

∫

BR0 (0)
|un|2 dx ≥

∫

B1+
√

N (yn)
|un|2 dx ≥ δ,

which shows that un ⇀ u in E and u �= 0. By repeating the arguments leading to (4.3) and
(4.4), we know that u ∈ Nε is a nontrivial solution for problem (1.1), thus, dε ≤ Jε(u).

On the other hand, on account of Fatou’s lemma, we conclude that

dε = lim inf
n→∞

[
Jε(un) –

1
2
〈
J ′

ε (un), un
〉]

= lim inf
n→∞

1
2

∫∫

RN ×RN

M(εy)G(un)
|x – y|μ M(εx)

[
g(un)un – G(un)

]
dx dy

≥ 1
2

∫∫

RN ×RN

M(εy)G(u)
|x – y|μ M(εx)

[
g(u)u – G(u)

]
dx dy

= Jε(u) –
1
2
〈
J ′

ε (u), u
〉

= Jε(u).

Consequently, dε = Jε(u), which implies that u is a ground state solution of problem (1.1),
ending the proof. �

4.2 Concentration of ground state solutions
We now shall prove the concentration of the maximum points of the ground state solution
uε obtained in Lemma 4.3. Furthermore, the completed proof of Theorem 1.1 will also be
given. Our aim is to show that if xε is a maximum point of |uε |, then

lim
ε→0

M(εxε) = M(0).
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In other words, we have to show that if εn → 0, then, for some subsequence, εnxεn → z for
some z ∈ M , where

M =
{

x ∈R
N : M(x) = M(0)

}

is the set of the maximum points of M(x).
Let {εn} ⊂ (0, ε0) with εn → 0 as n → ∞, and we denote un := uεn . Then we get the

following relation:

J ′
εn (un) = 0 and Jεn (un) = dεn .

Using a standard argument, we can deduce that {un} is bounded.

Lemma 4.4 There exist {yn} ⊂ Z
N and constants R > 0, δ > 0 such that

∫

BR(yn)

∣∣u+
n
∣∣2 dx ≥ δ.

Proof If it is not true, then, using Lemma 2.2, we get u+
n → 0 in Lq(RN ) for q ∈ (2, 2∗

α). Fur-
thermore, from (2.3), Lemma 2.1, and Hardy–Littlewood–Sobolev inequality, we obtain

0 ≤
∫∫

RN ×RN

M(εny)G(un)
|x – y|μ M(εnx)g(un)u+

n dx dy

≤ M(0)2
∫∫

RN ×RN

G(un)
|x – y|μ g(un)u+

n dx dy

→ 0.

This, together with the fact that un ∈ Nεn , leads to ‖u+
n‖ → 0. Evidently, this is a contra-

diction since ‖u+
n‖ ≥ √

2d0 > 0, finishing the proof. �

Lemma 4.5 The sequence {εnyn} is bounded in R
N and limn→∞ εnyn = z ∈ M .

Proof Set vn(x) := un(x + yn), then, up to a subsequence, we have vn ⇀ v with v �= 0. In the
following, we show that the sequence {εnyn} is bounded in R

N . Otherwise, we suppose
that |εnyn| → ∞ as n → ∞. Observe that un is the ground state solution of problem (1.1),
and then we obtain the following fact:

(–�)αvn + V (x)vn =
[∫

RN

Mn(εny)G(vn)
|x – y|μ dy

]
Mn(εnx)g(vn), x ∈ R

N , (4.5)

where Mn(εnx) = M(εnx + εnyn), and we also have the energy relation

Ẽ(vn) =
1
2
(∥∥v+

n
∥∥2 –

∥∥v–
n
∥∥2) –

1
2

∫∫

RN ×RN

Mn(εnx)G(vn)Mn(εny)G(vn)
|x – y|μ dx dy

= Jεn (un)

=
1
2

∫∫

RN ×RN

M(εny)G(un)
|x – y|μ M(εny)

[
g(un)un – G(un)

]
dx dy

= dεn .
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Moreover, since Mn(εnx) → M∞, due to the fact vn ⇀ v, for any φ ∈ C∞
0 (RN ), we can

deduce that
∫

RN

[
(–�)αvφ + V (x)vφ

]
dx –

∫∫

RN ×RN

M∞G(v)
|x – y|μ M∞g(v)φ dx dy = 0.

So we can see that v ∈ NM∞ which is a nontrivial solution of problem (1.1) with π = M∞.
According to Fatou’s lemma and Lemma 4.1, we obtain

dM∞ ≤ JM∞ (v) = JM∞ (v) –
1
2
〈
J ′

M∞ (v), v
〉

=
1
2

M(0)2
∫∫

RN ×RN

G(v(y))
|x – y|μ

[
g(v)v – G(v)

]
dx dy

≤ lim inf
n→∞

1
2

∫∫

RN ×RN

Mn(εny)G(vn(y))
|x – y|μ Mn(εnx)

[
g(vn)vn – G(vn)

]
dx dy

≤ lim inf
n→∞

1
2

∫∫

RN ×RN

M(εny)G(un(y))
|x – y|μ M(εnx)

[
g(un)un – G(un)

]
dx dy

= lim inf
n→∞

[
Jεn (un) –

1
2
〈
J ′

εn (un), un
〉]

= lim inf
n→∞ Jεn (un) = lim

n→∞ dεn = d0,

(4.6)

while d0 < dM∞ from Lemma 4.2. So, we get a contradiction. Thus {εnyn} is bounded, and,
passing to a subsequence, we may assume that εnyn → z. Similar to the above discussion,
for any ψ ∈ E, one has

∫

RN

[
(–�)αvψ + V (x)vψ

]
dx –

∫∫

RN ×RN

M(z)G(v)
|x – y|μ M(z)g(v)ψ dx dy = 0.

Evidently, we know that v ∈ NM(z) and it is a ground state solution of the problem

(–�)αv + V (x)v =
[∫

RN

M(z)G(v(y))
|x – y|μ dy

]
M(z)g(v), x ∈ R

N . (4.7)

Similarly, we can show that dM(z) ≤ d0 according to the above argument. Using assumption
(M), we know that M(z) = M(0). Hence, we get that

lim
n→∞ εnyn = z and z ∈ M ,

completing the proof. �

Lemma 4.6 The sequence {vn} converges strongly to v in E, and there exists C > 0 such that
‖vn‖∞ ≤ C for all n ∈ N, and vn(x) → 0 as |x| → ∞ uniformly in n.

Proof First, following the arguments used in [42], we can derive that vn → v in E. More-
over, Lemma 4.5 shows that vn satisfies the following equation:

(–�)αvn + V (x)vn =
[∫

RN

Mn(εny)G(vn)
|x – y|μ dy

]
Mn(εnx)g(vn), x ∈ R

N .
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Next we need to claim that there exists C > 0 such that
∣∣∣∣
[∫

RN

Mn(εny)G(vn)
|x – y|μ dy

]
Mn(εnx)

∣∣∣∣ ≤ C. (4.8)

Employing Hardy–Littlewood–Sobolev inequality, we observe that for any γ > N/μ, if w ∈
L

Nγ
(N–μ)γ +N , then

∥∥∥∥
1

|x|μ ∗ w
∥∥∥∥

γ

≤ C(N ,μ,γ )‖w‖ Nγ
(N–μ)γ +N

.

Hence, together with Lemma 2.1, for any γ > N/μ, we deduce that

∥∥∥∥
∫

RN

G(vn)
|x – y|μ dy

∥∥∥∥
γ

≤ C‖vn‖ Nγ
(N–μ)γ +N

≤ c5.

Letting γ → +∞, due to the boundedness of M, we can see that (4.8) holds.
For any L > 0 and β > 1, let

vL,n =

⎧⎨
⎩

vn, vn(x) ≤ L,

L, vn(x) ≥ L.

We define the function

r(vn) = rL,β (vn) = vnv2(β–1)
L,n ∈ E.

Since r is increasing in (0, +∞), we obtain

(k – l)
[
r(k) – r(l)

] ≥ 0 for any k, l ∈R
+.

Set

P(t) =
|t|2
2

and Q(t) =
∫ t

0

(
r′(τ )

) 1
2 dτ .

For each k, l ∈ R, without loss of generality, we may assume that k > l, and then Jensen
inequality yields that

P′(k – l)
[
r(k) – r(l)

]
= (k – l)

[
r(k) – r(l)

]
= (k – l)

∫ k

l
r′(t) dt

= (k – l)
∫ k

l

(
Q′(t)

)2 dt ≥
[∫ k

l
Q′(t) dt

]2

.

Similarly, we can conclude that the above inequality is also true for the case k ≤ l. There-
fore

P′(k – l)
[
r(k) – r(l)

] ≥ ∣∣Q(k) – Q(l)
∣∣2 for any k, l ∈ R. (4.9)
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Using (4.9), we derive

∣∣Q(
vn(x)

)
– Q

(
vn(y)

)∣∣2 ≤ (
vn(x) – vn(y)

)[(
vnv2(β–1)

L,n
)
(x) –

(
vnv2(β–1)

L,n
)
(y)

]
. (4.10)

Combining with (4.5) and (4.10), and taking r(vn) = vnv2(β–1)
L,n , we can conclude that

[
Q(vn)

]2
Dα,2 +

∫

RN
V (x)|vn|2v2(β–1)

L,n dx

≤
∫∫

RN ×RN

(vn(x) – vn(y))
|x – y|N+2α

[(
vnv2(β–1)

L,n
)
(x) –

(
vnv2(β–1)

L,n
)
(y)

]
dx dy

+
∫

RN
V (x)|vn|2v2(β–1)

L,n dx

=
∫∫

RN ×RN

Mn(εny)G(vn)
|x – y|μ Mn(εnx)g(vn)vnv2(β–1)

L,n dx dy.

Since

L(vn) ≥ 1
β

vnv(β–1)
L,n ,

in view of Lemma 2.1, we get

[
Q(vn)

]2
Dα,2 ≥ c6

∥∥Q(vn)
∥∥2

2∗
α

≥
(

1
β

)2

c7
∥∥vnv(β–1)

L,n
∥∥2

2∗
α
. (4.11)

On the other hand, using (2.3) and (4.8), it follows that

∥∥vnv(β–1)
L,n

∥∥2
2∗
α

≤ c8β
2
∫

RN
|vn|qv2(β–1)

L,n dx.

Letting wL,n := vnv(β–1)
L,n , on account of Hölder inequality, we infer that

‖wL,n‖2
2∗
α

≤ c9β
2
(∫

RN
|vn|2∗

α dx
) q–2

2∗
α

(∫

RN
|wL,n|σ∗

α dx
) 2

σ∗
α ,

where σ ∗
α := 22∗

α

2∗
α–(q–2) ∈ (2, 2∗

α). Moreover, from the boundedness of vn we derive

‖wL,n‖2
2∗
α

≤ c10β
2‖wL,n‖2

σ∗
α

. (4.12)

Observe that if vβ
n ∈ Lσ∗

α (RN ), using (4.12) and the fact that vL,n ≤ vn, we obtain

‖wL,n‖2
2∗
α

≤ c11β
2
(∫

RN
|vn|βσ∗

α dx
) 2

σ∗
α < ∞. (4.13)

Letting L → +∞ and taking the limit in (4.13), by Fatou’s lemma, we have

‖vn‖β2∗
α

≤ c
1
β

12β
1
β ‖vn‖βσ∗

α
, (4.14)

whenever vβσ∗
α

n ∈ L1(RN ).
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We set β := 2∗
α

σ∗
α

> 1 and note that vn ∈ L2∗
α (RN ), so the above inequality holds for the case

of β . Then, observing that β2σ ∗
α = β2∗

α , we know that (4.14) holds with β replaced by β2.
Therefore, we obtain

‖vn‖β22∗
α

≤ c
1

β2
13 β

2
β2 ‖vn‖β2σ∗

α
≤ c

( 1
β

+ 1
β2 )

14 β
( 1
β

+ 2
β2 )‖vn‖βσ∗

α
.

Using iteration and recalling that βσ ∗
α := 2∗

α , we can infer that for each m ∈N,

‖vn‖βm2∗
α

≤ c
∑m

i=1
1
βi

15 β

∑m
i=1

i
βi ‖vn‖2∗

α
. (4.15)

Letting m → +∞ and recalling that ‖vn‖2∗
α

≤ K̃ , we have

‖vn‖∞ ≤ cσ1
16β

σ2 K̃ < ∞,

where

σ1 :=
∞∑
i=1

1
β i < ∞ and σ2 :=

∞∑
i=1

i
β i < ∞.

Finally, by using a similar argument as in [3], we can conclude that vn(x) → 0 as |x| → ∞
uniformly in n. This proves the lemma. �

Lemma 4.7 There exists ν > 0 such that ‖vn‖∞ ≥ ν for all n ∈N.

Proof Arguing by contradiction, we assume that ‖vn‖∞ → 0 as n → ∞. Then according
to Lemma 4.6, it is easy to see that v = 0, which implies a contradiction, completing the
proof. �

Now we are in a position to finish the proof of Theorem 1.1.

Proof of Theorem 1.1 (completion) Assume that pn is a global maximum point of |vn(x)|
for each n ∈ N, then

∣∣vn(pn)
∣∣ = max

x∈RN

∣∣vn(x)
∣∣.

Since vn(x) = un(x + yn), we see that sn = pn + yn is a maximum point of |un(x)|. Lemma 4.7
shows that there exists ν > 0 such that

∣∣vn(pn)
∣∣ ≥ ν for all n ∈N,

which implies that the sequence {pn} is bounded. So, we conclude from Lemma 4.5 that

εnsn = εnpn + εnyn → z ∈ M .

Consequently, we have

lim
n→∞ M(εnsn) = M(z), z ∈ M .
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Furthermore, following the proofs of Lemmas 4.5 and 4.6, we know that un(x + sn) con-
verges to a ground state solution v of the following limit equation:

(–�)αv + V (x)v = M(0)2
[∫

RN

G(v)
|x – y|μ dy

]
g(v), x ∈R

N ,

finishing the proof of all conclusions of Theorem 1.1. �
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28. Papageorgiou, N.S., Rădulescu, V.D., Zhang, W.: Global existence and multiplicity for nonlinear Robin eigenvalue

problems. Results Math. 78, 133 (2023)
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