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Abstract
We study the determination of some rigid inclusions immersed in an isotropic elastic
medium from overdetermined boundary data. We propose an accurate approach
based on the topological sensitivity technique and the reciprocity gap concept. We
derive a higher-order asymptotic formula, connecting the known boundary data and
the unknown inclusion parameters. The obtained formula is interesting and useful
tool for developing accurate and robust numerical algorithms in geometric inverse
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1 Introduction
Let � be a regular domain in R

3 occupied by a homogeneous isotropic linear elastic mate-
rials. The elastic displacement vector w in � satisfies the following linear elasticity system:

⎧
⎪⎪⎨

⎪⎪⎩

– divσ (w) = F in �,

w = Ud on �a,

w = 0 on �i,

(1.1)

where
– σ (w) = (σij(w))1≤i,j≤d is the stress tensor,
– F is the gravitational force,
– Ud is a given boundary data measured or imposed on the accessible part �a of the

boundary ∂�,
– �i is a non-accessible part of ∂�, such that ∂� = �a ∪ �i, �a ∩ �i = ∅ and

meas(�a) �= 0.
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The stress tensor is given by the Hooke law:

σij(w) = 2μeij(w) + λδij

d∑

k=1

ekk(w), 1 ≤ i, j ≤ d,

where
– δij is the Kronecker symbol,
– e(w) = (eij(w))1≤i,j≤d is the strain tensor given by

eij(w) =
1
2

(
∂wi

∂xj
+

∂wj

∂xi

)

, 1 ≤ i, j ≤ d,

– μ and λ are the Lamé coefficients given by

μ =
E

2(1 + ν)
and λ =

Eν

(1 + ν)(1 – 2ν)
,

with E is the Young modulus, and ν is the Poisson ratio.
We suppose that the elastic medium � contains a finite number of well-separated rigid
inclusions Ii, i = 1, . . . , m, not close to the boundary ∂�. In this work, we assume that each
inclusion Ii is characterized by its center ξi ∈ �, size ρi > 0, and its shape Ii with Ii ⊂R

3,
which are fixed bounded and smooth domains containing the origin. In other word, the
inclusion Ii can be defined as Ii = ξi + ρiIi, i = 1, . . . , m.

The problem that we consider can be formulated as follows:
• Given two boundaries data on the boundary �a: a measured displacement Ud and an

imposed force g .
• Find the unknown inclusion I =

⋃m
i=1 Ii ⊂⊂ �, such that the displacement field wI in

the presence of inclusion satisfies the following overdetermined elasticity problem [1]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

– divσ (wI) = F in �\I ,

wI = Ud on �a,

σ (wI)n = g on �a,

wI = 0 on �i,

wI = 0 on ∂I ,

(1.2)

where n denotes the outward normal to the boundary �a.
In this formulation, the elastic domain �\I is unknown since the inclusion geometry I is
unknown. It is well known that this kind of problem is ill-posed in the sense of Hadamard
[2]. The majority of investigation focusing on this type of problems fall into the category
of shape optimization and utilize the shape derivation techniques [3, 4].

In this work, we suggest a new formulation for solving the above inverse problem based
on the reciprocity gap concept [5–7] and the topological sensitivity analysis method [8–
15].

More precisely, let Iξ ,ρ = ξ + ρI be an unknown inclusion, strictly embedded inside the
elastic medium �. The reciprocity gap functional is a scalar quantity describing the elastic
material response to an imposed force on the boundary ∂�. Related to the presence of the
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inclusion Iξ ,ρ , this function is defined by

Rξ ,ρ : H1(�) −→R

Rξ ,ρ(u) =
∫

∂�

σ (u)nwρ ds –
∫

∂�

σ (wρ)nu ds,
(1.3)

where wρ is the solution of the elasticity system in the perforated domain �\Iξ ,ρ :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

– divσ (wρ) = F in �\Iξ ,ρ ,

wρ = Ud on �a,

wρ = 0 on �i,

wρ = 0 on ∂Iξ ,ρ .

(1.4)

In the absence of any inclusions, the reciprocity gap functional is denoted by R0 and de-
fined by:

R0(u) =
∫

∂�

σ (u)nw0 ds –
∫

∂�

σ (w0)nu ds,

where w0 is the solution to the elasticity problem in the entire domain

⎧
⎪⎪⎨

⎪⎪⎩

– divσ (w0) = F in �,

w0 = Ud on �a,

w0 = 0 on �i.

(1.5)

Our goal is to establish a relation between the boundary data and the unknown parameters
characterizing the inclusion Iξ ,ρ . To this end, we will develop a higher-order asymptotic
formula connecting the known boundary data and the unknown inclusion parameters; the
location ξ , the size ρ , and the shape I [16].

This article is organized as follows: Sect. 2 deals with some technical results. A prelim-
inary estimate describing the variation of the reciprocity gap functional with respect to
the presence of an inclusion I = ξ + ρI inside the domain � is presented in Proposition
2.1. To derive the expected formula, we start our analysis by studying the influence of
the presence of the inclusion on the elastic displacement vector. In Sect. 3, we calculate a
higher-order asymptotic expansion of the perturbed displacement vector wρ with respect
to the inclusion size ρ . In Sect. 4, we derive a boundary asymptotic formula of high order
for the reciprocity gap functional.

2 Preliminary results
We begin this study by the presentation of some technical results.

2.1 Variation of Rξ ,ρ

We consider the subspace

V =
{

u ∈ H1(�); divσ (u) = 0 in �
}

.
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The restriction of the reciprocity gap functional Rξ ,ρ to the subspace V leads to the fol-
lowing estimate.

Proposition 2.1 On V , the variation of R reads

Rξ ,ρ(u) – R0(u) =
∫

∂Iξ ,ρ

σ (wρ – w0)nu ds –
∫

Iξ ,ρ

σ (u) : e(w0) dx. (2.1)

Proof Since divσ (u) = 0 in �\Iξ ,ρ , and wρ = 0 on ∂Iξ ,ρ . By Green’s formula, one can check

∫

�\Iξ ,ρ

σ (u) : e(wρ) dx =
∫

∂�

σ (u)nwρ ds.

The weak variational formulation of (1.4) implies

∫

�\Iξ ,ρ

σ (wρ) : e(u) dx =
∫

∂�

σ (wρ)nu ds +
∫

∂Iξ ,ρ

σ (wρ)nu ds +
∫

�\Iξ ,ρ

Fu.

From the fact
∫

�\Iξ ,ρ
σ (wρ) : e(u) dx =

∫

�\Iξ ,ρ
σ (u) : e(wρ) dx, it follows

Rξ ,ρ(u) =
∫

∂Iξ ,ρ

σ (wρ)nu ds +
∫

�\Iξ ,ρ

Fu dx ∀u ∈ V . (2.2)

Similarly,

∫

�

σ (u) : e(w0) dx =
∫

∂�

σ (u)nw0 ds, ∀u ∈ V ,
∫

�

σ (w0) : e(u) dx =
∫

∂�

σ (w0)nu ds +
∫

�

Fu dx.

Then,

R0(u) =
∫

�

Fu dx, ∀u ∈ V . (2.3)

From (2.2) and (2.3), we deduce

Rξ ,ρ(u) – R0(u) =
∫

∂Iξ ,ρ

σ (wρ)nu ds –
∫

Iξ ,ρ

Fu dx.

Using the fact that – divσ (w0) = F in Iξ ,ρ , one can derive

Rξ ,ρ(u) – R0(u) =
∫

∂Iξ ,ρ

σ (wρ – w0)nu ds –
∫

Iξ ,ρ

σ (w0) : e(u) dx, ∀u ∈ V . �

2.2 Green’s function and related sub-space
Let G be the fundamental solution of the linear elasticity equation in R

3, which is given
by:

G(y) =
1
r
(
βI + γ erer

T)
, (2.4)
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where I is the 3 × 3 identity matrix, r = ‖y‖, er = y/r, er
T is the transposed vector of er , and

β =
λ + 3μ

8πμ(λ + 2μ)
, γ =

λ + μ

8πμ(λ + 2μ)
.

The jth column Gj of G satisfies the equation

– divσ (Gj) = δej in R
3,

with (ej)3
j=1 is the canonical basis of R3, and δ is the Dirac distribution.

To make relation (2.1) more explicit, we consider the following sub-space of V , defined
by the restriction of the functions Gj

η(x) = Gj(x – η),η ∈ R
3\� to the domain �:

V j =
{

x �→ Gj(x – η)|�,η ∈R
3\�}

.

For each 1 ≤ j ≤ 3, we denote by Rj
ξ ,ρ , the reciprocity gap function associated with the

sub-space V j. Identifying each function x �→ Gj(x – η)|� with its parameter η, then Rj
ξ ,ρ

can be represented as:

Rj
ξ ,ρ(η) =

∫

∂�

σ
(
Gj(x – η)

)
nwρ ds(x) –

∫

∂�

σ (wρ)nGj(x – η) ds(x), ∀η ∈R
3\�.

From Proposition 2.1, one can deduce the following corollary.

Corollary 2.2 For each 1 ≤ j ≤ 3, the function Rj
ξ ,ρ verifies

Rj
ξ ,ρ(η) – Rj

0(η)

=
∫

∂Iξ ,ρ

σ (wρ – w0)nGj(x – η) ds –
∫

Iξ ,ρ

σx
(
Gj(x – η)

)
: e(w0) dx, ∀η ∈R

3\�.

Next, we will derive a higher-order asymptotic formula, connecting the known bound-
ary data and the unknown inclusion parameters. The proposed approach is based on a
topological sensitivity analysis for the elasticity operator with respect to the presence of
geometric perturbations. To this end, we need some technical results.

2.3 Technical results
Let ρ > 0, for a function u defined on a given bounded open domain ω ⊂R

3, we define the
function ũ on ω̃ := ω/ρ by:

ũ(y) = u(x), y = x/ρ.

We have the following relations:

|u|1,ω = ρ1/2|ũ|1,ω̃, ‖u‖0,ω = ρ3/2‖ũ‖0,ω̃. (2.5)

Let r > 0 be such that the closed ball B(ξ , r) is included in �, and Iξ ,ρ ⊂ B(ξ , r). We denote
by �r the boundary of B(ξ , r), and we define the domains

�r = �\B(ξ , r), Dξ ,ρ = B(ξ , r)\Iξ ,ρ and �ξ ,ρ = �\Iξ ,ρ .
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Lemma 2.3 Let h ∈ H1/2(∂I)3 and w be the solution to the following elasticity exterior
problem:

⎧
⎪⎪⎨

⎪⎪⎩

– divσ (w) = 0 in R
3 \ I ,

w → 0 at ∞,

w = h on ∂I .

Then, there exists a constant c > 0, independent of h and ρ , such that

‖w‖0,Dξ ,ρ /ρ ≤ cρ–1/2‖h‖1/2,∂I ,

‖w‖0,�r/ρ ≤ cρ–1/2‖h‖1/2,∂I ,

|w|1,Dξ ,ρ /ρ ≤ c‖h‖1/2,∂I ,

|w|1,�r/ρ ≤ cρ1/2‖h‖1/2,∂I .

Lemma 2.4 Let ρ > 0 such that Iξ ,ρ ⊂ B(ξ , r). For a given g ∈ H1/2(�)3, and h ∈
H1(B(ξ , r))3, let uρ be the solution to the elasticity system

⎧
⎪⎪⎨

⎪⎪⎩

– divσ (uρ) = 0 in �ξ ,ρ ,

uρ = g on �,

uρ = h on ∂Iξ ,ρ .

Then, there exists a constant c > 0 (independent of g , h, and ρ), and ρ1 > 0 such that for all
0 < ρ < ρ1, we have:

|uρ |1,�r ≤ c
(‖g‖1/2,� + ρ

∥
∥h(ξ + ρy)

∥
∥

1/2,∂I
)
,

‖uρ‖0,Dξ ,ρ ≤ c
(‖g‖1/2,� + ρ

∥
∥h(ξ + ρy)

∥
∥

1/2,∂I
)
,

|uρ |1,Dξ ,ρ ≤ c
(‖g‖1/2,� + ρ1/2∥∥h(ξ + ρy)

∥
∥

1/2,∂I
)
.

Remark 2.5 For the proofs of Lemma 2.3 and Lemma 2.4, one can consult [14], where
similar results have been proved for the Stokes problem [17]. The well-posedness of the
exterior elasticity problem and the integral representation of its solution are discussed in
[18, 19].

3 Asymptotic expansion
We derive an asymptotic formula for the elastic displacement vector with respect to the
presence of an inclusion Iξ ,ρ inside the domain �.

3.1 First-order estimate
We derive a preliminary estimate describing the influence of the created inclusion Iξ ,ρ on
the displacement field wρ .

Proposition 3.1 Let Iξ ,ρ be an inclusion of size ρ strictly embedded into �. Then, the
perturbed elastic displacement vector wρ satisfies that there exists a constant c > 0, inde-
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pendent of ρ , such that

‖wρ(x) – w0(x) – E0
(
(x – ξ )/ρ

)}H1(�\Iξ ,ρ ) ≤ cρ,

where E0 is the leading term of the displacement field variation wρ – w0, defined as the
solution to the elasticity exterior problem:

⎧
⎪⎪⎨

⎪⎪⎩

– divσ (E0) = 0 in R
3 \ I ,

E0 → 0 at ∞
E0 = –w0(ξ ) on ∂I .

(3.1)

Proof Setting

Zξ ,ρ(x) = wρ(x) – w0(x) – E0
(
(x – ξ )/ρ

)
, ∀x ∈ �\Iξ ,ρ .

From (1.4), (1.5), and (3.1), one can check that zρ satisfies

⎧
⎪⎪⎨

⎪⎪⎩

– divσ (Zξ ,ρ) = 0 in �\Iξ ,ρ ,

Zξ ,ρ = –E0((x – ξ )/ρ) on �,

Zξ ,ρ = –w0 + w0(ξ ) on ∂Iξ ,ρ .

Using Lemma 2.4, one can justify that there exists a constant c > 0, independent of ρ , such
that

|Zξ ,ρ |1,�\Iξ ,ρ
≤ c

{∥
∥E0

(
(x – ξ )/ρ

)∥
∥

1/2,� + ρ1/2∥∥w0(ξ + ρy) – w0(ξ )
∥
∥

1/2,∂I
}

(3.2)

Since divσ (E0((x – ξ )/ρ)) = 0 in �r , by trace theorem [20]

∥
∥E0

(
(x – ξ )/ρ

)∥
∥

1/2,� ≤ ∥
∥E0

(
(x – ξ )/ρ

)∥
∥

1,�r
.

Using the change of variable: x = ξ + ρy, and (2.5):

∥
∥E0

(
(x – ξ )/ρ

)∥
∥

1,�r
≤ ∥

∥E0
(
(x – ξ )/ρ

)∥
∥

0,�r
+

∣
∣E0

(
(x – ξ )/ρ

)∣
∣
1,�r

,

≤ ρ3/2∥∥E0(y)
∥
∥

0,�r/ρ + ρ1/2∣∣E0(y)
∣
∣
1,�r/ρ .

Then, by Lemma 2.3, we obtain:

∥
∥E0

(
(x – ξ )/ρ

)∥
∥

1/2,� ≤ cρ.

Expanding w0(ξ + ρy) = w0(ξ ) + ρ∇w0(xξ ), xξ ∈ Iξ ,ρ , and using the fact that ∇w0 is uni-
formly bounded, the third term in (3.2) may be approximated as:

∥
∥w0(ξ + ρy) – w0(ξ )

∥
∥

1/2,∂I ≤ cρ.

Finally, the combination of the above approximations implies the desired estimate

‖wρ(x) – w0(x) – E0
(
(x – ξ )/ρ

)}H1(�\Iξ ,ρ ) ≤ cρ. �
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Corollary 3.2 The perturbed displacement vector wρ admits the estimate

wρ(x) = w0(x) + E0
(
(x – ξ )/ρ

)
+ O(ρ) in �\Iξ ,ρ

3.2 Higher-order expansion
Here, we will give a generalization of the previous estimate to the higher-order case. The
obtained asymptotic behavior is illustrated by the following theorem.

Theorem 3.3 Let Iξ ,ρ = ξ +ρI be a given inclusion, strictly embedded in the elastic domain
�. Then, the perturbed displacement vector wρ admits the following asymptotic behavior

wρ(x) =
K∑

n=0

ρn[Cn(x) + En
(
(x – ξ )/ρ

)
)
]

+ O
(
ρK+1) in �\Iξ ,ρ , (3.3)

where:
– K ∈N

∗ is an arbitrary chosen integer, denoting the asymptotic order,
– {C0, C1, . . . , CK } are smooth vector functions, representing the corrected terms. Each

vector function Ci satisfies an auxiliary elasticity problem in �,
– {E0, E1, . . . , EK } are smooth functions, solutions to a sequence of exterior elasticity

problems in R
3 \ I .

Proof To construct the terms (Cn)0≤n≤K and (En)0≤n≤K of the expected asymptotic expan-
sion, we use an iterative process: Starting from the fact that C0 = w0 (see (1.5)), and E0 is
the solution to (3.1).

• The terms C1 and E1:
With the help of a single-layer potential on the boundary ∂I , the solution E0 can be

defined as (see [18]):

E0(y) =
∫

∂I
G(y – z)S0(z) ds(z), ∀y ∈R

3 \ I ,

where:
– G is the elasticity fundamental solution, defined in (2.4),
– the function S0 ∈ H–1/2(∂I) is the associated density, defined as the solution to the

following boundary integral equation
∫

∂I
G(y – z)S0(z) ds(z) = –w0(ξ ), ∀y ∈ ∂I .

As one can observe, for each x ∈R
3 \ Iξ ,ρ , we have

E0
(
(x – ξ )/ρ

)
=

∫

∂I
G

(
(x – ξ )/ρ – z

)
S0(z) ds(z),

= ρ

∫

∂I
G

(
(x – ξ ) – ρz

)
S0(z) ds(z).

Since the inclusion Iξ ,ρ is not close to the boundary ∂�, one can check that for all z ∈ ∂I ,
the function

�x–ξ ,z : ρ �→ �x–ξ ,z(ρ) = ρG
(
(x – ξ ) – ρz

)
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is smooth with respect to ρ and admits the following asymptotic expansion

�x–ξ ,z(ρ) =
K∑

m=1

ρm

m!
�

(m)
x–ξ ,z(0) + o

(
ρK)

,

where �
(m)
x–ξ ,z(0) is the mth derivative of �x–ξ ,z at ρ = 0. It depends on the mth derivative

of Green’s function G at the point x – ξ .
Consequently, the function x �→ E0((x–z)/ε) satisfies the following asymptotic behavior:

E0
(
(x – z)/ρ

)
=

K∑

m=1

ρmE(m)
0 (x – ξ ) + o

(
ρK)

, (3.4)

with E(m)
0 is the smooth function defined in R

3 \ I by:

E(m)
0 (x – ξ ) =

1
m!

∫

∂I
�

(m)
x–ξ ,z(0)S0(z) ds(z), ∀x ∈ R

3 \ I . (3.5)

Exploiting the developed asymptotic analysis for the function E0, we choose the terms C1

and E1 as follows:
– C1 depends on E0, defined as the solution to the following auxiliary elasticity problem:

⎧
⎨

⎩

– divσ (C1) = 0 in �,

C1 = –E(1)
0 (x – ξ ) on �,

with E(1)
0 is defined by (3.5), when m = 1.

– E1 depends on C0 and C1. It is chosen as the solution to the following exterior
elasticity problem:

⎧
⎪⎪⎨

⎪⎪⎩

– divσ (E1) = 0 in R
3 \ I ,

E1 → 0 at ∞,

E1 = –C1(ξ ) – DC0(ξ )(y) on ∂I ,

where DC0(z) is the derivative of the function C0 at the point ξ .
• The terms Cn, and En, n ≥ 2:

Assume that we have already obtained the terms {Ci, Ei, for all 1 ≤ i ≤ n – 1}, and we
want to construct the terms Cn and En.

Due to a single-layer potential [18], for each i ∈ {1, 2, . . . , n – 1}, the term Ei can be ex-
pressed as

Ei(y) =
∫

∂I
G(y – z)Si(z) ds(z), ∀y ∈R

3 \ I ,

with Si ∈ H–1/2(∂I) is the corresponding density, defined as the solution to a given bound-
ary integral equation.

Using (3.4), the function x �→ Ei((x – z)/ε) reads

Ei
(
(x – z)/ρ

)
=

K∑

m=1

ρmE(m)
i (x – ξ ) + o

(
ρK)

, (3.6)
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with E(m)
i is given by

E(m)
i (x – ξ ) =

1
m!

∫

∂I
�

(m)
x–ξ ,z(0)Si(z) ds(z), ∀x ∈R

3 \ I . (3.7)

Generalizing the technique that we used for deriving the terms C1 and E1, the terms Cn

and En are obtained as follows:
– The tern Cn is constructed with the help of the terms E0, E1,. . . , and En–1. It is chosen

as the solution to the following auxiliary elasticity problem:

⎧
⎨

⎩

– divσ (Cn) = 0 in �,

Cn = –
∑n

m=1 E(m)
n–m(x – ξ ) on �,

(3.8)

with E(m)
i is given by (3.7).

– The term En is constructed with the help of the corrected terms C0, C1,. . . , and Cn. It
is defined as the solution to the following exterior elasticity problem:

⎧
⎪⎪⎨

⎪⎪⎩

– divσ (En) = 0 in R
3 \ I ,

En → 0 at ∞,

En = –Cn(z) –
∑n

m=1
1

m! D
mCn–m(ξ )(ym) on ∂I .

(3.9)

Here, DmCi(ξ ) denotes the derivation of order m of the function Ci at the point ξ and
ym = (y, . . . , y) ∈ (R3)m.

• Justification of the developed expansion:
The last step of this proof is devoted to justifying that the constructed terms {Ci, Ei, 1 ≤

i ≤ K} gives the expected asymptotic behavior. Posing:

ZK
ξ ,ρ(x) =

K∑

n=0

ρn[Cn(x) + En
(
(x – ξ )/ρ

)
)
]

– wρ(x), x ∈ �\Iξ ,ρ . (3.10)

Our aim is to prove that

ZK
ξ ,ρ(x) = O

(
ρK+1).

From (1.4), (1.5), (3.9), and (3.8), it follows that

– divσ
(
ZK

ξ ,ρ
)

= 0 in �\Iξ ,ρ .

The boundary conditions satisfied by the vector function ZK
ξ ,ρ are defined as follows:

– On the boundary ∂Iξ ,ρ : Exploiting the equations (3.8)-(3.9), the multi-linearity of
DmCn–m(ξ ), Taylor’s Theorem, and the fact that ‖x – ξ‖ = O(ρ) on ∂Iξ ,ρ , one can
establish

ZK
ξ ,ρ(x) =

K∑

n=0

ρn

[

Cn(x) –
K–n∑

m=0

1
m!

DmCn(ξ )
(
(x – ξ )m)

]

= O
(
ρK+1).



Abdelwahed et al. Boundary Value Problems        (2023) 2023:101 Page 11 of 16

– On the boundary �: Making use of the prescribed Dirichlet condition in (3.8), the
system (3.9), and the approximation (3.4), one can derive

ZK
ξ ,ρ(x) = ρK EK

(
(x – ξ )/ρ

)
+

K–1∑

n=0

ρn

[

En
(
(x – ξ )/ρ

)
–

K–n∑

m=1

ρmE(m)
n (x – ξ )

]

= O
(
ρK+1). �

4 Boundary formula for the reciprocity gap functional
This section deals with a boundary asymptotic formula representing the reciprocity gap
functional variation with respect to the perforation of an inclusion Iξ ,ρ inside the elastic
medium �.

It is established in Corollary 2.2 that for all 1 ≤ j ≤ 3,

Rj
ξ ,ρ(η) – Rj

0(η)

=
∫

∂Iξ ,ρ

σ (wρ – w0)nGj(x – η) ds –
∫

Iξ ,ρ

σx
(
Gj(x – η)

)
: e(w0) dx, ∀η ∈R

3\�.

Exploiting the derived higher-order expansion in Theorem 3.3, the variation wρ –w0 reads:

wρ(x) – w0(x) =
K∑

n=0

ρnEn
(
(x – ξ )/ρ

)
) +

K∑

n=1

ρnCn(x) + o
(
ρK)

in �\Iξ ,ρ .

Then, Rj
ξ ,ρ(η) – Rj

0(η) can be rewritten as:

Rj
ξ ,ρ(η) – Rj

0(η) =
K∑

n=0

ρn
∫

∂Iξ ,ρ

σx
(
En

(
(x – ξ )/ρ

))
)nGj(x – η) ds(x)

+
K∑

n=1

ρn
∫

∂Iξ ,ρ

σ (Cn)nGj(x – η) ds

–
∫

Iξ ,ρ

σx
(
Gj(x – η)

)
: e(w0) dx + o

(
ρK)

.

(4.1)

Aiming to derive the expected formula for the reciprocity gap functional Rj
ξ ,ρ , we start

our analysis by estimating the integral terms in (4.1).

4.1 Preliminary calculus
We will establish an estimate for each term in the right-hand side of (4.1). The following
lemma treat the first integral term.

Lemma 4.1 The first term in (4.1) satisfies the expansion:

K∑

n=0

ρn
∫

∂Iξ ,ρ

σx
(
En

(
(x – ξ )/ρ

))
)nGj(x – η) ds(x) =

K–1∑

n=0

ρn+1Y n,j
η,I(ξ ) + o

(
ρK)

,
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where ξ �→ Yn,j
η,I(ξ ), 1 ≤ n ≤ K are defined by:

Yn,j
η,I(ξ ) =

n∑

m=0

1
m!

∫

∂I

[
σy(En–m)(y)n(y)

]
.
[∇ (m)Gj(ξ – η)

(
ym)]

ds(y), ∀ξ ∈ �,

with ∇ (m)Gj(z) is the mth derivation of Gj at the point z.

Proof By the change of variable x = ξ + ρy,

∫

∂Iξ ,ρ

σx
(
En

(
(x – ξ )/ρ

))
)nGj(x – η) ds(x) = ρ

∫

∂I
σy(En)(y)nGj(ξ – η + ρy) ds(y).

Since η ∈R
3\� and Iξ ,ρ ⊂ �, the function y �→ Gj(ξ – η + ρy) is C∞ in the neighborhood

of ξ – η. One can derive:

Gj(ξ – η + ρy) = Gj(ξ – η) +
K–1∑

m=1

ρm

m!
∇ (m)Gj(ξ – η)

(
ym)

+ o
(
ρK)

=
K–1∑

m=0

ρm

m!
∇ (m)Gj(ξ – η)

(
ym)

+ o
(
ρK)

.

It follows:
∫

∂Iξ ,ρ

σx
(
En

(
(x – ξ )/ρ

))
)n(x)Gj(x – η) ds(x)

=
K–2∑

m=0

ρm+1

m!

∫

∂I
σy(En)(y)n(y)

[∇ (m)Gj(ξ – η)
(
ym)]

ds(y) + o
(
ρK)

.

Therefore,

K∑

n=0

ρn
∫

∂Iξ ,ρ

σx
(
En

(
(x – ξ )/ρ

))
)nGj(x – η) ds(x)

=
K–1∑

n=0

ρn+1
n∑

m=0

1
m!

∫

∂I
σy(En–m)(y)n(y)

[∇ (m)Gj(ξ – η)
(
ym)]

ds(y) + o
(
ρK)

. �

Lemma 4.2 The second term in (4.1) verifies the expansion:

K∑

n=1

ρn
∫

∂Iξ ,ρ

σ (Cn)nGj(x – η) ds(x) =
K–3∑

n=0

ρn+3Zn,j
η,I(ξ ) + o

(
ρK)

,

where the leading terms ξ �→Zn,j
η,I(ξ ), 1 ≤ n ≤ K are defined by:

Zn,j
η,I(ξ ) =

n∑

q=0

q∑

m=0

1
m!(q – m)!

∫

∂I
M(m)

n+1–q(ξ )(y)n.
[∇ (q–m)Gj(ξ – η)

(
yq–m)]

ds(y),

with M(m)
p (ξ )(y) is the matrix [M(m)

p (ξ )(y)] = {∇ (m)[σ (Cp)]i,l(ξ )(ym)}1≤i,l≤3.
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Proof Changing the variable x by ξ + ρy,
∫

∂Iξ ,ρ

σx(Cn)nGj(x – η) ds(x) = ρ2
∫

∂I
σx(Cn)(ξ + ρy)nGj(ξ – η + ρy) ds(x).

Using the fact that x �→ Gj(ξ – η + ρy) is regular in the neighborhood of ξ – η,

Gj(ξ – η + ρy) =
K∑

m=0

ρm

m!
∇ (m)Gj(ξ – η)

(
ym)

+ o
(
ρK)

.

Similarly, for each 1 ≤ i, l ≤ 3,

[
σx(Cn)

]

i,l(ξ + ρy) =
K∑

m=0

ρm

m!
∇ (m)[σ (Cn)

]

i,l(ξ )
(
ym)

+ o
(
ρK)

,

where [σx(Cn)]i,l, 1 ≤ i, l ≤ 3 denote the coefficients of the matrix σx(Cn).
Hence, we deduce:

∫

∂Iξ ,ρ

σx(Cn)nGj(x – η) ds(x)

=
K–2∑

q=0

ρq+2
q∑

m=0

1
m!(q – m)!

×
∫

∂O
M(m)

n (ξ )(y)n(y).∇ (q–m)Gj(ξ – η)
(
y(q–m))ds(y) + o

(
ρK)

,

where M(m)
n (ξ )(y) is the matrix [M(m)

n (ξ )(y)] = {∇ (m)[σ (Cn)]i,l(ξ )(ym)}1≤i,l≤3. Then, we ob-
tain:

K∑

n=1

ρn
∫

∂Iξ ,ρ

σ (Cn)nGj(x – η) ds(x)

=
K∑

n=0

ρn
K–2∑

q=0

ρq+3
q∑

m=0

1
m!(q – m)!

∫

∂O
M(m)

n+1(ξ )(y)n(y).∇ (q–m)Gj(ξ – η)
(
y(q–m))ds(y)

+ o
(
ρK)

.

Using the Cauchy formula for the product of two polynomials yields:

K∑

n=1

ρn
∫

∂Iξ ,ρ

σ (Cn)nGj(x – η) ds(x)

=
K∑

n=0

ρn+3
n∑

q=0

q∑

m=0

1
m!(q – m)!

∫

∂I
M(m)

n+1–q(ξ )(y)n · ∇ (q–m)Gj(ξ – η)
(
yq–m)

ds

+ o
(
ρK)

. �

Lemma 4.3 The third term in (4.1) admits the expansion:

∫

Iξ ,ρ

σx
(
Gj)(x – η) : e(w0) dx =

K–3∑

n=0

ρn+3X n,j
η,I(ξ ) + o

(
ρK)

.
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Here, the leading terms ξ �→X n,j
η,I(ξ ), 1 ≤ n ≤ K are given by:

X n,j
η,I(ξ ) =

n∑

m=0

1
m!(n – m)!

∫

I
∇ (m)σx

(
Gj)(ξ – η)

(
ym)

: ∇ (n–m)e(w0)(ξ )
(
yn–m)

dy.

Proof Recall that Iξ ,ρ = ξ + ρI . The replacement of the variable x by ξ + ρy implies:

∫

Iξ ,ρ

σx
(
Gj)(x – η) : e(w0) dx = ρ3

∫

I
σx

(
Gj)(ξ – η + ρy) : e(w0)(ξ + ρy) dy.

Since η ∈R
3 \�, and Iξ ,ρ is strictly embedded in �, y �→ Gj(ξ –η +ρy), and y �→ w0(ξ +ρy)

are sufficiently smooth in I . By the Taylor–Young formula, one can deduce for all 1 ≤ i, l ≤
3:

e(w0)i,l(ξ + ρy) = e(w0)i,l(ξ ) +
K∑

m=1

ρm

m!
∇ (m)[e(w0)i,l

]
(ξ )

(
ym)

+ o
(
ρK)

,

[
σx

(
Gj)]

i,l(ξ – η + ρy) =
K∑

m=0

ρm

m!
∇ (m)[σx

(
Gj)]

i,l(ξ – η)
(
ym)

+ o
(
ρK)

.

Multiplying the two previous polynomials, one can derive:

∫

Iξ ,ρ

σx
(
Gj)(x – η) : e(w0) dx =

K–3∑

n=0

ρn+3X n,j
η,I(ξ ) + o

(
ρK)

,

with

X n,j
η,I(ξ ) =

n∑

m=0

1
m!(n – m)!

∫

I
∇ (m)σx

(
Gj)(ξ – η)

(
ym)

: ∇ (n–m)e(w0)(ξ )
(
yn–m)

dy. �

4.2 Asymptotic formula for the reciprocity gap function
In this section, we present a higher-order asymptotic formula, representing the variation
of the reciprocity gap functional with respect to the presence of an inclusion Iξ ,ρ = ξ +ρI .
The obtained result is summarized in the following theorem. It follows immediately by
application of Lemmas 4.1, 4.2, and 4.3.

Theorem 4.4 Assume that the elastic medium contains an unknown inclusion of the form
Iξ ,ρ = ξ + ρI . Then, for each 1 ≤ j ≤ 3, the reciprocity gap functional variation Rj

ξ ,ρ – Rj
0

admits the following asymptotic formula:

Rj
ξ ,ρ(η) – Rj

0(η) =
K∑

n=1

ρnWn,j
η,I(ξ ) + o

(
ρK)

, ∀η ∈R
3\�, (4.2)

where the leading terms Wn,j
η,I(ξ ), 1 ≤ j ≤ 3, 1 ≤ n ≤ K are defined as

Wn,j
η,I(ξ ) =

⎧
⎨

⎩

Y n–1,j
η,I (ξ ) if 1 ≤ n ≤ 2,

Zn–3,j
η,I (ξ ) + Y n–1,j

η,I (ξ ) – X n–3,j
η,I if 3 ≤ n ≤ K .
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4.3 Concluding remarks and forthcoming works
The asymptotic formula established in Theorem 4.4 can be exploited as the basis for de-
veloping numerical algorithms and identifying unknown inclusions of the form Iξ ,ρ from
boundary measured data. In fact:

– Problem (1.4) cannot be solved in practice since the domain �\Iξ ,ρ is unknown, but
the elastic displacement vector wρ and the tracking force σ (wρ)n can be imposed or
measured on the boundary ∂�.

– Problem (1.5) can be solved, and the solution w0 can be approximated in the safe
elastic domain �.

– The elasticity fundamental solution Gj is known and can be calculated explicitly.
Then, the variation

Bj(η) = Rj
ξ ,ρ(η) – Rj

0(η)

=
∫

∂�

σ
(
Gj(x – η)

)
n(wρ – w0) ds(x) –

∫

∂�

σ (wρ – w0)nGj(x – η) ds(x),

can be used as a measured datum on ∂� for all η ∈R
3\�.

Neglecting the term o(ρK ), Theorem 4.4 provides us a nonlinear system satisfied by the
unknown inclusion parameters: the location ξ , the size ρ , and the shape I :

K∑

n=1

ρnWn,j
η,I(ξ ) = Bj(η) ∀1 ≤ j ≤ 3,∀η ∈R

3\�.

Solving this problem in its general form is not an easy task but first, one can develop a
numerical algorithm for reconstructing the location ξ and the size ρ of the unknown in-
clusion. The shape I can be numerically approximated after specifying some geometric
inclusions form. This attractive issue will be discussed further in a forthcoming paper.
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