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Abstract
This paper is devoted to studying the nonlinear problem with slightly subcritical and
supercritical exponents (S±ε) :�2u – cn�u + dnu = Ku

n+4
n–4 ±ε , u > 0 on Sn, where n ≥ 5,

ε is a small positive parameter and K is a smooth positive function on Sn. We construct
some solutions of (S–ε) that blow up at one critical point of K . However, we prove also
a nonexistence result of single-peaked solutions for the supercritical equation (S+ε).
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1 Introduction
Recently, there has been considerable interest in equations involving the biharmonic oper-
ator �2. A particular feature of the biharmonic operator is that it is conformally invariant.
In this work, we are interested in the generalization of the Paneitz operator [15] to higher
dimensions, which was discovered by Branson [7]. More precisely, let (M, g) be a smooth
compact Riemannian n-manifol, n ≥ 5, Sg be the scalar curvature of g , and Ricg be the
Ricci curvature of g . The Paneitz–Branson operator is defined by

Pn
g u = �2

g u – divg(anSgg + bnRicg) du +
n – 4

2
Qn

g u,

where

an =
(n – 2)2 + 4

2(n – 1)(n – 2)
, bn =

–4
n – 2

,

Qn
g = –

1
2(n – 1)

�gSg +
n3 – 4n2 + 16n – 16

8(n – 1)2(n – 2)2 S2
g –

2
(n – 2)2 |Ricg |2.

If g̃ = u4/(n–4)g is a metric conformal to g , then for all ϕ ∈ C∞(M) one has

Pn
g (uϕ) = u(n+4)/(n–4)Pn

g̃ (ϕ)
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and

Pn
g (u) =

n – 4
2

Qn
g̃ u(n+4)/(n–4). (1.1)

Regarding this equation, it is normal to consider the problem of prescribing the Paneitz
curvature, that is: given a function K : M → R does there exist a metric g̃ conformally
equivalent to g such that Qn

g̃ = K? This problem is equivalent to finding a smooth solution
of the following equation,

Pn
g (u) =

n – 4
2

Ku(n+4)/(n–4), u > 0 on M. (1.2)

In the case of the standard sphere (Sn, g), n ≥ 5. Thus, we are reduced to finding a positive
solution u of the problem

Pu = �2u – cn�u + dnu = Ku
n+4
n–4 , u > 0 on Sn, (1.3)

where cn = 1
2 (n2 – 2n – 4), dn = n–4

16 n(n2 – 4), and K is a given positive function defined on
Sn.

In the last decades, many interesting works have been devoted to study problem (1.3).
In [6, 8, 9], the authors treated the lower-dimensional case (n = 5, 6). In [10], Felli proved
a perturbative theorem and some existence results under the assumptions of symme-
try.

The special nature of problem (1.3) appears when we consider it from a variational
viewpoint. Indeed, the Euler–Lagrange functional associated to (1.3) does not satisfy the
Palais–Smale condition, that is, there exist noncompact sequences along which the func-
tional is bounded and its gradient goes to zero. This fact is due to the presence of the
critical exponent. Hence, for the study of problem (1.3), it is interesting to approach it by
the following family of subcritical and supercritical problems:

(S±ε)Pu = �2u – cn�u + dnu = Ku
n+4
n–4 ±ε , u > 0 on Sn,

and we need to study the asymptotic behavior of the solutions (uε) as ε → 0 (if they exist).
Observe that, for ε > 0, problem (S–ε) always has a positive solution (uε). In [13], the author
proved some existence and nonexistence results of solutions that blow up at one point for
a subcritical and supercritical approximation of a harmonic equation in the unit ball in
R

n.
In the present paper, we aim to give sufficient conditions on the function K such that

both subcritical and supercritical approximations (S±ε) admit or do not admit a positive
solution. Our approach follows the ideas introduced first by Bahri, Li, and Rey [4] when
they studied an approximation problem of the Yamabe type on domains. This idea has
been used by many authors to construct some solutions for different problems. Since our
problem is different from the problem studied in [4], we will take account of the new esti-
mates in order to use this method.

To state our main results, we need to introduce some notations.
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For K ≡ 1, the solutions of (1.3) form a family ˜δ(a,λ) defined by

˜δ(a,λ)(x) =
γn

2 n–4
2

λ
n–4

2

(1 + λ2–1
2 (1 – cos d(a, x))) n–4

2
, (1.4)

where a ∈ Sn, λ > 0 and γn = ((n – 4)(n – 2)n(n + 2))(n–4)/8.
After performing a stereographic projection π with the point –a as a pole, the function

˜δ(a,λ) is transformed into

δ(0,λ) = γn

(

λ

1 + λ2|y|2
) n–4

2
,

which is a solution of the problem (see [11])

�2u = u
n+4
n–4 , u > 0, on R

n.

Note that we will use the stereographic projection to collect some technical estimates of
the different integral quantities that occur in the paper (see [3]).

The space H2
2 (Sn) is equipped with the norm:

‖u‖2 = 〈u, u〉P =
∫

Sn
Pu.u =

∫

Sn
|�u|2 + cn

∫

Sn
|∇u|2 + dn

∫

Sn
u2.

Our first result deals with construction of single-peaked solutions for the subcritical ap-
proximation of the problem (S–ε) with ε > 0. More precisely, we have

Theorem 1.1 Assume that y is a nondegenerate critical point of K satisfying �K(y) < 0.
Then, there exists ε0 > 0 such that for each ε ∈ (0, ε0), the problem (S–ε) has a solution (uε)
of the form

uε = αε
˜δ(xε ,λε) + vε , with vε ∈ E(xε ,λε) and as ε → 0, (1.5)

αε → K(y)
4–n

8 ; ‖vε‖ → 0; xε → y and λε → +∞, (1.6)

where

E(xε ,λε) =
{

w ∈ H2
2
(

Sn)/〈w,ϕ〉 = 0 ∀ϕ ∈ Span

{

˜δ(xε ,λε),
∂˜δ(xε ,λε)

∂λ
,
∂˜δ(xε ,λε)

∂xj ; j ≤ n
}}

.

In the second result, we give a sufficient condition on the function K to ensure the
nonexistence of single-peaked solutions of (S–ε) with ε > 0.

Theorem 1.2 Let y be a nondegenerate critical point of K with �K(y) > 0. Then, there
exists ε0 > 0 such that for each ε ∈ (0, ε0), problem (S–ε) has no solution (uε) of the form
(1.5) satisfying (1.6).

In view of the above results, a natural question arises: are equivalent results true for
slightly supercritical exponents? The aim of the next result is to answer this question. In
[14] and [12], the author proved some nonexistence results of sign-changing solutions for
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a biharmonic equation involving slightly supercritical exponents in a bounded domain of
R

n. Note that, in the supercritical case, problem (S+ε) becomes more delicate since we lose
the Sobolev embedding that is an important point to overcome.

In contrast to the subcritical case, we have the following nonexistence result for the
supercritical problem.

Theorem 1.3 Let y be a nondegenerate critical point of K with �K(y) < 0. Then, there
exists ε0 > 0 such that for each ε ∈ (0, ε0), problem (S+ε) has no solution (uε) of the form
(1.5) satisfying (1.6) and |uε|ε∞ is bounded.

Remark 1.4 For the subcritical problem (S–ε), the assumption that |uε|ε∞ is bounded is al-
ways satisfied. To remove it in the supercritical case we should adapt the proof established
in [5] when the author studied a supercritical problem in a bounded domain of Rn, but it
is too technical to discuss this in the present paper. Note that this assumption allows us to
recover the Sobolev embedding.

The present paper is organized as follows. In Sect. 2, we set up the variational structure
and recall some known facts. In Sect. 3, we provide the proof of Theorem 1.1, while Sects. 4
and 5 are devoted to the proofs of Theorem 1.2 and Theorem 1.3, respectively.

2 Variational structure and some known facts
In this section we recall the functional setting and its main features in the subcritical case.
For ε > 0, we define the functional

Iε(u) =
1
2

∫

Sn
|�u|2 + cn

∫

Sn
|∇u|2

+ dn

∫

Sn
u2 –

1
2n

n–4 – ε

∫

Sn
K |u| 2n

n–4 –ε , u ∈ H2
2
(

Sn). (2.1)

The positive critical points of Iε are solutions of (S–ε).
First, we give the following remark that is established by [16] when Sn is replaced by a

bounded domain of R3.

Remark 2.1 Let˜δ(a,λ) be the function defined in (1.4). Assume that ε logλ is small enough.
For ε > 0, we have

˜δ–ε
(a,λ)(x) = 1 – ε log˜δ(a,λ) + O

(

ε2 log2 λ
)

in Sn.

Now, we collect some expansions of the gradient of the functional Iε associated with the
problem (S–ε) that will be needed in Sect. 3. Explicit computations, by Remark 2.1, yield
the following propositions. For the sake of simplicity, we will write ˜δ instead of ˜δ(x,λ).

Proposition 2.2 For u = α˜δ(x,λ) + v with v ∈ E(x,λ), we have

〈∇Iε(u),˜δ
〉

= αSn
(

1 – α
8

n–4 –εK(x)
)

+ O
(

ε logλ +
1
λ2 + ‖v‖2

)

,

where Sn =
∫

Rn δ
2n

n–4
(0,1).
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Proof We have

〈∇Iε , h〉 =
∫

Sn
Pu.h –

∫

Sn
Kup–εh. (2.2)

A computation similar to the one performed in [2] shows that

∫

Sn
P˜δ.˜δ =

∫

Sn
˜δ

2n
n–4 =

∫

Rn
δ

2n
n–4 = Sn. (2.3)

For the integral, we write

∫

Sn
Ku

n+4
n–4 –ε

˜δ =
∫

Sn
K(α˜δ + v)

n+4
n–4 –ε

˜δ = α
n+4
n–4 –ε

∫

Sn
K˜δ

2n
n–4 –ε + O

(|v|2). (2.4)

Expanding of K around x, we obtain

∫

Sn
K˜δ

2n
n–4 –ε =

∫

Rn
K˜δ

2n
n–4 –ε = K(x)Sn + O

(

ε logλ +
1
λ2

)

. (2.5)

Combining (2.2)–(2.5), we easily derive our proposition. �

Proposition 2.3 For u = α˜δ(x,λ) + v with v ∈ E(x,λ), we have the following expansion:

〈

∇Iε(u),λ
∂˜δ

∂λ

〉

= α
n+4
n–4 –ε

[

εSnK(x)
n

+
4(n – 4)c2

n
�K(x)

λ2

]

+ O
(

ε2 logλ +
ε logλ

λ2 +
1
λ3 + ‖v‖2

)

,

where

c2 =
1

2n

∫

Rn
|x|2δ 2n

n–4
(0,1) dx.

Proof Observe that (see [2])

〈

˜δ,λ
∂˜δ

∂λ

〉

= 0 (2.6)

and

∫

Sn
K˜δ

n+4
n–4 –ελ

∂˜δ

∂λ
=

∫

Rn
K˜δ

n+4
n–4 –ελ

∂δ

∂λ

= –
(n – 4)c2

n
4�K(x)

λ2 –
Snε

n
K(x)

+ O
(

ε2 logλ +
1
λ3 +

ε logλ

λ2

)

. (2.7)

Combining (2.2), (2.6), and (2.7), we derive our proposition. �
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Proposition 2.4 For u = α˜δ(x,λ) + v, with v ∈ E(x,λ), we have

〈

∇Iε(u),
1
λ

∂˜δ

∂x

〉

= –
α

n+4
n–4 –εc3∇K(x)

λ
+ O

(

ε logλ

λ

∣

∣∇K(x)
∣

∣ +
1
λ2 + ‖v‖2

)

.

Proof An easy computation shows

〈

˜δ,
1
λ

∂˜δ

∂x

〉

= 0 (2.8)

and
∫

Sn
K˜δ

n+4
n–4 –ε 1

λ

∂˜δ

∂x
=

∫

Rn
K˜δ

n+4
n–4 –ε 1

λ

∂δ

∂x
= c3

∇K(x)
λ

+ O
(

1
λ2 + ε2 logλ

)

. (2.9)

Using (2.2), (2.8), and (2.9), we have our proposition. �

3 Proof of Theorem 1.1
Let

Mε,1 =
{

m = (α,λ, x, v) ∈R×R
∗
+ × Sn × H2

2
(

Sn) : v ∈ E(x,λ),‖v‖ < ν0,

∣

∣α
8

n–4 K(x) – 1
∣

∣〈ν0,λ〉 1
ν0

, ε logλ < ν0

}

,

where ν0 is a small positive constant. Let us define the function by

�ε,1 : Mε,1 →R; m = (α,λ, x, v) �→ Iε(α˜δ(x,λ) + v). (3.1)

As in [4], using the Euler–Lagrange coefficients, we easily obtain the following proposition.

Proposition 3.1 Let m = (α,λ, x, v) ∈ Mε,1. m be a critical point of �ε,1 if and only if u =
α˜δ + v is a critical point of Iε , i.e., if and only if there exists (A, B, C) ∈R×R×R

n such that
the following hold:

(Eα)
∂�ε,1

∂α
= 0, (3.2)

(Eλ)
∂�ε,1

∂λ
= B

〈

∂2
˜δ

∂λ2 , v
〉

+
n

∑

j=1

Cj

〈

∂2
˜δ

∂xj∂λ
, v

〉

, (3.3)

(Ex)
∂�ε,1

∂x
= B

〈

∂2
˜δ

∂λ∂x
, v

〉

+
n

∑

j=1

Cj

〈

∂2
˜δ

∂xj∂x
, v

〉

, (3.4)

(Ev)
∂�ε,1

∂v
= A˜δ + B

∂˜δ

∂λ
+

n
∑

j=1

Cj
∂˜δ

∂xj . (3.5)

The results of Theorem 1.1 will be obtained through a careful analysis of (3.2)–(3.5)
on Mε,1. As usual in this type of problem, we first deal with the v-part of u, in order to
show that it is negligible with respect to the concentration phenomenon. The study of
(Ev) yields.
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Proposition 3.2 There exists a smooth map that to any (ε,α,λ, x) such that (α,λ, x, 0) in
Mε,1 associates v ∈ E(x,λ) such that ‖v‖ < ν0 and (Ev) is satisfied for some (A, B, C) ∈R×R×
R

n. Such a v is unique, minimizes �ε,1(α,λ, x, v) with respect to v in {v ∈ E(x,λ)/‖v‖ < ν0}, and
we have the following estimate

‖v‖ = O
(

ε +
|∇K(x)|

λ
+

1
λ2

)

. (3.6)

Proof Expanding Iε with respect to v ∈ E(x,λ), we obtain

Iε(α˜δ + v) = c(α, x,λ) +
1
2

Q(v, v) – f (v) + R(v), (3.7)

where Q(., .) is a quadratic positive-definite form, f (.) is a linear form, and R(v) satisfies
R(v) = o(‖v‖2), R′(v) = o(‖v‖), and R′′(v) = o(1).

Since Q(v, v) is positive-definite, we derive that the following problem

min
{

Iε(α˜δ + v), v ∈ E(x,λ) and ‖v‖ < ν0
}

(3.8)

is achieved by a unique function v that satisfies ‖v‖ ≤ c‖f ‖. Now, following [6] we obtain
the estimate (3.6). Since v is orthogonal to the functions {˜δ, ∂˜δ/∂λ, ∂˜δ/∂xj, j ≤ n}, there exist
A, B, and C such that

∂�ε,1

∂v
(α,λ, x, v) = ∇Iε(α˜δ + v) = A˜δ + B

∂˜δ

∂λ
+

n
∑

j=1

Cj
∂˜δ

∂xj . (3.9)

The proposition follows. �

Proof of Theorem 1.1 Once v is defined by Proposition 3.2, we estimate the corresponding
numbers A, B, C by taking the scalar product in H2

2 (Sn) of (Ev) with ˜δ, ∂˜δ/∂λ, ∂˜δ/∂x and
∂˜δ/∂x, respectively. Thus, we obtain a quasidiagonal system whose coefficients are given
by

∫

Rn
|∇δ|2 = Sn,

∫

Rn
∇δ∇ ∂δ

∂λ
= 0,

∫

Rn

∣

∣

∣

∣

∇ ∂δ

∂λ

∣

∣

∣

∣

2

=

1

λ2 + O
(

1
λ3

)

,

∫

Rn
∇ ∂δ

∂λ
∇ ∂δ

∂x
= O

(

1
λ3

)

,
∫

Rn

∣

∣

∣

∣

∇ ∂δ

∂x

∣

∣

∣

∣

2

= 
2λ
2 + O

(

1
λ

)

,
∫

Rn
∇δ∇ ∂δ

∂x
= 0,

where 
1, 
2 are positive constants. The other side is given by

∂�ε,1

∂α
=

〈

∂�ε,1

∂v
,˜δ

〉

;
1
α

∂�ε,1

∂λ
=

〈

∂�ε,1

∂v
,
∂˜δ

∂λ

〉

;
1
α

∂�ε,1

∂x
=

〈

∂�ε,1

∂v
,
∂˜δ

∂x

〉

. (3.10)

Using Proposition 2.2, some computations yield

∂�ε,1

∂α
= –

8
n – 4

Snβ + Vα(ε,α,λ, x), (3.11)
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where β = α – 1/K(y) n–4
8 and Vα is a smooth function that satisfies

Vα = O
(

β2 + ε logλ +
1
λ2 + |x – y|2

)

. (3.12)

Now, using Proposition 2.3, we obtain

∂�ε,1

∂λ
=

1
K(y)n–4/4

(

εSn

nλ
+

4(n – 4)c2

n
�K(x)
K(x)

1
λ3

)

+ Vλ(ε,α,λ, x), (3.13)

where c2 and c3 are defined in Propositions 2.3 and 2.4, and Vλ is a smooth function sat-
isfying

Vλ = O
[

1
λ

(

1
λ3 +

|x – y|2
λ2 + ε2 logλ +

ε logλ

λ2

)

+
(

β + |x – y|2)
(

ε

λ
+

1
λ3

)]

. (3.14)

Lastly, using Proposition 2.4, we have

∂�ε,1

∂x
=

–c3

K(y)(n–4)/8 ∇K(x) + Vx(ε,α,λ, x), (3.15)

where Vx is a smooth function such that

Vx = O
(

1
λ

+
(

β + ε logλ + |x – y|2)|x – y|
)

. (3.16)

Note that these estimates imply

∂�ε,1

∂α
= O

(

β + ε logλ +
1
λ2 + |x – y|2

)

,

∂�ε,1

∂λ
= O

(

1
λ3 +

ε

λ

)

,
∂�ε,1

∂x
= O

(

|x – y| +
1
λ

)

.

The solution of the system in A, B, and C shows that

A = O
(

β + ε logλ +
1
λ2 + |x – y|2

)

, B = O
(

1
λ

+ ελ

)

, C = O
( |x – y|

λ2 +
1
λ3

)

.

This allows us to evaluate the right-hand sides in the equations (Eλ) and (Ex), namely

B
〈

∂2
˜δ

∂λ2 , v
〉

+
n

∑

j=1

Cj

〈

∂2
˜δ

∂xj∂λ
, v

〉

= O
((

1
λ3 +

ε

λ
+

|y – x|
λ2

)

‖v‖
)

, (3.17)

B
〈

∂2
˜δ

∂λ∂x
, v

〉

+
n

∑

j=1

Cj

〈

∂2
˜δ

∂xj∂x
, v

〉

= O
((

1
λ

+ ελ + |x – y|
)

‖v‖
)

, (3.18)

where we have used the following estimates

∥

∥

∥

∥

∂2
˜δ

∂λ2

∥

∥

∥

∥

= O
(

1
λ2

)

;
∥

∥

∥

∥

∂2
˜δ

∂x∂λ

∥

∥

∥

∥

= O(1);
∥

∥

∥

∥

∂2
˜δ

∂x2

∥

∥

∥

∥

= O
(

λ2).
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Now,we set

1
λ

= ε
1
2 �(1 + ζ ); x = y + ξ ,

where ζ ∈R, ξ ∈R
n are assumed to be small and � = �(y) verifies

Sn

n
+

4(n – 4)c2

n
�2 �K(y)

K(y)
= 0.

With these changes of variables and using (3.11), (Eα) is equivalent to

β = Vα(ε,β , ζ , ξ ) = O
(

β2 + ε| log ε| + |ξ |2). (3.19)

Now, using (3.13), we show by an easy computation

εSn

nλ
+

4(n – 4)c2

n
�K(y + ξ )
K(y + ξ )

1
λ3

=
ε3/2Sn

n
�(1 + ζ )

+
4(n – 4)c2

n
ε3/2�3(1 + 3ζ )

(

�K(y)
K(y)

+
∇�K(y)

K(y)
ξ

)

+ O
(

ε3/2(ζ 2 + ξ 2))

= ε3/2
[

8(n – 4)c2�
3

n
�K(y)
K(y)

]

ζ + ε3/2
[

4(n – 4)c2�
3

n
∇(�K)(y)

K(y)

]

ξ

+ O
(

ε3/2(ζ 2 + ξ 2)).

This implies that (Eλ) is equivalent, on account of (3.14) and (3.17), to

[

8(n – 4)c2�
3

n
�K(y)
K(y)

]

ζ +
[

4(n – 4)c2�
3

n
∇(�K)(y)

K(y)

]

ξ

= Vλ(ε,β , ζ , ξ ) = O
(

β2 + ζ 2 + ξ 2 + ε1/2). (3.20)

Lastly, using (3.15), (3.16), and (3.18), we see that (Ex) is equivalent to

D2K(y)ξ = Vx(ε,β , ζ , ξ ) = O
(

ε1/2 + β2 + ζ 2 + ξ 2). (3.21)

We remark that Vα , Vλ, and Vx are smooth functions. This system may be written as

⎧

⎨

⎩

β = V (ε,β , ζ , ξ ),

L(ζ , ξ ) = W (ε,β , ζ , ξ ),
(3.22)

where L is a fixed linear operator onR
n+1 defined by (3.20) and (3.21) and V , W are smooth

functions satisfying

⎧

⎨

⎩

V (ε,β , ζ , ξ ) = O(ε1/2 + |β|2 + |ξ |2),

W (ε,β , ζ , ξ ) = O(ε1/2 + |β|2 + |ζ |2 + |ξ |2).



Ould Bouh Boundary Value Problems        (2023) 2023:103 Page 10 of 14

Moreover, a simple computation shows that the determinant of L is not equal to zero.
Hence, L is invertible, and Brouwer’s fixed-point theorem shows that (3.22) has a solution
(βε , ζε , ξε) for ε small enough, such that

|βε| = O
(

ε1/2); |ζε| = O
(

ε1/2); |ξε| = O
(

ε1/2).

Hence, we have constructed mε = (αε ,λε , xε) such that uε := αε
˜δ(xε ,λε) + vε , satisfies

(3.2)–(3.6). Therefore, by Proposition 3.1, uε is a critical point of Iε , i.e., uε is a solution of
(S–ε). Hence, the proof of Theorem 1.1 is thereby completed. �

4 Proof of Theorem 1.2
The proof of Theorem 1.2 will, by contradiction, suppose that the subcritical problem (S–ε)
has a solution of the form (1.5) and satisfying (1.6).

First, we show that λε
ε → 1 as ε → 0. For this, multiplying (S–ε) by δ̃(xε ,λε) and integrating

over Sn, we obtain

αε‖δ̃‖2 =
∫

Sn
K |αεδ̃ + vε| n+4

n–4 –εδ̃ = α
n+4
n–4 –ε
ε

∫

Sn
K δ̃

2n
n–4 –ε + O

(‖vε‖
)

. (4.1)

From (2.3) and (2.5) we derive

αεSn =
α

n+4
n–4 –ε
ε K(xε)Sn

λ
ε(n–4)
ε

(

1 + o(1)
)

+ o(1), (4.2)

where o(1) → 0 as ε → 0. Since αε → K(y)8/(n–4) and xε → y as ε → 0, we deduce from
(4.2) that λε

ε → 1 as ε → 0.
Secondly, we find the estimation of vε . Multiplying (S–ε) by vε and integrating, we have

‖vε‖2 =
∫

Sn
K(x)|αεδ̃ + vε| n+4

n–4 –εvε = α
n+4
n–4 –ε
ε

∫

Sn
K(x)δ̃

n+4
n–4 –εvε

+
(

n + 4
n – 4

– ε

)

α
8

n–4 –ε
ε

∫

Sn
K(x)δ̃

8
n–4 –εv2

ε + O
(‖vε‖min(3, 2n

n–4 –ε))

= α
n+4
n–4 –ε
ε

∫

Sn
K(x)δ̃

n+4
n–4 –εvε +

(

n + 4
n – 4

– ε

)

α
8

n–4 –ε
ε K(xε)

∫

Sn
δ̃

8
n–4 –εv2

ε + o
(‖vε‖2).

According to [1], there exists a ρ > 0, such that

‖vε‖2 –
(

n + 4
n – 4

– ε

)

α
8

n–4 –ε
ε K(xε)

∫

Sn
δ̃

8
n–4 –εv2

ε

= ‖vε‖2 –
n + 4
n – 4

∫

Sn
δ̃

8
n–4 –εv2

ε + o
(‖vε‖2) ≥ ρ‖vε‖2. (4.3)

For the other term, expanding the function K around xε and using Holder’s inequality, we
obtain

∣

∣

∣

∣

α
n+4
n–4 –ε
ε

∫

Sn
K(x)δ̃

n+4
n–4 –εvε

∣

∣

∣

∣

≤ c‖vε‖
(

ε +
|∇K(xε)|

λε

+
1
λ2

ε

)

. (4.4)
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Combining (4.3) and (4.4), we obtain

‖vε‖ = O
(

ε +
|∇K(xε)|

λε

+
1
λ2

ε

)

.

We turn now to the proof of the theorem, multiplying (S–ε) by λε∂δ̃/∂λε and integrating,
we derive

αε

〈

δ̃,λε

∂δ̃

∂λε

〉

–
∫

Sn
K(x)|αεδ̃ + vε| n+4

n–4 λε

∂δ̃

∂λε

= 0. (4.5)

Arguing as in the proof of Proposition 2.3, we easily arrive at:

εSnK(y) + c2
�K(y)

λ2
ε

+ O
(

ε2 logλε +
ε logλε

λ2
ε

+
1
λ3

ε

)

= 0,

where we have used the previous estimate of vε and the fact that λε
ε → 1, αε → K(y)8/(n–2).

Thus,

εSnK(y) + c2
�K(y)

λ2
ε

= o
(

ε +
1
λ2

ε

)

,

which is a contradiction with the assumption of Theorem 1.2.

5 Proof of Theorem 1.3
Arguing by contradiction, suppose that (S+ε) has a solution as stated in Theorem 1.3. We
start by showing that λε

ε → 1 as ε → 0. Indeed, multiplying (S+ε) by δ̃(xε ,λε) and integrating
over Sn, we obtain

αε‖δ̃‖2 =
∫

Sn
K(x)|αεδ̃ + vε| n+4

n–4 +εδ̃

= α
n+4
n–4 +ε
ε

∫

Sn
K(x)δ̃

2n
n–4 +ε + O

(∫

Sn
δ̃

n+4
n–4 +ε|v| +

∫

Sn
δ̃|v| n+4

n–4 +ε

)

= α
n+4
n–4 +ε
ε

∫

Sn
K(x)δ̃

2n
n–4 +ε + O

(

λ
ε n–4

2
ε

∫

Sn
δ̃

n+4
n–4 +ε|v| + λ

ε n–4
2

ε

∫

Sn
δ̃1–ε|v| n+4

n–4 +ε

)

= α
n+4
n–4 +ε
ε

∫

Sn
K(x)δ̃

2n
n–4 +ε + O

(

λ
ε n–4

2
ε ‖v‖ + λ

ε n–4
2

ε ‖v‖ n+4
n–4 +ε

)

. (5.1)

As in (2.5), we have

∫

Sn
K(x)δ̃

2n
n–4 +ε = K(xε)Snλ

ε n–4
2

ε

(

1 + o(1)
)

. (5.2)

Consequently, by (2.3) and (5.2), we obtain

αεSn = α
n+4
n–4 +ε
ε K(xε)Snλ

ε(n–4)
ε

(

1 + o(1)
)

+ o(1), (5.3)

where o(1) → 0 as ε → 0. Since αε → K(y)8/(n–4) and xε → y as ε → 0, we deduce from
(5.3) that λε(n–4)/2

ε → 1 as ε → 0.
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Remark 5.1 We remark that:
(i) Since λε

ε → 1 as ε → 0 it is easy to derive that ε log(1 + λ2
ε|x – xε|2) tends to 0 as ε → 0

and therefore we obtain:

δ̃ε(x) – cε
0λ

ε(n–4)/2
ε = O

(

ε log
(

1 + λ2
ε|x – xε|2

))

in Sn.

(ii) We also point out that it follows from the assumption that |uε|ε∞ is bounded and
λε

ε → 1 as ε → 0 that |vε|ε∞ is bounded – a fact that is used in the proof of Lemma 5.2.

Next, we are going to estimate the vε-part of uε in order to show that it is negligible with
respect to the concentration phenomenon. Namely, we have the following estimate.

Lemma 5.2 The function vε defined in (1.5), satisfies the following estimate

‖vε‖ = O
(

ε +
|∇K(xε)|

λε

+
1
λ2

ε

)

. (5.4)

Proof Multiplying (S+ε) by vε and integrating, we obtain

‖vε‖2 =
∫

Sn
K |αεδ̃ + vε| n+4

n–4 +εvε = α
n+4
n–4 +ε
ε

∫

Sn
K δ̃

n+4
n–4 +εvε

+
(

n + 4
n – 4

+ ε

)

α
8

n–4 +ε
ε

∫

Sn
K δ̃

8
n–4 +εv2

ε + O
(

‖vε‖3 +
∫

Sn
|v| 2n

n–4 +ε
ε

)

,

therefore

‖vε‖2 –
(

n + 4
n – 4

+ ε

)

α
8

n–4 +ε
ε

∫

Sn
K(y)δ̃

8
n–4 +εv2

ε

= α
n+4
n–4 +ε
ε

∫

Sn
K δ̃

n+4
n–4 +εvε + O

(‖vε‖inf(3, 2n
n–4 )). (5.5)

Observe that

‖vε‖2 –
(

n + 4
n – 4

+ ε

)

α
8

n–4 +ε
ε

∫

Sn
K(y)δ̃

8
n–4 +εv2

ε

= ‖vε‖2 –
(

n + 4
n – 4

+ ε

)

α
8

n–4 +ε
ε K(xε)

∫

Sn
δ̃

8
n–4 +εv2

ε

= ‖vε‖2 –
(

n + 4
n – 4

+ ε

)

α
8

n–4 +ε
ε cε

0λ
ε(n–4)/2
ε K(xε)

∫

Sn
δ̃

8
n–4 v2

ε + o
(‖vε‖2). (5.6)

Since αε → K(y)8/(n–4), xε → y, and λε(n–4)/2
ε → 1 as ε → 0, it follows from [1] that there

exists a positive constant ρ > 0 independent of ε, such that

‖vε‖2 –
(

n + 4
n – 4

+ ε

)

α
8

n–4 +ε
ε cε

0λ
ε(n–4)/2
ε K(xε)

∫

Sn
δ̃

8
n–4 v2

ε ≥ ρ‖vε‖2. (5.7)

Also as in (4.4), we have

α
n+4
n–4 +ε
ε

∫

Sn
K(y)δ̃

n+4
n–4 +εvε = O

(

ε +
|∇K(xε)|

λε

+
1
λ2

ε

)

‖vε‖. (5.8)

Combining (5.5), (5.7), and (5.8), we obtain the estimate (5.4).
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Now, we turn to the proof of Theorem 1.3. Multiplying (S+ε) by λε∂δ̃/∂λε and integrating
over Sn, we derive

αε

〈

δ̃,λε

∂δ̃

∂λε

〉

–
∫

Sn
K(x)|αεδ̃ + vε| n+4

n–4 +ελε

∂δ̃

∂λε

= 0. (5.9)

Arguing as in the proof of Proposition 2.3, we easily derive:

εSnK(y) – c2
�K(y)

λ2
ε

+ O
(

ε2 logλε +
ε logλε

λ2
ε

+
1
λ3

ε

)

= 0,

where we have used the previous estimate of vε and the fact that λε
ε → 1, αε → K(y)8/(n–4).

Thus,

εSnK(y) – c2
�K(y)

λ2
ε

= o
(

ε +
1
λ2

ε

)

,

which is a contradiction with the assumption of Theorem 1.3. �
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