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Abstract
We compute the numerical solution of the Bratu’s boundary value problem (BVP) on a
Banach space setting. To do this, we embed a Green’s function into a new two-step
iteration scheme. After this, under some assumptions, we show that this new iterative
scheme converges to a sought solution of the one-dimensional non-linear Bratu’s BVP.
Furthermore, we show that the suggested new iterative scheme is essentially weak
w2-stable in this setting. We perform some numerical computations and compare our
findings with some other iterative schemes of the literature. Numerical results show
that our new approach is numerically highly accurate and stable with respect to
different set of parameters.
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1 Introduction
In 1914, Bratu [1] suggested an important BVP as follows:

x′′(t) + λex(t) = 0, (1.1)

with the boundary condition (BC):

x(0) = x(1) = 0. (1.2)

Bratu’s Problem (1.1)–(1.2) attracted the attention of many researchers due to its fruitful
applications in many areas of applied science. Thus in [2], Ascher et al. first time success-
fully obtained the exact solution for the Bratu’s problem (1.1)–(1.2) as follows:

x(t) = –2 ln

[
cosh

(
0.5(t – 0.5)θ

cosh( θ
4 )

)]
, (1.3)
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where the number θ involved in (1.3) solves essentially θ =
√

2λ cosh( θ
4 ). Suppose, λc is a

number that satisfies the following equation:

√
2λ sinh( θ

4 )
4

= 1.

Then we remark as follows.

Remark 1.1
(i) The Bratu’s problem admits no solution when λ > λc.

(ii) The Bratu’s problem admits one and only one solution when λ = λc.
(iii) The Bratu’s problem admits two solutions when λ < λc.

The Bratu’s BVP (1.1)–(1.2) has many important applications in various fields of ap-
plied sciences, (see, e.g., [3–6] and others). The exact solution of this problem comes from
Ascher et al. [2]. Using this exact solution, various researchers investigated different nu-
merical techniques and compared their findings with this exact solution [7–9]. However,
we note that these techniques do not guarantee the existence of solution and the methods
used have slow speed of convergence and require too much complicated set of parameters.
Our alternative approach in this research is to study the existence and iterative approxi-
mation for the Bratu’s BVP (1.1)–(1.2) using fixed point and Green function combination
technique. We first show that the sought solution of (1.1)–(1.2) can be set as a fixed point
of a continuous operator. We will show that this operator has a unique fixed point which
solves our problem. Moreover, we use this operator in the well-known Ishikawa [10] iter-
ative scheme to obtain the convergence. The stability result with a comparative numerical
experiment is provided that validates the results and shows the high accuracy of the pro-
posed approach.

Often real world problems can be described in the form of differential equations. How-
ever, finding analytical solutions for such problems is very difficult (or may be impossi-
ble in some cases), and hence one needs approximate solutions for these problems. In
such cases, fixed-point theory provides alternative approaches to these problems, since
the sought solution to such problem can be in the form of a fixed point of a certain linear
or nonlinear operator T , whose domain is normally a suitable Banach space. Hence, once
the existence of a fixed point for the involved operator is established, it follows immedi-
ately that the solution for the problem under the consideration has been established. The
famous Banach Contraction Principle (BCP) [11] proved that if X is any given Banach
space and T : X → X is essentially a contraction map, that is, ‖Tx – Ty‖ ≤ ν‖x – y‖ for
all x, y ∈ X and ν ∈ (0, 1), then T admits essentially a unique fixed point, namely, x∗ ∈ X,
which solves the operator equation x = Tx. Once the existence of a fixed point (sought so-
lution for the operator equation x = Tx), one asks for an iterative scheme to approximate
value of the fixed point. The proof of the BCP suggests an iterative scheme of Picard [12],
xk+1 = Txk , for finding the approximate value of the unique fixed point of T . It is known
that when T is nonexpanansive, that is, ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ X, then T has a
fixed point under some restrictions (see, e.g., [13–15] and others), but the Picard iteration
of T generally fails to converge to the fixed point of T . Example of nonexpansive mapping
for which Picard iteration is not convergent is the following.
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Example 1 Assume that X = [–1, 1] and define the selfmap T on X by Tx = –x for all
x ∈ X. It follows that the selfmap T is nonexpansive on X and has a unique fixed point, but
if x0 	= 0, then we have a divergent sequence from the Picard iterative scheme.

On the other hand, the speed of convergence of Picard iteration is slow. Thus to over-
come these difficulties, Mann [16] and Ishikawa [10] generalized the Picard iterative
scheme and proved the convergence for nonexpansive mappings. In this paper, we con-
sider the following iterative scheme, which is independent of both the Mann [16] and
Ishikawa [10] iterative schemes:

⎧⎪⎪⎨
⎪⎪⎩

x0 ∈ X,

yk = (1 – βk)xk + βkTxk ,

xk+1 = (1 – αk)yk + αkTyk , (k = 0, 1, 2, 3, . . .),

(1.4)

where αk ,βk ∈ (0, 1).
Recently, some authors suggested novel approaches to different classes of BVPs by

embedding a Green’s function into the Picard, Mann, and Ishikawa iterative schemes.
They called these new modified schemes Picard–Green’s, Mann–Green’s, and Ishikawa–
Green’s iterative schemes, respectively. In particular, Kafri and Khuri [17] suggested
Picard–Green’s and Mann–Green’s iterative schemes for solving the Bratu problem
(1.1)–(1.2). They compared the speed of convergence of these new schemes with some
classical methods and observed that these new schemes are too much better than the cor-
responding old techniques. Motivated by Kafri and Khuri [17], first we embed a Green’s
function into the scheme (1.4) and prove its strong convergence for the Bratu’s problem
BVP (1.1)–(1.2). Similar results can be proved for Picard–Green’s and Mann–Green’s iter-
ative schemes. We then show that our new iterative scheme is essentially weakly w2-stable.
Some numerical experiments to support the main outcome are given. These numerical
experiments also suggest a high numerical accuracy of the our new iterative scheme.

2 Description of the iterative method
We shall now provide a Green’s function associated with a general class of BVPs having
second order. After this, we embed this Green’s function into the iterative scheme (1.4) in
order to obtain the desirable new iterative scheme. We now split this section into some
sub-sections as follows.

2.1 Solution of BVPs by Green’s functions
We first assume the following BVP with second order:

x′′ + y(t)x′ + z(t)x = q
(
t, , x, x′, x′), (2.1)

and assume its BCs as follows:

B1[x] = a1x(a) + a2x′(a) = β and B2[x] = b1x(b) + b2x′(b) = γ , (2.2)

where the value t lies between 0 and 1, that is, 0 ≤ t ≤ 1. Now we decopose the equation
(2.1) into linear and nonlinear terms respectively as L[x] = x′′ + y(t)x′ + z(t)x and N [x] =
q(t, , x, x′, x′) and our aim is to construct a Green’s function for L.
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Now we assume that the Problem (2.1)–(2.2) essentially admits a general solution as
follows:

x = xh + xp, (2.3)

where the notations xh denote a solution for L[x] = 0 (homogeneous part) and xp is any
particular solution for L[x] = q(t, x, x′, x′). According to [18, pp. 568], the particular solu-
tion xp can be expressed as follows:

xp =
∫ b

a
G(t, s)q

(
s, xp(s), x′

p(s), x′′
p(s)

)
ds. (2.4)

The notation G(t, s) in (2.4) denotes the Green’s function obtained from L[x] = 0. Notice
that when δ denotes essentially the direct delta function, then from [18, pp. 572], we have

L
[
G(t, s)

]
= δ(t – s). (2.5)

Also, using the definition of L and keeping (2.1), we have

L
[
G(t, s)

]
= G ′′(t, s) + y(t)G ′(t, s) + z(t)G(t, s). (2.6)

Subsequently, from (2.5) and (2.6), we have L[G(t, s)] = G ′′(t, s) + y(t)G ′(t, s) + z(t)G(t, s) =
δ(t – s). Notice that the Green’s function G(t, s) is defined as the solution to the differential
equation

L
[
G(t, s)

]
= G ′′(t, s) + y(t)G ′(t, s) + z(t)G(t, s) = δ(t – s), (2.7)

where the new BCs are given as:

B1
[
G(t, s)

]
= 0 = B2

[
G(t, s)

]
. (2.8)

Hence it follows that for the given problem (2.1)–(2.2), xp must obey the homogeneous
BCs and xh must satisfy the nonhomogeneous BCs B1[x] = β and B2[x] = γ .

Now we want to show that the proposed solution satisfies the BCs as well as the differ-
ential equation, provided that certain assumptions are imposed on q. Now we apply the
operator L on (2.3) and keeping (2.4) and (2.7) in mind, we have

L[xh + xp] =
∫ b

a
δ(t – s)q

(
s, xp(s), x′

p(s), x′′
p(s)

)
ds = q

(
t, xp(t), x′

p(t), x′′
p(t)

)
. (2.9)

We assume that q is essentially a function in t only or if it satisfies the following:

q
(
t, xp(t), x′

p(t), x′′
p(t)

)
= q

(
t, x(t), x′(t), x′′(t)

)
, (2.10)

then subsequently, one can see that (2.1) is satisfied such that:

L[xh + xp] = q
(
t, x(t), x′(t), x′′(t)

)
. (2.11)
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Note that the for our Problem (1.1)–(1.2), the sought solution of (1.1) endowed with the
BCs (1.2) takes the form xh = 0. It follows that the Condition (2.10) is essentially satisfied
and so (2.11) is true.

Now consider (2.8), one has

B1[xh + xp] = B1[xh] + B1

[∫ b

a
G(t, s)q

(
s, xp(s), x′(s), x′′(s)

)
ds

]
= β (2.12)

and B2[xh + xp] = γ .
Next we list some basic axioms of a given Green’s function as follows, which can be

found in [18].
(a1.) If we denote two linear independent solutions for L[x] = 0 by x1 and x2, then the

associated Green’s function can be written in the following form:

G(t, s) =

⎧⎨
⎩

c1x1 + c2x2 when a < t < s,

d1x1 + d2x2 when s < t < b,
(2.13)

(a2.) G(t, s) is essentially continuous at t = s, that is,

G(t, s)t→s+ = G(t, s)t→s– , (2.14)

c1x1(s) + c2x2(s) = d1x1(s) + d2x2(s). (2.15)

(a3.) G ′(t, s) admits a unit jump discontinuity.
We are now going to obtain the jump assumption as concerns the terms x1 as well as the

term x2. To do this, we first compute essentially the value of the jump. Therefore, we must
integrate (2.7) with lower limit s– to the upper limit s+ as follows:

∫ s+

s–

[
G ′′(t, s) + y(t)G ′(t, s) + z(t)G(t, s)

]
dt =

∫ s+

s–
δ(t – s) dt.

It follows that

∫ s+

s–

[
G ′′(t, s)

]
dt +

∫ s+

s–
y(t)G ′(t, s) dt +

∫ s+

s–
z(t)G(t, s) dt =

∫ s+

s–
δ(t – s) dt. (2.16)

Now the function G is essentially continuous, and also G ′ admits only the jump discon-
tinuity. Thus, the following equations hold:

∫ s+

s–
z(t)G(t, s) dt = 0 and

∫ s+

s–
y(t)G ′(t, s) dt = 0. (2.17)

Hence, from (2.16) and (2.17), we have

∫ s+

s–

[
G ′′(t, s)

]
dt =

∫ s+

s–
δ(t – s) dt. (2.18)

Evaluating integrals in Equation (2.18) gives the value of the required jump as follows:

[
G ′(t, s)

]s+

s– =
[
H(t – s)

]s+

s– and G ′(s+, s
)

– G ′(s–, s
)

= 1, (2.19)
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where H is the well-known Heaviside function, where more details on this can be found
in the book [18]. Notice that from the jump condition one can write as follows:

c1x′
1(s) + c2x′

2(s) – d1x′
1 – d2x′

2(s) = 1, (2.20)

where the constants ci, di (i = 1, 2) can be found by solving (2.15), (2.20), and the BCs given
in (2.8).

2.2 Green’s functions and novel fixed-point scheme
Now we derive our desired new iterative scheme. To do this, we embed a Green’s function
into an integral operator and then apply this operator on the new iterative scheme (1.4).
For this purpose, we set

K[x] = xh +
∫ b

a
G(t, s)

[
x′′(s) + y(s)x′(s) + z(s)x(s))

]
ds. (2.21)

Now if we add and subtract q(s, x, x′, x′′) within the integrand, then one has

K[x] = xh +
∫ b

a
G(t, s)[x′′(s) + y(s)x′(s) + z(s)x(s) – q

(
s, x, x′, x′′)ds

+
∫ b

a
G(t, s)q

(
s, x, x′, x′′)ds. (2.22)

Now we suppose that q is either a function of t only or it satisfies (2.10), then the last
integral in (2.22) is equivalent to that in (2.4), so can be replaced by xp. Since x = xh + xp,
(2.22) becomes:

K[x] = x +
∫ b

a
G(t, s)[x′′ + y(s)x′ + z(s)x – q

(
s, x, x′, x′′)ds. (2.23)

Now applying new fixed-point iterative scheme (1.4) to the latter integral operator and
simplifying, we obtain our new Green’s iterative scheme as follows:

⎧⎨
⎩

yk = (1 – βk)xk + βkK[xn],

xk+1 = (1 – αk)yn + αkK[yn].
(2.24)

It follows that
⎧⎨
⎩

yk = xk + βk{
∫ b

a G(t, s)[x′′ + y(s)x′ + z(s)x – q(s, x, x′, x′′) ds},
xk+1 = yk + αk{

∫ b
a G(t, s)[y′′ + y(s)y′ + z(s)y – q(s, y, y′, y′′) ds}.

(2.25)

Finally, we derive calculation for the starting iterate x0. To do this, we use a property of
the Green’s function in (2.8) to get

Bi[
∫ b

a
G(t, s)

[
x′′

k + y(s)x′
k + z(s)xk – q

(
s, xk , x′

k , x′′
n
)]

= 0, (2.26)
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where i = 1, 2. It now follows that the starting iterate x0 should be select so that it can solve
L[x] = 0 with BCs B1[x] = β and B2[x] = γ .

Now the analysis which helps us in constructing the iterative scheme (2.25) is restricted
essentially to case when either q is a function of the t only or it satisfies (2.10). However,
if q is a function of x, then xp satisfies the following:

x′′
p + y(s)x′

p + z(s)xp – q
(
s, xp, x′

p, x′′
p
)
, (2.27)

so

xp(t) =
∫ b

a
G(t, s)q

(
s, xp, x′

p, x′′
p
)

ds. (2.28)

Hence it means that
∫ b

a G(t, s)f (s, x, x′, x′′) ds in (2.22) cannot be replaced with xp. Thus, we
must define K[x] in (2.21) as follows:

Tx =
∫ b

a
G(t, s)

[
x′′

p + y(s)x′
p + z(s)xp

]
ds. (2.29)

Now similar calculations are made as for (2.21), but the term f (s, , xp, x′
p) is subtracted

from and added to the given integral in (2.29), one has

Tx = xp +
∫ b

a
G(t, s)

[
x′′

p + y(s)x′
p + z(s)xp – q

(
s, xp, x′

p, x′′
p
)]

ds. (2.30)

Now using the operator T in (2.30), we apply our new fixed-point scheme (1.4).

3 Convergence result
Now we are going to prove our main convergence result. We use our proposed scheme
(2.25) and assume some possible mild conditions, to obtain the approximate solution for
the Bratu’s problem (1.1)–(1.2). For this purpose, we first establish a Green’s function to
the term x′′ = 0 involved in (1.1). The two independent solutions to this x′′ = 0 are x1(t) = 1
and x2(t) = t. Hence using (2.13), the Green’s function attains the following form:

G(t, s) =

⎧⎨
⎩

c1 + c2t when 0 < t < s,

d1 + d2t when s < t < 1,
(3.1)

where ci and di (i = 1, 2) are unknowns to be determined using the basic axioms of Green’s
functions. Using the homogeneous BCs, we get

c1 = 0, d1 + d2 = 0. (3.2)

Moreover, the jump discontinuity of G at t = s suggests the following equations

c1 + c2s = d1 + d2s, c2 – d2 = 1. (3.3)
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Now solving (3.2) and (3.3), (3.1) becomes as:

G(t, s) =

⎧⎨
⎩

s(1 – t) when 0 ≤ t < s,

t(1 – s) when 0 ≤ s ≤ t < 1,

Now using the Green’s function above, we set the operator TG : C[0, 1] → C[0, 1] by

TGx = x +
∫ 1

0
G(t, s)

(
x′′ + λex(s))ds. (3.4)

Hence, iterative scheme (2.25) becomes:

⎧⎪⎪⎨
⎪⎪⎩

x0 ∈ X,

yk = (1 – βk)xk + βkTGxk ,

xk+1 = (1 – αk)yk + αkTGyk , (k = 0, 1, 2, 3, . . .),

(3.5)

where αk ,βk ∈ (0, 1).
The iterative scheme (3.5) is the desired new iterative scheme. The main convergence

result of the paper is now ready to be established.

Theorem 3.1 Consider a Banach space X = C[0, 1] with the supremum norm. Let TG :
X → X be the operator defined in (3.4) and {xk} be the sequence produced by (3.5). Assume
that the following conditions hold:

(i) λ2Lc
8 < 1, where Lc = maxt∈[0,1] |ex(t)|.

(ii) Either
∑

αk = ∞ or
∑

βk = ∞
Subsequently, {xk} converges the unique fixed point of TG and hence to the unique sought
solution of the given Problem (1.1)–(1.2).

Proof Put λ2Lc
8 = ν , accordingly it follows from the condition (i), that TG is a ν-contraction.

Thanks to BCP, TG has a unique fixed point in X = C[0, 1], namely, x∗ which is the unique
solution for the given problem (1.1)–(1.2).

Now using the condition (ii), we prove that the sequence of our new iterative scheme
converges strongly to x∗. First we consider the case when

∑
αk = ∞. For this, we have

∥∥yk – x∗∥∥ =
∥∥(1 – βk)xk + βkTGxk – x∗∥∥

=
∥∥(1 – βk)

(
xk – x∗) + βk

(
TGxk – x∗)∥∥

≤ (1 – βk)
∥∥xk – x∗∥∥ + βk

∥∥TGxk – x∗∥∥
≤ (1 – βk)

∥∥xk – x∗∥∥ + βkν
∥∥xk – x∗∥∥

=
[
1 – βk(1 – ν)

]∥∥xk – x∗∥∥.

Now using ‖yk – x∗‖ ≤ [1 – βk(1 – ν)]‖xk – x∗‖ and noting [1 – βk(1 – ν)]‖xk – x∗‖ ≤ 1, we
have

∥∥xk+1 – x∗∥∥ =
∥∥(1 – αk)yk + αkTGyk – x∗∥∥
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=
∥∥(1 – αk)

(
yk – x∗) + αk

(
TGyk – x∗)∥∥

≤ (1 – αk)
∥∥yk – x∗∥∥ + αk

∥∥TGyk – x∗∥∥
≤ (1 – αk)

∥∥yk – x∗∥∥ + αkν
∥∥yk – x∗∥∥

=
[
1 – αk(1 – ν)

]∥∥yk – x∗∥∥
≤ [

1 – αk(1 – ν)
][

1 – βk(1 – ν
]∥∥xk – x∗∥∥

≤ [
1 – αk(1 – ν)

]∥∥xk – x∗∥∥.

Accordingly, we get

∥∥xk+1 – x∗∥∥ ≤ [
1 – αk(1 – ν)

]∥∥xk – x∗∥∥
≤ [

1 – αk(1 – ν)
][

1 – αk–1(1 – ν)
]∥∥xk–1 – x∗∥∥

≤ [
1 – αk(1 – ν)

][
1 – αk–1(1 – ν)

][
1 – αk–2(1 – ν)

]∥∥xk–2 – x∗∥∥.

Inductively, we obtain

∥∥xk+1 – x∗∥∥ ≤
k∏

m=0

[
1 – αm(1 – ν)

]∥∥x0 – x∗∥∥. (3.6)

It is well-known from the classical analysis that 1 – x ≤ e–x for all x ∈ [0, 1]. Taking into
account this fact together with (3.6), we get

lim
k→∞

k∏
m=0

[
1 – αm(1 – ν)

]∥∥x0 – x∗∥∥ = 0, (3.7)

because
∑∞

k=0 αk = ∞ and ν lies in (0, 1). Hence from (3.6) and (3.7) that

lim
k→∞

∥∥xk+1 – x∗∥∥ = 0.

Accordingly, {xk} converges to the unique fixed point x∗ of TG , which is the unique solution
of the Problem (1.1)–(1.2). The case when

∑
βk = ∞ is similar to the above and hence

omitted. �

4 Weak w2-stability result
In some cases, a numerical scheme may not stable when we implement it on a certain
operator in order to find a sought solution of a given problem (see, e.g., [19–21] and oth-
ers). A numerical iterative scheme is said to be stable if the error obtained from any two
successive iteration steps do not disturb the convergence of the scheme towards a sought
solution. The concept of stability for an iterative scheme has its roots in the work of Urabe
[22]. Soon the authors Harder and Hicks [23] suggested the formal notion of stability. Here
we need some of their definitions and concepts, which will be used in the sequel.
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Definition 4.1 [23] Suppose T is a selfmap on a Banach space X and {xk} is a sequence
of iterates of T generated by

⎧⎨
⎩

x0 ∈ X,

xk+1 = h(T , xk),
(4.1)

where the point x0 essentially denotes a starting value and h is a function. If {xk} converges
to a point x∗ ∈ FT , then {xk} is called stable if for every other sequence {uk} in X, one has
the following

lim
k→∞

∥∥uk+1 – h(T , uk)
∥∥ = 0 ⇒ lim

k→∞
uk = x∗.

Definition 4.2 [24] Two sequence {uk} and {xk} in a Banach space are said to be equivalent
if the following property holds

lim
k→∞

‖uk – xk‖ = 0.

In [25], Timis suggested the natural notion of stability, which he named as weak w2-
stability. He used the concept of equivalent sequences opposed to the of concept of arbi-
trary sequences in Definition 4.1.

Definition 4.3 [25] Suppose T be a selfmap on a Banach space X and {xk} is a sequence
of iterates of T generated by (4.1). If {xk} converges to a point x∗ ∈ FT , then {xk} is called
weakly w2-stable if for every equivalent sequence {uk} ⊆ X of {xk} one has the following

lim
k→∞

∥∥uk+1 – h(T , uk)
∥∥ = 0 ⇒ lim

k→∞
uk = x∗.

Finally, we are in the position to obtain the weak w2-stability for our proposed scheme
(3.5).

Theorem 4.4 Let X, TG and {xk} be as given in the Theorem 3.1. Subsequently, {xk} is
weakly w2-stable with respect to TG .

Proof To complete the proof, we consider any equivalent sequence {uk} of {xk}, that is,
{uk} satisfies the equation limk→∞ ‖uk – xk‖ = 0. Put

εk =
∥∥uk+1 –

[
(1 – αk)vk + αkTGvk

]∥∥,

where vk = (1 – βk)uk + βkTGuk .
Assume that limk→∞ εk = 0. The need is to prove that limk→∞ ‖uk – x∗‖ = 0. For this, we

have

‖vk – yk‖ =
∥∥[

(1 – βk)uk + βkTGuk
]

–
[
(1 – βk)xk + βkTGxk

]∥∥
=

∥∥[
(1 – βk)(uk – xk) + βk(TGuk – TGxk

]∥∥
≤ (1 – βk)‖uk – xk‖ + βk‖TGuk – TGxk‖
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≤ (1 – βk)‖uk – xk‖ + βkλ‖uk – xk‖
≤ [

1 – βk(1 – ν)
]‖uk – xk‖.

Hence

∥∥uk+1 – x∗∥∥
≤ ‖uk+1 – xk+1‖ +

∥∥xk+1 – x∗∥∥
≤ ∥∥xk+1 –

[
(1 – αk)vk + TGvk

]∥∥ +
∥∥[

(1 – αk)vk + TGvk
]

– xk+1
∥∥

+
∥∥xk+1 – x∗∥∥

= εk +
∥∥[

(1 – αk)vk + TGvk
]

– xk+1
∥∥ +

∥∥xk+1 – x∗∥∥
= εk +

∥∥[
(1 – αk)vk + TGvk

]
–

[
(1 – αk)yk + TGyk

]∥∥ +
∥∥xk+1 – x∗∥∥

= εk +
∥∥(1 – αk)(vk – yk) + αk(TGvk – TGyk)

∥∥ +
∥∥xk+1 – x∗∥∥

≤ εk + (1 – αk)‖vk – yk‖ + αk‖TGvk – TGyk‖ +
∥∥xk+1 – x∗∥∥

≤ εk + (1 – αk)‖vk – yk‖ + αkν‖vk – yk‖ +
∥∥xk+1 – x∗∥∥

= εk +
[
1 – αk(1 – ν)

]‖vk – yk‖ +
∥∥xk+1 – x∗∥∥

≤ εk +
[
1 – αk(1 – ν)

][
1 – βk(1 – ν)

]‖uk – xk‖ +
∥∥xk+1 – x∗∥∥

≤ εk +
[
1 – αk(1 – ν)

]‖uk – xk‖ +
∥∥xk+1 – x∗∥∥.

Subsequently, we obtained

∥∥uk+1 – x∗∥∥ ≤ εk +
[
1 – αk(1 – ν)

]‖uk – xk‖ +
∥∥xk+1 – x∗∥∥. (4.2)

Since limk→∞ εk = 0 by assumption, limk→∞ ‖uk – xk‖ = 0 as {uk} is an equivalent se-
quence for {xk} and limk→∞ ‖xk – x∗‖ = 0 as {xk} is convergent to x∗. Accordingly, from
(4.2), limk→∞ ‖uk – x∗‖ = 0. This means that {xk} generated by the iterative scheme (3.5)
is weakly w2-stable with respect to TG . �

5 Numerical computions
We now choose different values of λ and connect the Mann–Green’s and Ishikawa–
Green’s, our new iterative scheme with the Bratu’s problem (1.1)–(1.2). First, we take
αk = βk = 0.9 and x0 = 0 that satisifies the equation x′′ = 0 and the BCs (1.2). The results are

Table 1 Comparison of various iterations for λ = 1 and αk = βk = 0.9 for k = 0 to 10

t Exact-Solution Mann–Green Ishikawa–Green New

0.1 0.049846700 3.92372× 10–9 2.59312× 10–11 5.48173× 10–16

0.2 0.089189935 7.48453× 10–9 4.88960× 10–11 1.04083× 10–15

0.3 0.117609095 1.03321× 10–8 6.69472× 10–11 1.41553× 10–15

0.4 0.134790252 1.21720× 10–8 7.84832× 10–11 1.66533× 10–15

0.5 0.140539214 1.28083× 10–8 8.24510× 10–11 1.74860× 10–15

0.6 0.134790252 1.21720× 10–8 7.84832× 10–11 1.69309× 10–15

0.7 0.117609095 1.03321× 10–8 6.69472× 10–11 1.33227× 10–15

0.8 0.089189935 7.48453× 10–9 4.88959× 10–11 9.99201× 10–16

0.9 0.089189935 3.92372× 10–9 2.59312× 10–11 4.64906× 10–16
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Table 2 Comparison of various iterations for λ = 2 and αk = βk = 0.9 for k = 0 to 10

t Exact-Solution Mann–Green Ishikawa–Green New

0.1 0.1144107440 1.04807× 10–6 2.55453× 10–9 2.42065× 10–11

0.2 0.2064191156 2.00580× 10–6 4.88750× 10–9 4.63266× 10–11

0.3 0.2738793116 2.77841× 10–6 6.76865× 10–9 6.41713× 10–11

0.4 0.3150893646 3.28129× 10–6 7.99268× 10–9 7.57862× 10–11

0.5 0.3289524214 3.45590× 10–6 8.41760× 10–9 7.98192× 10–11

0.6 0.3150893646 3.28129× 10–6 7.99268× 10–9 7.57863× 10–11

0.7 0.2738793116 2.77841× 10–6 6.76865× 10–9 6.41713× 10–11

0.8 0.2064191156 2.00580× 10–6 4.88750× 10–9 4.63266× 10–11

0.9 0.1144107440 1.04807× 10–6 2.55453× 10–9 2.42066× 10–11

Figure 1 Graphical comparison for λ = 1 and t = 0.1

Figure 2 Graphical comparison for λ = 1 and t = 0.1

displayed in the Tables 1–2. Notice that we assume ‖xk – x∗‖ < 10–6 is our stopping crite-
rion, where x∗ is the requested sough solution. These results confirm the convergence of
the all schemes towards the sought solution. Moreover, it is easy to observe that our new
scheme is faster than the other two schemes. Graphical convergence is shown in Figs. 1–4.
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Figure 3 Graphical comparison for λ = 2 and t = 0.5

Figure 4 Graphical comparison for λ = 2 and t = 0.5

Eventually, we compare our results with some other numerical methods of the literature
in the following Table 3. We now compare our new approach with the the DM scheme [7],
LDM scheme [26], B-spline scheme [27], LGSM [28], Spline approach [29], DTM scheme
[30], GVM scheme [31], and CW scheme [32] as follows. Clearly, in all the cases, our new
approach is highly accurate.

Now we list the following observations.
• From Tables 1–2, we see that absolute error in our new iterative scheme is much

smaller than the Mann–Green’s and Ishikawa–Green’s iterative schemes. This means
that our new iterative scheme is moving faster to the solution.

• From Figs. 1–4, we see that for small values of parameters, αk and βk , the rate of
convergence of Mann–Green’s and Ishikawa–Green’s iterative scheme is almost same.
However, our new iterative scheme for all values of αk and βk is moving fast to the
solution.
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Table 3 Influence of parameters: comparison of various iteration processes

Iterations Values of λ

1.000 2.000 3.510

Comparison of the Absolute errors when t = 0.1
DM [7] 2.7× 10–3 1.6× 10–21 6.1× 10–19

LDM [26] 2.0× 10–6 2.6× 10–3 6.1× 10–19

B-Spline [27] 3.0× 10–6 1.7× 10–5 3.8× 10–2

LGSM [28] 7.5× 10–7 4.0× 10–6 4.4× 10–5

Spline [29] 5.8× 10–10 9.7× 10–9 6.6× 10–6

DTM [30] – 1.3× 10–6 –
GVM [31] 4.2× 10–12 7.6× 10–12 9.3× 10–9

CW [32] 1.2× 10–19 2.0× 10–18 2.3× 10–10

Our Scheme 3.2× 10–15 5.2× 10–15 4.1× 10–15

Comparison of the Absolute errors when t = 0.4
DM [7] 2.2× 10–3 3.3× 10–3 –
LDM [26] 7.7× 10–6 8.0× 10–3 –
B-Spline [27] 8.5× 10–6 5.3× 10–5 1.2× 10–1

LGSM [28] 5.2× 10–7 3.1× 10–6 4.4× 10–7

Spline [29] 9.6× 10–11 2.4× 10–8 6.8× 10–6

DTM [30] 2.0× 10–10 4.9× 10–6 –
GVM [31] 2.1× 10–11 4.4× 10–11 3.0× 10–8

CW [32] 7.8× 10–19 5.4× 10–17 1.1× 10–9

Our Scheme 1.2× 10–14 2.2× 10–15 3.1× 10–15

Comparison of the Absolute errors when t = 0.6
DM [7] 2.2× 10–3 3.2× 10–3 –
LDM [26] 1.1× 10–5 3.3× 10–2 –
B-Spline [27] 8.4× 10–6 5.3× 10–6 1.3× 10–1

LGSM [28] 5.1× 10–9 3.1× 10–6 4.5× 10–5

Spline [29] 9.6× 10–11 2.4× 10–8 6.8× 10–6

DTM [30] 2.0× 10–10 6.7× 10–6 –
GVM [31] 3.2× 10–11 6.4× 10–11 3.1× 10–8

CW [32] 7.9× 10–19 5.5× 10–17 1.2× 10–9

Our Scheme 4.2× 10–16 6.2× 10–16 4.4× 10–16

Comparison of the Absolute errors when t = 0.9
DM [7] 2.7× 10–3 1.5× 10–2 –
LDM [26] 1.2× 10–5 1.5× 10–2 –
B-Spline [27] 3.0× 10–6 1.7× 10–5 3.8× 10–2

LGSM [28] 7.4× 10–7 4.0× 10–6 4.4× 10–5

Spline [29] 5.8× 10–10 9.7× 10–9 6.6× 10–6

DTM [30] 2.0× 10–10 7.4× 10–6 –
GVM [31] 4.7× 10–11 8.4× 10–11 1.1× 10–8

CW [32] 1.2× 10–19 2.0× 10–18 2.3× 10–10

Our Scheme 4.3× 10–15 4.7× 10–16 5.3× 10–16

6 Conclusion
We constructed a new highly accurate numerical scheme based on Green’s function for
numerical solutions of Bratu’s BVPs in a Banach space framework. We investigated a con-
vergence result under suitable conditions for the mapping and parameters in our scheme.
We proved that our new scheme is weakly w2-stable in this new setting. We provide a
numerical simulation to support our claims and results. It has been shown that the con-
vergence of our new scheme is very accurate and can be used effectively for all values of
parameters involved in our scheme.
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