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Abstract
The objective of this work is to investigate the perturbed Gerdjikov–Ivanov (GI)
equation along spatio-temporal dispersion which explains the dynamics of soliton
dispersion and evolution of propagation distance in optical fibers, photonic crystal
fibers (PCF), and metamaterials. The algorithms, namely hyperbolic extended function
method and generalized Kudryashov’s method, are constructed to obtain the new
soliton solutions. The dark, bright, periodic, and singular solitons are derived of the
considered equation with the appropriate choice of parameters. These results are
novel, confirm the stability of optical solitons, and have not been studied earlier. The
explanation of evaluated results is given by sketching the various graphs in 3D,
contour and 2D plots by using Maple 18. Graphical simulations divulge that varying
the wave velocity affects the dynamical behaviors of the model. In summary, this
research adds to our knowledge on how the perturbed GI equation with
spatio-temporal dispersion behaves. The obtained soliton solutions and the methods
offer computational tools for further analysis in this field. This work represents an
advancement in our understanding of soliton dynamics and their applications in
photonic systems.
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1 Introduction
The experimental and theoretical studies show that solitons play a significant role in dif-
ferent fields such as fluid dynamics [1], nonlinear optics [2, 3], quantum electronics [4, 5],
and plasma physics [6–8]. Nowadays, optical solitons have pervasive significance in the
field of social media, transoceanic transmission, and in transcontinental services. Sev-
eral equations such as Schrödinger–Hirota (SH) model, Chen–Lee–Liu (CLL) equation,
nonlinear Schrödinger’s equation (NLSE), Biswas–Arshed equation (BAE), and Manakov
model have been employed in investigating the behavior of solitons in optical fibers, meta-
materials, and couplers [9–13]. Optical solitons are fabricated by evaluating the dispersive
and nonlinear terms in NLSE, and to study this, many mathematical approaches were con-
structed such as extended sinh-Gordon equation expansion method [14], extended trial

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13661-023-01792-5
https://crossmark.crossref.org/dialog/?doi=10.1186/s13661-023-01792-5&domain=pdf
mailto:nmlaiki@psu.edu.sa
mailto:nmlaiki2012@gmail.com
mailto:wshatanawi@psu.edu.sa
http://creativecommons.org/licenses/by/4.0/


Rehman et al. Boundary Value Problems        (2023) 2023:105 Page 2 of 14

equation method [15], Hirota method [16], Kudryashov’s method [17], mapping method
[18], generalized tanh method [19], extended direct algebraic method [20, 21], Nucci’s re-
duction method [22], new auxiliary equation scheme [23, 24], and φ6-model expansion
[25].

In this work, we considered the perturbed Gerdjikov–Ivanov (GI) equation [26–28]
which is the most familiar type of NLSE and has accrued attention since its evolution. The
perturbed GI equation is one of the important dynamic models which describes the propa-
gation of the ultrashort signal in photonic crystal fibers, fiber optics, and also demonstrates
a significant role in nonlinear fiber optics. The GI model is distinct from NLSE because it
is studied with a quintic nonlinearity [18] while NLSE carries a cubic nonlinearity [29, 30].
The dimensionless GI equation is described as [27]

ιyt + ayxx + b|y|4y + ιcy2y∗
x = 0, (1)

where y(x, t) is a complex-valued function showing the wave profile, the independent vari-
ables x and t indicate the distance along fiber and temporal variables, respectively, y∗

stands for the complex conjugate of y, while a, b, and c are real-valued constants rep-
resenting velocity dispersion, quintic nonlinearity, and nonlinear dispersion, respectively.

By adding the perturbation terms, Eq. (1) extends to the form [26]

ιyt + ayxx + b|y|4y + ιcy2y∗
x = ι

[
βyx + λ

(|y|2y
)

x + u
(|y|2)xy

]
, (2)

where β , λ, and u are the coefficients of inter-model dispersion, self-steeping and disper-
sion of high order, respectively.

In the literature, many techniques are examined to probe the miscellaneous kinds of
solutions of GI equation, e.g., the semi-inverse variational method has been investigated
to extract the bright solitons of perturbed GI equation [31], the sine-Gordon method has
been used to investigate the distinct types of solitons [32], singular and bright solitons have
been observed by extended trial equation [33] and in [34, 35]. Recently, some new solu-
tions were explored by applying algebro-geometric method, the Darboux transformation,
tangent expansion method, and extended auxiliary equation technique [36–39].

This paper obtains the soliton solution for perturbed GI equation via extended hyper-
bolic function method [40–42] and generalized Kudryashov method [43–45]. The EHFM
utilizes two types of ordinary differential equation (ODE), and being able to produce multi-
ple types of solution is one of its strengths [46–49]. This versatility can be particularly use-
ful in exploring the behavior of complex physical systems described by NLPDEs. The gen-
eralized Kudryashov’s method is a valuable, simple, and compatible tool for researchers
dealing with nonlinear equations; it has the ability to obtain a variety of solutions through
parameter variation and has been applied on many equations [50–52]. Our presented ap-
proaches have the capability to provide different solutions, in particular periodic, singular,
dark and bright soliton solutions. Meanwhile, other methods, like the unified approach,
generate singular and periodic solutions, whereas the sine–cosine method provides peri-
odic solitons [53]. The auxiliary equation method delivers dark and periodic soliton so-
lutions [54]. Our knowledge and analysis of the literature confirms that the perturbed GI
equation has not been solved yet via these two approaches.
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The remaining paper is structured as follows. The algorithms of the extended hyperbolic
function method and generalized Kudryashov’s method are given in Sects. 2 and 3, respec-
tively. Section 4 elaborates the formulation of equation. Sections 5 and 6 explain the so-
lutions of perturbed GI using EHFM and generalized Kudryshaov’s method, respectively.
Section 7 provides the results and a discussion. In the last section, concluding remarks are
given.

2 Extended hyperbolic function method
In this section, stepwise details of EHFM are given [40–42].

Consider the NLPDE

G(y, yt , yx, ytt , ytx, . . . ) = 0, (3)

where G is a polynomial in y and its derivatives.
In the first step, the governing equation is reduced using a transformation given by

y(x, t) = Y (η)eιψ(x,t), η = x – νt, ψ = –qx + 	 t + ϑ , (4)

where ν is any constant. This transformation changes Eq. (3) into a nonlinear ordinary
differential equation (ODE) of the form

H
(
Y , Y ′, Y ′′, . . .

)
= 0, (5)

where the primes indicate the derivatives with respect to η.
Suppose that the solution of Eq. (5) can be written as

Y (η) =
M∑

j=0

ajχ
j(η), (6)

where aj �= 0, χ (η) is a real function, and M is found by using a homogeneous balancing
rule.

Now χ (η) satisfies two different types of ODE.
Type 1:

χ ′(η) = χ
√

g + hχ2, g, h ∈ R. (7)

The above equation provides the following solutions:
Case 1: If g > 0, h > 0, then

χ1(η) = –
√

g
h

csch
√

g(η).

Case 2: If g < 0, h > 0, then

χ2(η) =
√

–g
h

sec
√

–g(η).
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Case 3: If g > 0, h < 0, then

χ3(η) =
√

g
–h

sech
√

g(η).

Case 4: If g < 0, h > 0, then

χ4(η) =
√

–g
h

csc
√

–g(η).

Case 5: If g < 0, h > 0, then

χ5(η) = cos
√

–g(η) + ι sin
√

–g.

Case 6: If g = 0, h > 0, then

χ6(η) =
1√
h(η)

.

Case 7: If g = 0, h < 0, then

χ7(η) =
1√

–h(η)
.

Type 2:

χ ′(η) = g + hχ2, g, h ∈R. (8)

Case 1: If gh > 0, then

χ8(η) = sgn(g)
√

g
h

tan
(√

gh(η)
)
.

Case 2: If gh > 0, then

χ9(η) = –sgn(g)
√

g
h

cot
(√

gh(η)
)
.

Case 3: If gh < 0, then

χ10(η) = sgn(g)
√

–g
h

tanh
(√

–gh(η)
)
.

Case 4: If gh < 0,

χ11(η) = sgn(g)
√

–g
h

coth
(√

–gh(η)
)
.

Case 5: If g = 0, h > 0, then

χ12(η) = –
1

h(η)
.
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Case 6: If g < 0, h = 0, then

χ13(η) = g(η).

At the end, putting Eq. (6) into Eq. (5) and by using Eqs. (7) and (8), the system of algebraic
equations is obtained. By solving this system with the aid of Mathematica, the values of
constants are retrieved.

3 Generalized Kudryashov’s method
In this section, the main steps of generalized Kudryashov’s method [43–45] are given.

In the first step, consider the NLPDE and wave transformation which converts the
NLPDE into an ODE as described in Eqs. (3)–(5). According to the generalized
Kudryashov’s method, the solution of Eq. (5) is described as

Y (η) =
∑N

i=0 a0pi(η)
∑M

j=0 b0pj(η)
, (9)

where ai, bj �= 0, N and M are found via a homogeneous balancing rule, and p(η) satisfies
the following ODE:

p′(η) = p2(η) – p(η), (10)

where

p(η) =
1

1 + Deη
, (11)

with D being a constant of integration.
In the last step, substitution of Eqs. (9) and (10) into Eq. (5) gives a polynomial in p(η).

After this, the coefficients next to all powers of p(η) are equated to zero and, by solving
the acquired system, the values of the required constants are attained.

4 Mathematical preliminaries
For solving Eq. (2), consider the following transformation:

y(x, t) = Y (η)eιψ(x,t), η = x – νt, ψ = –qx + 	 t + ϑ , (12)

where y(x, t), q, 	 , ν , and ϑ represent the phase component, frequency, wave number,
velocity, and phase component of soliton, respectively.

By plugging Eq. (12) into Eq. (2) and then decomposing it into imaginary and real parts,
the imaginary part yields

ν = –2aq – β , c = –3λ + 2u,

while the real part gives

aY ′′ –
(
	 + aq2 + βq

)
Y – (λ + c)qY 3 + bY 5 = 0. (13)
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The following transformation:

Y = Z
1
2 , (14)

reduces Eq. (13) to the following ODE:

a
(
–
(
Z′)2 + 2ZZ′′) – 4

(
	 + aq2 + βq

)
Z2 – 4(λ + c)qZ3 + 4bZ4 = 0. (15)

5 Application of EHFM
In this section, EHFM is applied to extract the solution of the perturbed GI equation.

Type 1. By using the balancing rule, we get M = 1 in Eq. (15). By inserting Eqs. (6) and
(7) into Eq. (15) and collecting the factors in front of powers of χ (η), a system of equations
is obtained. By solving this system, the following values of constants are obtained:

a0 =
3(cq + λq)

8b
, g =

3q2(c + λ)2

16ab
, a1 =

√

–
3ah
4b

,

	 = –
q(16ab + 16βbq + 15c2q + 30cqλ + 15qλ2)

16b
.

Now by using these values in the solutions of Eq. (7), we obtain
Case 1: If g > 0, h > 0, then

y1 =
(

3(cq + λq)
8b

–
3
8

√

–
ah
b

√
q2(c + λ)2

abh
csch

√
3q2(c + λ)2

16ab
η

) 1
2

eιψ(x,t).

Case 2: If g < 0, h > 0, then

y2 =
(

3(cq + λq)
8b

+
3
8

√

–
ah
b

√

–
q2(c + λ)2

abh
sec

√

–
3q2(c + λ)2

16ab
η

) 1
2

eιψ(x,t).

Case 3: If g > 0, h < 0, then

y3 =
(

3(cq + λq)
8b

+
3
8

√

–
ah
b

√

–
q2(c + λ)2

abh
sech

√
3q2(c + λ)2

16ab
η

) 1
2

eιψ(x,t).

Case 4: If g < 0, h < 0, then

y4 =
(

3(cq + λq)
8b

+
3
8

√

–
ah
b

√

–
q2(c + λ)2

abh
csc

√
–3q2(c + λ)2

16ab
η

) 1
2

eιψ(x,t).

Case 5: If g = 0, h > 0, then

y5 =
(

3(cq + λq)
8b

+
√

–
3ah
4b

1√
hη

) 1
2

eιψ(x,t).

Case 6: If g = 0, h < 0, then

y6 =
(

3(cq + λq)
8b

+
√

–
3ah
4b

1√
–hη

) 1
2

eιψ(x,t).
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Type 2. Similarly, by putting Eqs. (6) and (8) into Eq. (15), the system of equations is ob-
tained. By solving this system, the following values of constants are obtained:

a0 =
3(cq + λq)

8b
, g =

3q2(c + λ)2

16ab
, a1 =

√

–
3ah
4b

,

β =
–16abq2 – 16b	 – 3c2q2 – 6cλq2 – 3λ2q2

16bq
.

Now by inserting these values into the solutions of Eq. (7), we acquire
Case 1: If gh > 0, then

y7 =
(

3(cq + λq)
8b

+
3
8

√

–
ah
b

sgn
(

3q2(c + λ)2

16ab

)√
q2(c + λ)2

abh
tan

√
3hq2(c + λ)2

16ab
η

) 1
2

eιψ(x,t).

Case 2: If gh > 0, then

y8 =
(

3(cq + λq)
8b

–
3
8

√

–
ah
b

sgn
(

3q2(c + λ)2

16ab

)√
q2(c + λ)2

abh
cot

√
3hq2(c + λ)2

16ab
η

) 1
2

eιψ(x,t).

Case 3: If gh < 0, then

y9 =
(

3(cq + λq)
8b

+
3
8

√

–
ah
b

sgn
(

3q2(c + λ)2

16ab

)√

–
q2(c + λ)2

abh
tanh

√

–
3hq2(c + λ)2

16ab
η

) 1
2

eιψ(x,t).

Case 4: If gh < 0, then

y10 =
(

3(cq + λq)
8b

+
3
8

√

–
ah
b

sgn
(

3q2(c + λ)2

16ab

)√
q2(c + λ)2

abh
coth

√
3hq2(c + λ)2

16ab
η

) 1
2

eιψ(x,t).

Case 5: If g = 0, h < 0, then

y11 =
(

3(cq + λq)
8b

+
√

–
3ah
4b

1
–hη

) 1
2

eιψ(x,t).

6 Application of generalized Kudryashov’s method
According to the conditions of generalized Kudryashov’s method, the balancing rule in
Eq. (15) is used, which creates the relation M + 1 = N , in which M = 1 delivers N = 2.
Hence, Eq. (9) is written as

Z(η) =
a0 + a1p(η) + a2p(η)2

b0 + b1p(η)
, (16)
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where a2, b1 �= 0 and the remaining constants (a0, a1, and b0) are to be found. Inserting
Eqs. (16) and (10) into Eq. (15), the system of algebraic equations is obtained which pro-
duces the following constants:

a2 = a2, a1 = a1, b0 =
a1b1

a2
, b1 = b1, a0 = 0, λ =

4a2b – 3b1cq
3b1q

.

Inserting the above values, together with Eq. (11), into Eq. (16), we get

Z1,1 =
a2

b1(Deη + 1)
. (17)

In hyperbolic form, this solution can be written as

Z1,1 =
a2

b1

(
1

(D + 1) cosh( η

2 ) + (D – 1) sinh( η

2 )

)
. (18)

Now, by using Eqs. (14) and (12), we acquire

y1,1 =
(

a2

b1

(
1

(D + 1) cosh( η

2 ) + (D – 1) sinh( η

2 )

)) 1
2

eιψ(x,t). (19)

Since D is the constant of integration, we can assign different values of D. If we designate
D = 1, the above equation is written as

y1,2 =
(

a2

2b1

(
sech

(
η

2

))) 1
2

eιψ(x,t). (20)

If D = –1 then Eq. (18) becomes

y1,3 =
(

a2

–2b1

(
csch

(
η

2

))) 1
2

eιψ(x,t). (21)

If D = 2, then our solution becomes

y1,4 =
(

a2

b1

(
1

3 cosh( η

2 ) + sinh( η

2 )

)) 1
2

eιψ(x,t). (22)

If we put D = 1 in Eq. (17), the following solution is obtained:

y1,5 =
(

a2

–2b1

(
1 – tanh

(
η

2

))) 1
2

eιψ(x,t). (23)

7 Results and discussion
The soliton solutions obtained from the perturbed GI equation have many applications
in the optical communication field, e.g., in optical fiber networks, where information is
transmitted as light pulses and solitons play a significant role. These soliton solutions have
the ability to maintain their shape and energy over long distances without distortion and
transmit high speed data through an optical fiber, enhancing the efficiency of optical com-
munication systems.
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Figure 1 The 3D, 2D, and contour plots of a singular soliton solution |y1|

Graphical illustration is the procedure to show how different parameters relate to each
other. In this section, graphs of some obtained solutions are depicted in Figs. 1–4. Each
figure contains three subgraphs in which (a), (b), and (c) are representing 3D, 2D, and
contour graph, respectively. The parameters are selected in each graph by considering
the constraints and definitions of the proposed method and equation. Figures 1–3 repre-
sent different shapes of a solution obtained by EHFM while Fig. 4 describes the solutions
acquired by generalized Kudryashov’s method. The effect of wave velocity ν on the prop-
agation of waves is also checked. The different solutions of perturbed GI equation in the
form of singular, dark, bright, and periodic singular solitons are accumulated. The graphs
of |y1(x, t)|, |y2(x, t)|, |y9(x, t)|, and |y1,2(x, t)| are shown by Figs. 1–4. The plots of other
solutions are ignored to remove the uniformity.

In Fig. 1(a), we observe a singular soliton for |y1| under the following parameter values:
c = 0.98, q = –0.9, λ = –0.1, b = 1, a = 0.1, h = 1, 	 = 0.98, ϑ = 1, and ν = 1. This soliton
shape shows a localized and solitary wave behavior. Figure 1(b) shows how the velocity
affects the propagation of waves, as it is noticed that the wave moves to the right by de-
creasing the value of ν (black to blue) and on increasing the value of ν the wave shifts to the
left (blue to red). The change in the wave velocity also shows the variations in the phase
component. To further visualize the singular soliton, Fig. 1(c) depicts a contour graph.
This representation helps in understanding the spatial distribution of the wave amplitude
and phase.
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Figure 2 The 3D, 2D, and contour plots of a periodic singular soliton solution |y2|

Figure 2(a) presents the periodic singular soliton of |y2| for the values of q = –0.9, λ =
–0.1, b = 1, a = 0.1, h = 1, 	 = 0.98, ϑ = 1, and ν = 1. This soliton has a periodic, repeating
shape and is characterized by specific parameter values. Similarly, Fig. (2b) shows that
the position of the wave slightly changes by decreasing and increasing the value of ν . The
contour graph of the solution is given in Fig. 2(c), providing a perspective on the soliton’s
evolution.

Figure 3(a) represents the solution |y9| demonstrating the dark soliton for the values of
q = –0.9, λ = –0.1, b = 1, a = 0.1, h = 1, 	 = 0.98, ϑ = 1, and ν = 1, and exhibits a unique
characteristic low-intensity dip in the wave amplitude. On the other hand, when we in-
crease and decrease the value of ν , the wave moves to the right and left, respectively, as
shown in Fig. 3(b). By changing the value of ν , the change in the phase component is also
noticed. The contour envelope is plotted in Fig. 3(c).

Furthermore, |y1,2| reveals the shape entitled as a bright soliton, having a high-intensity
peak. The considered parameters in Fig. 4(a) are c = 0.98, q = –0.9, λ = –0.1, b = 1, a = 0.1,
h = 1, 	 = 0.98, ϑ = 1, and ν = 1. The 2D profile is outlined in Fig. 4(b), and it is observed
that the change in ν shifts the wave to the right or left and also causes variation in the
phase component. The contour graph for |y1,2| is delineated in Fig. 4(c).

Collectively, these figures illustrate the diverse behaviors of solitons under the influence
of different wave velocities and parameter settings, enriching our knowledge on the dy-
namics of wave propagation.
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Figure 3 The 3D, 2D, and contour plots of a dark soliton solution |y9|

Figure 4 The 3D, 2D, and contour plots of a bright soliton solution |y1,2|
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8 Conclusions
This research was concentrated on solving the perturbed GI equation with spatio-
temporal quintic nonlinearity and velocity dispersion with the help of EHFM and gen-
eralized Kudryashov’s method particularly in the context of optical fibers. The outcome
of this effort is the extraction of various types of solutions, including dark, bright, periodic,
and singular periodic solutions. The comparison between achieved and existing solutions
confirmed that the attained solutions are distinct from the prior findings in the existing
literature. For the verification of solution, Mathematica 11 was used to put these solutions
into the governing equation, which confirmed that solutions are accurate. The 3D, 2D,
and contour graphs were sketched by using Maple 18. The behavior of waves by changing
the value of velocity parameter was also highlighted in detail. Furthermore, the obtained
solutions disclosed that the proposed methods are suitable tools for extracting a variety of
solutions of nonlinear equations having a high level of potency in nonlinear fields. In the
future, an investigation of the Lie symmetry method for this model can help to uncover
hidden symmetries and conservation laws within the system and will provide a deeper
understanding of its behavior.
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