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This paper aims to deal with the Cauchy problem of a fractional Lorentz force
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1 Introduction
In this paper, we consider the Cauchy problem of a fractional Lorentz force equation as
follows:

⎧
⎪⎨

⎪⎩

0Dβ
t ( 0Dα

t u(t)
√

1–|0Dα
t u(t)|2

) = E(t, u(t)) + 0Dα
t u(t) ⊗ B(t, u(t)), t ∈ (0, T),

u(0) = 0Dα
t u(0) = 0,

(1.1)

where | · | is the usual Euclidean norm in R
3, 0Dβ

t and 0Dα
t are the left Riemann–Liouville

fractional derivatives with orders α,β ∈ (0, 1], ⊗ is the vector product, 0 represents the
zero vector, E, B ∈ C([0, T]×R

3;R3) stand for the electric and magnetic fields, respectively.
Let φ stand for a relativistic acceleration operator defined by

φ(v) =
v

√
1 – |v|2 , v ∈ B(1),

B(δ) means the open ball of center 0 and radius δ.
In recent years, the qualitative theoretical analysis of the following relativistic oscillator

equation has attracted the attention of many scholars, which comes from the classical
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theory of relativity (see [1–3]):

(
m0u′

√

1 – u′2
c2

)′
= F , (1.2)

where F means the restoring force, m0 stands for the particle’s rest mass, and c represents
the speed of light in a vacuum. Since the relativistic acceleration operator is a singular
operator, it brings many difficulties during the course of analysis. For example, Bereanu,
Jebelean, and Mawhin [4] considered the existence and multiplicity of radial solutions to
the following Neumann boundary problem by critical-point theory in Minkowski space:

⎧
⎨

⎩

div( ∇u√
1–|∇v|2 ) = g(|x|, u) on A,

∂u
∂ν

= 0 on ∂A,
(1.3)

where 0 ≤ R1 < R2,A = {x ∈ R
N : R1 ≤ |x| ≤ R2}, g : [R1, R2] × R → R is continuous.

Mawhin [5] made a further study on the multiplicity of radial solutions of a Neumann
boundary condition with periodic nonlinearity by Hamiltonian techniques. Moreover,
Coelho et al. [6] employed the reducing method that converts the singular problem to
an equivalent nonsingular problem to investigate some Dirichlet boundary value prob-
lems with parameters and obtained the existence and multiplicity of solutions by varia-
tional methods. Furthemore, Jebelean, Mawhin, and Şerban [7] considered the multiplicity
of periodic solutions to the N-dimensional relativistic pendulum equation with periodic
nonlinearity by a geometric method in critical-point theory. For more papers, we refer the
reader to [8–11] and references therein.

Recently, the famous Lorentz force equation has attracted the attention of many schol-
ars, which is an important equation in the field of mathematical physics and can be used
to describe the effect of an electromagnetic field on the trajectory of a slowly accelerated
charged particle in R

3. One of the important questions is the existence of periodic motion
to charged particles. From different perspectives, by different functional methods, Bere-
anu and Mawhin [12] and Arcoya, Bereanu, and Torres [13] established sufficient condi-
tions for the existence of circular motion when the electric field is nonsingular. For the
singular case like a Coulomb electric potential or the magnetic dipole, Garzón and Torres
[14] gave a positive answer by the topological degree method.

Inspired by the above literature, an interesting question naturally arises in the mind. Can
we consider the existence and multiplicity of solutions to a fractional Lorentz force equa-
tion? It should be mentioned that compared to the above paper, fractional derivatives lack
some basic properties such as monotonicity, convexity–concavity, and so on. This brings
many difficulties such as the estimation of inequality and prior bounds. Moreover, as far as
we know, there are few papers investigating the existence and multiplicity of solutions to a
fractional Lorentz force equation. Furthermore, if α = β = 1, the operator 0Dβ

t (φ(0Dα
t u(t)))

reduces to (φ(u′))′, so the fractional-order model is more general than the integer-order
model. Based on the above reasons, the Cauchy problem of a fractional Lorentz force equa-
tion was considered. By the methods of reducing and topological degree in cone, the exis-
tence and multiplicity of solutions to the problem (1.1) were obtained. Also, for the topics
on initial value problems or boundary value problems of fractional differential models,
one can refer to [15–17] and references therein.
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The rest of this paper is organized as follows. To begin with, the basic space, the defi-
nitions and properties of left Riemann–Liouville fractional integrals and derivatives, and
some necessary lemmas are given in Sect. 2. Moreover, based on the methods of reducing
and topological degree in cone, the existence and multiplicity of solutions to the problem
(1.1) are proved in Sect. 3.

2 Preliminaries
Let c represent a vector and R+ = [0, +∞). Setting C := C([0, T],R3) with the norm ‖u‖∞ =
maxt∈[0,T] |u(t)|, define

Cα =
{

u : [0, T] → R
3|u ∈ C and 0Dα

t u ∈ C
}

,

whose norm is ‖u‖ = max{‖u‖∞,‖0Dα
t u‖∞}.

Definition 2.1 ([15, 16]) Let u be a function defined on [0, T].
(i) The left Riemann–Liouville fractional integral of order α > 0 for a function u is de-

fined by

0Iα
t u(t) =

1
�(α)

∫ t

0
(t – s)α–1u(s) ds, t ∈ [0, T],

provided the right-hand side is pointwise defined on [0, T], where �(α) is the standard
gamma function.

(ii) If α = n, n ∈N, it reduces to the usual definitions

0In
t u(t) =

1
�(n)

∫ t

0
(t – s)n–1u(s) ds, t ∈ [0, T].

Definition 2.2 ([15, 16]) Let u be a function defined on [0, T].
(i) The left Riemann–Liouville fractional derivatives of order α > 0 for a function u is

defined by

0Dα
t u(t) =

dn

dtn 0In–α
t u(t), t ∈ [0, T],

where n – 1 ≤ α < n and n ∈N+.
(ii) If α = n – 1, n ∈ N+, it reduces to the usual definition

0Dn–1
t u(t) = un–1(t).

Lemma 2.3 ([17]) Assume that u ∈ C(0, T) ∩ L1(0, T) with a fractional derivative of order
α > 0 that belongs to C(0, T) ∩ L1(0, T). Then,

0Iα
t 0Dα

t u(t) = u(t) + c1tα–1 + c2tα–2 + · · · + cN tα–N ,

for some ci ∈ R, i = 1, 2, . . . , N , where N = [α] + 1.
Define Pc = {x ∈ P|‖x‖ ≤ c}, where P is a cone of Banach space E and c is a positive con-

stant.
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Lemma 2.4 ([18]) Let P be a cone of Banach space E and 	 : Pc → Pc be a completely
continuous map. There exists a nonnegative continuous concave functional θ such that
θ (x) ≤ ‖x‖ for x ∈ P and numbers 0 < a < b < d ≤ c satisfying the following conditions:

(i) {x ∈ P(θ , b, d)|θ (x) > b} �= ∅ and θ (	x) > b for x ∈ P(θ , b, d), where P(θ , b, d) =
{x ∈ P|θ (x) ≥ b and ‖x‖ ≤ d};

(ii) ‖	x‖ < a for x ∈ Pa;
(iii) θ (	x) > b for x ∈ P(θ , b, c) with ‖	x‖ > d.
Then, 	 has at least three fixed points x1, x2, x3 in Pc.

In order to obtain a priori bounds, the following assumption is presented:
(H1) There exist functions λi ∈ C([0, T],R+), i = 1, 2, 3, 4 such that for t ∈ [0, T], u ∈R

∣
∣E(t, u)

∣
∣ ≤ λ1(t) + λ2(t)|u|μ, μ ∈ (0, 1],

∣
∣B(t, u)

∣
∣ ≤ λ3(t) + λ4(t)|u|ν , ν ∈ (0, 1],

where ‖λ2‖∞ + ‖λ4‖∞ < �(α+1)�(β+1)√
3Tα+β .

If u(t) is a solution of (1.1), by applying the operator 0Iβ
t on both sides of the equation,

we have

0Dα
t u(t) = φ–1(

0Iβ
t
(
E
(
t, u(t)

)
+ 0Dα

t u(t) ⊗ B
(
t, u(t)

))
+ c1tβ–1),

which together with 0Dα
t u(0) = 0 imply that c1 = 0 and

u(t) = 0Iα
t
(
φ–1(

0Iβ
t
(
E
(
t, u(t)

)
+ 0Dα

t u(t) ⊗ B
(
t, u(t)

))))
+ c2tα–1,

which together with u(0) = 0 yield that c2 = 0 and

u(t) = 0Iα
t
(
φ–1(

0Iβ
t
(
E
(
t, u(t)

)
+ 0Dα

t u(t) ⊗ B
(
t, u(t)

))))
.

Since |0Dα
t u(t)| < 1, it follows that

∣
∣u(t)

∣
∣ ≤ √

30Iα
t

(

φ–1
(

Tβ

�(β + 1)
(‖λ1‖∞ + ‖λ3‖∞ + ‖λ2‖∞‖u‖μ

∞ + ‖λ4‖∞‖u‖ν
∞

)
))

=
√

30Iα
t

( Tβ

�(β+1) (‖λ1‖∞ + ‖λ3‖∞ + ‖λ2‖∞‖u‖μ∞ + ‖λ4‖∞‖u‖ν∞)
√

1 + T2β

(�(β+1))2 (‖a1‖∞ + ‖a3‖∞ + ‖a2‖∞‖u‖μ∞ + ‖a4‖∞‖u‖ν∞)2

)

≤ √
30Iα

t

(
Tβ

�(β + 1)
(‖λ1‖∞ + ‖λ3‖∞ + ‖λ2‖∞‖u‖μ

∞ + ‖λ4‖∞‖u‖ν
∞

)
)

≤
√

3Tα+β

�(α + 1)�(β + 1)
(‖λ1‖∞ + ‖λ3‖∞ + ‖λ2‖∞‖u‖μ

∞ + ‖λ4‖∞‖u‖ν
∞

)
,

which together with ‖λ2‖∞ + ‖λ4‖∞ < �(α+1)�(β+1)√
3Tα+β imply that there exists a positive con-

stant r > 1 such that |u(t)| < r. Thus, the solutions of (1.1) must belong to B(r).
Let � := φ–1(B̄(ω)) ⊂ B(1), where ω =

√
3Tβ

�(β+1) (‖λ1‖∞ + ‖λ3‖∞ + ‖λ2‖∞rμ + ‖λ4‖∞rν).
Moreover, choose σ ∈ (0, 1) such that

σ√
1 – σ 2

≥ ω, � ⊂ B̄(σ ). (2.1)



Shen et al. Boundary Value Problems        (2023) 2023:104 Page 5 of 11

Denote ψ : R3 →R
3:

ψ(x) =

⎧
⎨

⎩

x√
1–|x|2 , |x| ≤ σ ,

x√
1–|σ |2 , |x| ≥ σ .

Let U = {u ∈ C|‖u‖∞ ≤ r}. By the method of [7], we can obtain the following lemma.

Lemma 2.5 A function u ∈ Cα ∩U is a solution of problem (1.1) if and only if it is a solution
of the following system:

⎧
⎨

⎩

0Dβ
t (ψ(0Dα

t u(t))) = E(t, u(t)) + 0Dα
t u(t) ⊗ B(t, u(t)), t ∈ (0, T),

u(0) = 0Dα
t u(0) = 0.

(2.2)

Proof On the one hand, if u ∈ Cα ∩ U is a solution of problem (1.1), by 0Dα
t u(0) = 0, we

can obtain that

φ
(

0Dα
t u(t)

)
= 0Iβ

t
(
E
(
t, u(t)

)
+ 0Dα

t u(t) ⊗ B
(
t, u(t)

))
,

which together with |0Dα
t u(t)| < 1 yield that

∣
∣φ

(
0Dα

t u(t)
)∣
∣ ≤

√
3Tβ

�(β + 1)
(‖λ1‖∞ + ‖λ3‖∞ + ‖λ2‖∞rμ + ‖λ4‖∞rν

)
= ω.

Thus, for any t ∈ [0, T], 0Dα
t u(t) ∈ � and |0Dα

t u(t)| ≤ σ , which implies that φ(0Dα
t u(t)) =

ψ(0Dα
t u(t)).

On the other hand, if u ∈ Cα ∩ U is a solution of problem (2.2), we just need to show
that |0Dα

t u(t)| ≤ σ for any t ∈ [0, T]. If not, we assume that there exists a t∗ ∈ [0, T] such
that |0Dα

t u(t∗)| > σ . Since

0Iβ
t
(

0Dβ
t
(
ψ

(
0Dα

t u(t)
)))

= ψ
(

0Dα
t u(t)

)
– c3tβ–1, (2.3)

which together with 0Dα
t u(0) = 0 yield that c3 = 0 and

ω ≥ ∣
∣0Iβ

t
(

0Dβ
t
(
ψ

(
0Dα

t u(t)
)))|t=t∗

∣
∣ =

∣
∣ψ

(
0Dα

t u(t)
)|t=t∗

∣
∣ >

σ
√

1 – |σ |2 , (2.4)

which contradicts the definition of σ . Thus, the proof is complete. �

3 Main results
3.1 Existence
Define the operator 	 : Cα → Cα by

	u(t) = 0Iα
t
(
ψ–1(

0Iβ
t
(
E
(
t, u(t)

)
+ 0Dα

t u(t) ⊗ B
(
t, u(t)

))))
, (3.1)

where

ψ–1(x) =

⎧
⎨

⎩

x√
1+|x|2 , |x| ≤ σ√

1–σ 2 ,

x
√

1 – |σ |2, |x| ≥ σ√
1–σ 2 .
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Letting

� =
{

u ∈ Cα ∩ U|u = 	u and
∣
∣0Dα

t u
∣
∣ ≤ σ

}
.

Thus, a function u ∈ � is a solution of the problem (1.1). Define

� =
{

u ∈ Cα|‖u‖ ≤ ρ
}

,

where ρ = max{σ , σTα

�(α+1) }. It follows that � is a nonempty, convex, closed set. Moreover, if
σTα

�(α+1) < 1, we have � ⊂ Cα ∩ U .

Remark 3.1 If Tα ≤ �(α + 1), it follows that ρ = σ .

Lemma 3.2 Assuming that the condition (H1) is satisfied, 	 : � → � is completely con-
tinuous, provided that σTα

�(α+1) < 1.

Proof It is not difficult to obtain that 	 is continuous by the continuity of E and B. Based
on (H1), for (t, u) ∈ [0, 1] × �, we have

∣
∣0Iβ

t
(
E
(
t, u(t)

)
+ 0Dα

t u(t) ⊗ B
(
t, u(t)

))∣
∣

≤
√

3Tβ

�(β + 1)
(‖λ1‖∞ + ‖λ3‖∞ + ‖λ2‖∞ρμ + ‖λ4‖∞ρν

)

≤ ω,

which together with ω ≤ σ√
1–σ 2 yield that

∣
∣0Dα

t
(
	u(t)

)∣
∣ ≤ ω√

1 + ω2
≤ σ ≤ ρ

and

∣
∣	u(t)

∣
∣ ≤ ωTα

�(α + 1)
√

1 + ω2
≤ σTα

�(α + 1)
≤ ρ.

Thus, we have ‖	u‖ ≤ ρ , which implies 	 : � → � is uniformly bounded. For simplicity,
let f (t) = E(t, u(t)) + 0Dα

t u(t) ⊗ B(t, u(t)). Hence, ∀t1, t2 ∈ [0, 1], assuming that t1 ≤ t2, for
any u ∈ �, it follows that

∣
∣0Iβ

t2 f (t) – 0Iβ
t1 f (t)

∣
∣

=
∣
∣
∣
∣

1
�(β)

∫ t1

0

(
(t2 – s)β–1 – (t1 – s)β–1)f (s) ds +

1
�(β)

∫ t2

t1

(t2 – s)β–1f (s) ds
∣
∣
∣
∣

≤
√

3(‖λ1‖∞ + ‖λ3‖∞ + ‖λ2‖∞ρμ + ‖λ4‖∞ρν)
�(β)

(∫ t1

0

(
(t1 – s)β–1 – (t2 – s)β–1)ds

+
∫ t2

t1

(t2 – s)β–1 ds
)

=
√

3(‖a1‖∞ + ‖a3‖∞ + ‖a2‖∞ρμ + ‖a4‖∞ρν)
�(β + 1)

(
2(t2 – t1)β + tβ

1 – tβ
2
)
,
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which implies that

∣
∣0Iβ

t2 f (t) – 0Iβ
t1 f (t)

∣
∣ → 0 uniformly as t1 → t2.

Moreover, we have

∣
∣0Dα

t
(
	u(t2)

)
– 0Dα

t
(
	u(t1)

)∣
∣

=
∣
∣ψ–1(

0Iβ
t2 f (t)

)
– ψ–1(

0Iβ
t1 f (t)

)∣
∣

=
∣
∣
∣
∣

(
√

1 + (0Iβ
t1 f (t))2 –

√

1 + (0Iβ
t2 f (t))2)0Iβ

t2 f (t) +
√

1 + (0Iβ
t2 f (t))2(0Iβ

t2 f (t) – 0Iβ
t1 f (t))

√

1 + (0Iβ
t1 f (t))2

√

1 + (0Iβ
t2 f (t))2

∣
∣
∣
∣

=
∣
∣
∣
∣

0Iβ
t2 f (t)(0Iβ

t1 f (t) + 0Iβ
t2 f (t))(0Iβ

t1 f (t) – 0Iβ
t2 f (t))

(
√

1 + (0Iβ
t1 f (t))2 +

√

1 + (0Iβ
t2 f (t))2)

√

1 + (0Iβ
t1 f (t))2

√

1 + (0Iβ
t2 f (t))2

+

√

1 + (0Iβ
t2 f (t))2(0Iβ

t2 f (t) – 0Iβ
t1 f (t))

√

1 + (0Iβ
t1 f (t))2

√

1 + (0Iβ
t2 f (t))2

∣
∣
∣
∣ → 0 uniformly as t1 → t2.

Similarly, we can obtain

∣
∣	u(t2) – 	u(t1)

∣
∣ ≤ σ

�(α + 1)
(
2(t2 – t1)α + tα

1 – tα
2
)
,

which yields that

∣
∣	u(t2) – 	u(t1)

∣
∣ → 0 uniformly as t1 → t2.

Thus, 	 is equicontinuous on �. By the Arzelà–Ascoli theorem, it follows that 	 : � → �

is completely continuous. �

Based on Lemma 3.2, we can obtain the following theorem immediately by Schauder’s
fixed-point theorem.

Theorem 3.3 If the assumption (H1) is satisfied, there exists a fixed point u ∈ � such that
	u = u, provided that Tα ≤ �(α + 1).

Remark 3.4 By Theorem 3.3, we known that the fixed point u ∈ � ⊂ �, which tells us that
the problem (1.1) has at least one solution on �.

3.2 Multiplicity
For any u, v ∈ Cα , u ≥ v means ui ≥ vi, where ui and vi are components of u and v, respec-
tively, i = 1, 2, 3. Let P be a cone of Cα , where P = {u ∈ Cα|u(t) ≥ 0}. Define a nonnegative
continuous functional θ on P by

θ (	u) = min
t∈[τ ,T–τ ]

	1u(t) + min
t∈[τ ,T–τ ]

	2u(t) + min
t∈[τ ,T–τ ]

	3u(t),
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where (
√

3
3 ) 1

α T < τ < T , 	iu stand for the component of 	u, i = 1, 2, 3. Since, for any u, v ∈
Cα and s ∈ [0, 1], we have

θ
(
s	u + (1 – s)	v

)
= min

t∈[τ ,T–τ ]

{
s	1u(t) + (1 – s)	1v(t)

}

+ min
t∈[τ ,T–τ ]

{
s	2u(t) + (1 – s)	2v(t)

}

+ min
t∈[τ ,T–τ ]

{
s	3u(t) + (1 – s)	3v(t)

}

≥ s
(

min
t∈[τ ,T–τ ]

	1u(t) + min
t∈[τ ,T–τ ]

	2u(t) + min
t∈[τ ,T–τ ]

	3u(t)
)

× (1 – s)
(

min
t∈[τ ,T–τ ]

	1v(t) + min
t∈[τ ,T–τ ]

	2v(t) + min
t∈[τ ,T–τ ]

	3v(t)
)

= sθ (	u) + (1 – s)θ (	v),

which implies that the functional θ is concave. Choose 0 < a < b < d ≤ c ≤ σ < 1 satisfying

ω1 <
a√

1 – a2
,

ω2 ≤ d√
1 – d2

,

ω3 ≤ c√
1 – c2

,

where

ω1 =
√

3Tβ

�(β + 1)
(‖λ1‖∞ + ‖λ3‖∞ + ‖λ2‖∞aμ + ‖λ4‖∞aν

)
,

ω2 =
√

3Tβ

�(β + 1)
(‖λ1‖∞ + ‖λ3‖∞ + ‖λ2‖∞dμ + ‖λ4‖∞dν

)
,

ω3 =
√

3Tβ

�(β + 1)
(‖λ1‖∞ + ‖λ3‖∞ + ‖λ2‖∞cμ + ‖λ4‖∞cν

)
.

Moreover, it follows that

a√
1 – a2

<
d√

1 – d2
≤ c√

1 – c2
≤ σ√

1 – σ 2
.

In order to study the positive solution of the initial value problem in the cone, the fol-
lowing assumptions are naturally required.

(H2) E(t, u), B(t, u) : [0, T] ×R
3
+ →R

3
+ are continuous and 0Dα

t u ⊗ B(t, u) ≥ 0.
(H3) Ei(t, u) > �b for (t, u) ∈ [0, T] × [0, d], i = 1, 2, 3,

where Ei(t, u) stand for the component of E(t, u),

� =
�(α + β + 1)

√

1 + ω2
3

3τα+β
.

Lemma 3.5 Assuming that the conditions (H1) and (H2) are satisfied, 	 : Pc → Pc is com-
pletely continuous, provided that Tα ≤ �(α + 1).
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Proof To begin with, by (H2), we can obtain that 	u ≥ 0 for any u ∈ Pc and 	 is continu-
ous. Moreover, for any u ∈ Pc, in the same way as Lemma 3.2, one can obtain

∣
∣0Dα

t
(
	u(t)

)∣
∣ ≤ ω3

√

1 + ω3
3

≤ c ≤ σ

and

∣
∣	u(t)

∣
∣ ≤ cTα

�(α + 1)
≤ c ≤ σ

because of ω3 ≤ c√
1–c2 . Thus, 	 : Pc → Pc is uniformly bounded. Similarly, we can also

obtain that 	 is equicontinuous on Pc. In view of the Arzelà–Ascoli theorem, it follows
that 	 : Pc → Pc is completely continuous. �

Theorem 3.6 Assuming that the conditions (H1), (H2), and (H3) are satisfied, if d = c,
there exist at least three fixed points u1, u2, u3 in Pc meeting 	u = u, provided that Tα =
�(α + 1).

Proof By Lemma 3.5, we know that 	 : Pc → Pc is completely continuous. From (H1), in
the same way as Lemma 3.2, it follows that ‖	u‖ < a for u ∈ Pa, which yields that the
condition (ii) of Lemma 2.4 is satisfied. Letting

u0(t) =
(
u0,1(t), u0,2(t), u0,3(t)

)
=

(
b + d

2
√

3Tα
tα ,

b + d
2
√

3Tα
tα ,

b + d
2
√

3Tα
tα

)

,

we have ‖u0‖∞ = b+d
2 ≤ d. Moreover, since 0 < α ≤ 1, one can obtain that for any i ∈

{1, 2, 3},

0Dα
t u0,i(t) =

d
dt 0I1–α

t u0,i(t)

=
b + d

2
√

3Tα

d
dt

(
1

�(1 – α)

∫ t

0
(t – s)–αsα ds

)

ς= s
t=

b + d
2
√

3Tα

d
dt

(
t

�(1 – α)

∫ 1

0
(1 – ς )–αςα dς

)

=
(b + d)�(1 + α)

2
√

3Tα
=

b + d
2
√

3
,

which yields that ‖0Dα
t u0‖∞ ≤ b+d

2 ≤ d. Thus, ‖u0‖ ≤ d. Since (
√

3
3 ) 1

α T < τ < T , we have

θ (u0) =
√

3(b + d)
2Tα

τα > b.

Hence,

{
u ∈ P(θ , b, d)|θ (u) > b

} �= ∅.

Thus, by (H2) and (H3), for (t, u) ∈ [0, T] × [0, d], one has

θ (	u) = min
t∈[τ ,T–τ ]

	1u(t) + min
t∈[τ ,T–τ ]

	2u(t) + min
t∈[τ ,T–τ ]

	3u(t)
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≥ 1
�(α)

min
t∈[τ ,T–τ ]

∫ t

0
(t – s)α–1 0Iβ

s E1(s, u(s))
√

1 + |0Iβ
s (E(s, u(s)) + 0Dα

t u(s) ⊗ B(s, u(s)))|2
ds

+
1

�(α)
min

t∈[τ ,T–τ ]

∫ t

0
(t – s)α–1 0Iβ

s E2(s, u(s))
√

1 + |0Iβ
s (E(s, u(s)) + 0Dα

t u(s) ⊗ B(s, u(s)))|2
ds

+
1

�(α)
min

t∈[τ ,T–τ ]

∫ t

0
(t – s)α–1 0Iβ

s E3(s, u(s))
√

1 + |0Iβ
s (E(s, u(s)) + 0Dα

t u(s) ⊗ B(s, u(s)))|2
ds

>
3�b

�(β + 1)�(α)
√

1 + ω2
3

min
t∈[τ ,T–τ ]

∫ t

0
(t – s)α–1sβ ds

=
3�b

�(β + 1)�(α)
√

1 + ω2
3

min
t∈[τ ,T–τ ]

�(α)�(β + 1)
�(α + β + 1)

tα+β

=
3�bτα+β

�(α + β + 1)
√

1 + ω2
3

= b.

Thus, the condition (i) of Lemma 2.4 holds. If d = c, the condition (i) implies (iii) in
Lemma 2.4. Then, there exist at least three fixed points u1, u2, u3 ∈ Pc meeting 	u = u. �

Remark 3.7 By Theorem 3.6, it follows that the fixed points u1, u2, u3 ∈ Pc ⊂ �, which
yields that the problem (1.1) has at least three solutions on Pc.
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