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Abstract
This paper presents a new way to solve numerically multiterm variable-order
fractional differential equations (MTVOFDEs) with initial conditions by using a class of
modified shifted Jacobi polynomials (MSJPs). As their defining feature, MSJPs satisfy
the given initial conditions. A key aspect of our methodology involves the
construction of operational matrices (OMs) for ordinary derivatives (ODs) and
variable-order fractional derivatives (VOFDs) of MSJPs and the application of the
spectral collocation method (SCM). These constructions enable efficient and accurate
numerical computation. We establish the error analysis and the convergence of the
proposed algorithm, providing theoretical guarantees for its effectiveness. To
demonstrate the applicability and accuracy of our method, we present five numerical
examples. Through these examples, we compare the results obtained with other
published results, confirming the superiority of our method in terms of accuracy and
efficiency. The suggested algorithm yields very accurate agreement between the
approximate and exact solutions, which are shown in tables and graphs.
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1 Introduction
Fractional calculus has gained significant interest from researchers across various disci-
plines over the past few decades. This interest stems from the fact that fractional opera-
tors offer a universal perspective on system evolution. As a result, fractional derivatives
provide a more accurate description of certain physical phenomena [1–4]. In the litera-
ture, numerous definitions of fractional differentiation (for more information, we refer to
[5–7]).

A recent advancement in the field of fractional calculus involves extending the theory
to accommodate VOFDs. This enables a more flexible and dynamic characterization of
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systems. In a specific study conducted by the authors [8], they explored the properties of
VOFD operators [9, 10].

Variable-order fractional calculus (VOFC) provides a powerful framework for capturing
the nonlocal characteristics exhibited by various systems, and it has been widely applied
in physics, mechanics, control, and signal processing to describe real-world phenomena
[11–15]. In the field of engineering mechanics, VOFC has found numerous applications.
For instance, in [16], VOFD operators were utilized to model the microscopic structure
of materials. The Riesz–Caputo fractional derivative of space-dependent order was em-
ployed in continuum elasticity, as demonstrated in [17]. The nonlinear viscoelastic behav-
ior of fractional systems of time-dependent fractional order was investigated in [18, 19].
These examples highlight the diverse applications of VOFC in engineering mechanics,
illustrating its ability to capture complex behaviors and phenomena.

Finding analytical solutions for fractional differential equations (FDEs) is a challeng-
ing task, leading researchers to rely on numerical approximations in most cases. Conse-
quently, numerous numerical methods have been introduced and developed to obtain ap-
proximated solutions for this class of equations. In previous works, researchers have em-
ployed various techniques to construct numerical solutions for FDEs using orthogonal and
non-orthogonal polynomials (see, for instance, [20–29]), whereas the Bernstein polyno-
mials were employed in [30, 31]. In [32] a numerical scheme based on Fourier analysis was
proposed. In [33], proposed schemes were discussed based on finite difference approxi-
mations. These references highlight the diverse range of numerical methods employed in
approximating solutions for FDEs, showcasing the utilization of Jacobi polynomials (JPs),
Legendre polynomials, Legendre wavelets, operational matrices, Chebyshev polynomials,
and Bernstein polynomials.

Orthogonal JPs [34–37] possess numerous advantageous properties that render them
highly valuable in the numerical solution of various types of DEs, particularly through
spectral methods. The key characteristics of JPs include orthogonality, exponential accu-
racy, and the presence of two parameters that offer flexibility in shaping the approximate
solutions. These properties make JPs well suited for solving diverse problems. In the cur-
rent research, we leverage the MSJPs that satisfy the given initial conditions to develop
an SCM capable of addressing linear and nonlinear FDEs of variable order. By utilizing
these polynomials we can effectively construct an accurate numerical approach for solv-
ing FDEs, taking advantage of the SCM and the desirable properties of JPs. This algorithm
is based on building two types of OMs for the ODs and the VOFDs of MSJPs. Another ad-
vantage of the presented method is that it does not require the uniqueness of the suggested
solution. This is important because many differential equations have multiple solutions,
and the collocation method can still be used to approximate these solutions. For more
explanation, the collocation method approximates the solution by interpolating it at a set
of collocation points. Even if the solution is not unique, the collocation method will still
produce an approximation that is accurate at the collocation points. As the number of col-
location points increases, the approximation will become more accurate and converge to
the exact solution.

Here we examine the following general form of an MTVOFDE:

Dν(t)y(t) = F
(
t, y(t), Dν1(t)y(t), Dν2(t)y(t), . . . , Dνm(t)y(t)

)
, 0 < t ≤ �, (1.1)
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subject to the initial conditions

y(j)(0) = βj, j = 0, 1, . . . , n – 1, (1.2)

where n is the smallest positive integer number such that 0 < ν1(t) < ν2(t) < · · · < νm(t) <
ν(t) ≤ n for all t ∈ [0,�], and Dν(t)y(t), Dνi(t)y(t) (i = 1, 2, . . . , m) are the VOFDs defined
in the Caputo sense. Equations of the form (1.1) and (1.2) hold significant practical rele-
vance, as they find applications in various domains. Specifically, these equations have been
employed in noise reduction and signal processing [38, 39], geographical data processing
[40], and signature verification [41]. These applications highlight the broad range of fields
where these equations play a crucial role in addressing real-world challenges.

We have come up with a novel way to deal with problem (1.1)–(1.2) by making a new
Galerkin operational matrix (OM) of ODs and a new operational matrix of VOFDs in
the Caputo sense that are both designed for the MSJPs’ basis vector. These OMs serve
as a powerful tool for achieving accurate numerical solutions through the utilization of
the SCM. To the best of our knowledge, this is the first instance in the existing literature
where a method for solving a broad class of MTVOFDEs, based on the Caputo derivative
of the proposed basis vector, has been introduced. This novel methodology opens up new
avenues for effectively addressing and obtaining numerical solutions for this class of FDEs.

This paper is structured as follows. In Sect. 2, we provide a review of the fundamen-
tal notiond and principles of VOFC. In Sect. 3, we present certain characteristics of the
shifted JPs and MSJPs. In Sect. 4, we focus on making new OMs for the ODs and VOFDs of
MSJPs. This is done to solve the problem shown in equations (1.1) and (1.2). In Sect. 5, we
explore the application of constructed new OMs with the SCM as a numerical approach
to solve this problem. The evaluation of the error estimate for the numerical solution ob-
tained through this new scheme is presented in Sect. 6. To illustrate the effectiveness of
the proposed method, Sect. 7 includes six examples and comparisons with various other
methods available in the literature. Finally, in Sect. 8, we summarize the main findings and
draw conclusions based on our study.

2 Basic definition of Caputo variable-order fractional derivatives
In this section, we present the essential notions and fundamental tools necessary for devel-
oping the proposed technique. These notions and tools form the foundation upon which
our approach is built, enabling us to effectively address the problem at hand.

Definition 2.1 [23, 31, 42] The Caputo VOFDs for h(t) ∈ Cm[0,�] are defined as

Dμ(t)h(t) =
1

�(1 – μ(t))

∫ t

0+
(t – τ )–μ(t)h′(τ ) dτ +

h(0+) – h(0–)
�(1 – μ(t))

t–μ(t). (2.1)

In the context of a perfect beginning time and 0 < μ(t) < 1, we get the following:

Definition 2.2 [23, 31, 42]At the beginning time, we have

Dμ(t)h(t) =
1

�(1 – μ(t))

∫ t

0+
(t – τ )–μ(t)h′(τ ) dτ

(
0 < μ(t) < 1

)
. (2.2)
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The Caputo VOFD operator has the following properties:

Dμ(t)(λ1h1(t) + λ2h2(t)
)

= λ1Dμ(t)h1(t) + λ2Dμ(t)h2(t), (2.3a)

Dμ(t)f (t) =
dnf (t)

dtn , μ(t) = n, n ∈ N (2.3b)

As shown in [23, 31], equation (2.1) yields

Dμ(t)(C) = 0 (C is a constant), (2.4a)

Dμ(t)tk =

⎧
⎨

⎩
0, k = 0,

�(k+1)
�(k+1–μ(t)) tk–μ(t), k = 1, 2, . . . .

(2.4b)

Remark 2.1 The interested reader can refer to [4, pp.35–42] for numerous definitions and
more properties related to the VOFDs.

3 An overview on the shifted JPs and their modified ones
This section concentrates on presenting some elementary properties of the JPs and their
shifted ones. Furthermore, we will introduce a new kind of orthogonal polynomials, which
we call MSJPs.

3.1 An overview on the shifted JPs
The orthogonal JPs, P(α,β)

n (x),α,β > –1, satisfy the orthogonality relation [43]

∫ 1

–1
wα,β (x)P(α,β)

n (x)P(α,β)
m (x) dx =

⎧
⎨

⎩
0, m �= n,

h(α,β)
n , m = n,

where wα,β (x) = (1 – x)α(1 + x)β and h(α,β)
n = 2λ�(n+α+1)�(n+β+1)

n!(2n+λ)�(n+λ) ,λ = α + β + 1.
The so-called shifted JPs, P(α,β)

�,n (t) = P(α,β)
n (2t/� – 1), satisfy the relation

∫ �

0
wα,β

� (t)P(α,β)
�,n (t)P(α,β)

�,m (t) dt =

⎧
⎨

⎩
0, m �= n,

( �
2 )λh(α,β)

n , m = n,

where wα,β
� (t) = (� – t)αtβ .

The power-form representation of P(α,β)
�,n (t) is as follows:

P(α,β)
�,i (t) =

i∑

k=0

c(i)
k tk , (3.1)

where

c(i)
k =

(–1)i–k�(i + β + 1)�(i + k + λ)
�kk!(i – k)!�(k + β + 1)�(i + λ)

. (3.2)
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Alternatively, the expression for tk in relation to P(α,β)
�,r (t) has the form

tk =
k∑

r=0

b(k)
r P(α,β)

�,r (t), (3.3)

where

b(k)
r =

�kk!(λ + 2r)�(k + β + 1)�(r + λ)
(k – r)!�(r + β + 1)�(k + r + λ + 1)

. (3.4)

3.2 Introducing MSJPs
In this section, it is advantageous to introduce a definition for the polynomials {φ(α,β)

n,j (t)}j≥0

to satisfy the given form of homogeneous initial conditions:

φ
(α,β)
n,j (t) = tnP(α,β)

�,j (t). (3.5)

Subsequently, the polynomials φ
(α,β)
n,j (t) satisfy the orthogonality relation, as follows:

∫ �

0
wα,β

n,� (t)φ(α,β)
n,i (t)φ(α,β)

n,j (t) dt =

⎧
⎨

⎩
0, i �= j,

( �
2 )λh(α,β)

i , i = j,
(3.6)

where wα,β
n,� (t) = 1

t2n (� – t)αtβ .

Remark 3.1 For n = 0, we have

φ
(α,β)
0,i (t) = P(α,β)

�,i (t),

and thus φ
(α,β)
n,i (t) are generalizations of P(α,β)

�,i (t).

4 Two OMs for ODs and VOFDs of φ(α,β)
n,i (t)

In this section, we present two OMs for ODs and VOFDs of φ
(α,β)
n,i (t), with n = 0, 1, 2, . . . .

To accomplish this, we first start with the following theorem.

Theorem 4.1 The first derivative of φ
(α,β)
n,i (t) for all i ≥ 0 can be written in the form

Dφ
(α,β)
n,i (t) =

i–1∑

j=0

θ
α,β
i,j (n)φ(α,β)

n,j (t) + εn,i(t), (4.1)

where εn,i(t) = 1
i! (–1)in(β + 1)itn–1, and

θ
α,β
i,j (n) = Cα,β

i,j

i–j–1∑

r=0

(–1)r(j + n + r + 1)(i + j + λ + 1)r

r!(j + r + 1)(j + r + β + 1)�(i – j – r)�(2j + r + λ + 1)
, (4.2)

where

Cα,β
i,j =

(–1)i+j–1(λ + i)(β + 1)i(λ + 2j)�(j + λ)(i + λ + 1)j

�(β + 1)j
.
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Proof In view of relations (3.1) and (3.3), following the same procedures as in [44, Theo-
rem 1], formula (4.1) can be proved. �

Now we have reached the main desired two results in this section, which are the two
mentioned OMs of

�
(α,β)
n,N (t) =

[
φ

(α,β)
n,0 (t),φ(α,β)

n,1 (t), . . . ,φ(α,β)
n,N (t)

]T . (4.3)

The first result is given in Corollary 4.1, which is a direct consequence of Theorem 4.1,
and the second one is proved in Theorem 4.2 as follows.

Corollary 4.1 The mth derivative of the vector �
(α,β)
n,N (t) has the form

dm�
(α,β)
n,N (t)

dtm = Gm
n �

(α,β)
n,N (t) + η

(m)
n,N (t) (4.4)

with η
(m)
n,N (t) =

∑m–1
k=0 Gk

nε
(m–k–1)
n,N (t), where εn,N (t) = [εn,0(t), εn,1(t), . . . , εn,N (t)]T and Gn =

(gi,j(n))0≤i,j≤N ,

gi,j(n) =

⎧
⎨

⎩
θ

α,β
i,j (n), i > j,

0 otherwise.

Theorem 4.2 Dμ(t)φ
(α,β)
n,i (t) for all i ≥ 0 can be written in the form

Dμ(t)φ
(α,β)
n,i (t) = t–μ(t)

i∑

j=0

�
(n)
i,j

(
μ(t)

)
φ

(α,β)
n,j (t), (4.5)

and, consequently, the VOFD of �
(α,β)
n,N (t) has the form

Dμ(t)�
(α,β)
n,N (t) = t–μ(t)D(μ(t))

n �
(α,β)
n,N (t), (4.6)

where D(μ(t))
n = (d(n)

i,j (μ(t))) is the matrix of order (N + 1) × (N + 1) explicitly expressed as

⎛

⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

�
(n)
0,0(μ(t)) 0 · · · · · · · · · 0

�
(n)
1,0(μ(t)) �

(n)
1,1(μ(t)) 0 · · · · · · 0

...
. . .

...
�

(n)
i,0 (μ(t)) · · · �

(n)
i,i (μ(t)) 0 · · · 0

...
. . .

...
...

. . . 0
�

(n)
N ,0(μ(t)) · · · · · · · · · · · · �

(n)
N ,N (μ(t))

⎞

⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

, (4.7)

where

d(n)
i,j

(
μ(t)

)
=

⎧
⎨

⎩
�

(n)
i,j (μ(t)), i ≥ j,

0 otherwise,
(4.8)
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and

�
(n)
i,j

(
μ(t)

)
=

(–1)i–j(n + j)!�(i + β + 1)�(j + λ)�(i + j + λ)
(i – j)!�(j + β + 1)�(2j + λ)�(i + λ)�(n + j – μ(t) + 1)

×3 F2

(
j – i, n + j + 1, i + j + λ

2j + λ + 1, n + j – μ(t) + 1
; 1

)

. (4.9)

Proof In view of (3.1), using (2.4b), we have

Dμ(t)φ
(α,β)
n,i (t) = tn–μ(t)

i∑

k=0

c(i)
k

�(k + n + 1)
�(k + n – μ(t) + 1)

tk . (4.10)

Employing relation (3.3), (4.10) can be expressed in the form (4.5), which can be written
as follows:

Dμ(t)φ
(α,β)
n,i (t) = t–μ(t)[�(n)

i,0
(
μ(t)

)
,�(n)

i,1
(
μ(t)

)
, . . . ,�(n)

i,i
(
μ(t)

)
, 0, . . . , 0

]
�

(α,β)
n,N (t), (4.11)

and this expression leads to the proof of (4.6). �

For instance, if N = 4,α = β = 0, and μ(t) = t, then we get

Gn =
1
�

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

0 0 0 0 0
2(n + 1) 0 0 0 0

–3n 3(n + 2) 0 0 0
11n

3 + 2 –5n 10(n+3)
3 0 0

– 1
6 (25n) 13n

2 + 6 – 1
6 (35n) 7(n+4)

2 0

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

5×5

(4.12)

and

D(μ(t))
n =

⎛

⎜⎜
⎜
⎜⎜
⎜
⎝

n!
�(n–t+1) 0 0 0 0

tn!
�(n–t+2)

�(n+2)
�(n–t+2) 0 0 0

tn!(n+t)
�(n–t+3)

3t�(n+2)
�(n–t+3)

�(n+3)
�(n–t+3) 0 0

tn!(n2+3nt+t2+1)
�(n–t+4)

3t(n+2t)�(n+2)
�(n–t+4)

5t�(n+3)
�(n–t+4)

�(n+4)
�(n–t+4) 0

tn!(n+t)(n2+5nt+t2+5)
�(n–t+5)

t(3n2+15nt+10t2+8)�(n+2)
�(n–t+5)

5t(n+3t)�(n+3)
�(n–t+5)

7t�(n+4)
�(n–t+5)

�(n+5)
�(n–t+5)

⎞

⎟⎟
⎟
⎟⎟
⎟
⎠

5×5

.

(4.13)

5 Numerical handling for MTVOFDE subject to initial conditions
In this section, we utilize the OMs derived in Corollary 4.1 and Theorem 4.2 to get nu-
merical solutions for MTVOFDE (1.1) subject to initial conditions (1.2).

5.1 Homogeneous initial conditions
Suppose that the initial conditions (1.2) are homogeneous, that is, βj = 0, j = 0, 1, 2, . . . , n –
1. We can consider an approximate solution to y(t) in the form

y(t) � yN (t) =
N∑

i=0

ciφ
(α,β)
n,i (t) = AT�

(α,β)
n,N (t), (5.1)

where A = [c0, c1, . . . , cN ]T .
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Corollary 4.1 and Theorem 4.2 enable us to approximate the derivatives y(μ(t))(t) in ma-
trix form:

Dμ(t)yN (t) =

⎧
⎨

⎩
AT Gm

n �
(α,β)
n,N (t) + η

(m)
n,N (t), μ(t) = m, m is an integer,

t–μ(t)AT D(μ(t))
n �

(α,β)
n,N (t), μ(t) is a fraction number or function.

(5.2)

In this method, approximations (5.2) allow us to write the residual of equation (1.1) as

Rn,N (t) = t–ν(t)AT D(ν(t))
n �

(α,β)
n,N (t)

– F
(
t, AT�

(α,β)
n,N (t), t–ν1(t)AT D(ν1)

n �
(α,β)
n,N (t), . . . , t–νm(t)AT D(νm)

n �
(α,β)
n,N (t)

)
. (5.3)

In this section, we propose a spectral approach, referred to as the modified shifted Jacobi
collocation operational matrix method (MSJCOPMM), to obtain the numerical solution
of equation (1.1) under the initial conditions specified in (1.2) (with βj = 0, j = 0, 1, . . . , n –
1). The collocation points for this method are chosen as the N + 1 zeros of P(α,β)

�,N+1(t) or,
alternatively, as the points ti = �(i+1)

N+2 , i = 0, 1, . . . , N . These points serve as the basis for
performing the spectral approximation in our proposed numerical approach. So we have

Rn,N (ti) = 0, i = 0, 1, . . . , N . (5.4)

By solving a set of N + 1 linear or nonlinear algebraic equations (5.4) using an appropri-
ate solver, the unknown coefficients ci (where i = 0, 1, . . . , N ) can be determined. These
coefficients play a crucial role in obtaining the desired numerical solution (5.1).

5.2 Nonhomogeneous initial conditions
A crucial aspect of developing the proposed algorithm involves transforming equation
(1.1) together with the nonhomogeneous conditions (1.2) into an equivalent form with
homogeneous conditions. This transformation is achieved through the following conver-
sion:

ȳ(t) = y(t) – qn(t), qn(t) =
n–1∑

i=0

βi

i!
ti. (5.5)

Thus it is sufficient to solve the following modified equation, simplifying the problem at
hand:

Dν(t)ȳ(t) = – Dν(t)qn(t) + F
(
t, ȳ(t) + qn(t), Dν1(t)(ȳ(t) + qn(t)

)
,

Dν2(t)(ȳ(t) + qn(t)
)
, . . . , Dνm(t)(ȳ(t) + qn(t)

))
, 0 ≤ t ≤ �, (5.6)

subject to the homogeneous conditions

ȳ(j)(0) = 0, j = 0, 1, . . . , n – 1. (5.7)
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Then

yN (t) = ȳN (t) + qn(t). (5.8)

Remark 5.1 We present an algorithm to solve multiple numerical examples in Sect. 7. The
computations were performed using Mathematica 13.3 on a computer system equipped
with an Intel(R) Core(TM) i9-10850 CPU operating at 3.60 GHz, featuring 10 cores and 20
logical processors. The algorithmic steps for solving the MTVOFDE using MSJCOPMM
are expressed as follows:

Algorithm MSJCOPMM algorithm

Step 1. Given α,β ,�, N ,ν(t),νi(t), and βj, i = 0, 1, . . . , m, j = 0, . . . , n – 1.
Step 2. Define the basis φ

(α,β)
n,i (t), the vectors A,�(α,β)

n,N (t) and compute the
elements of (N + 1) × (N + 1) matrices Dν(t), Dνi(t), i = 0, 1, . . . , m.

Step 3. Evaluate AT Dν(t)�
(α,β)
n,N (t) and AT Dνi(t)�

(α,β)
n,N (t), i = 0, 1, . . . , m.

Step 4. Define Rn,N (t) as in Eq. (5.3).
Step 5. List Rn,N (ti) = 0, i = 0, 1, . . . , N , defined in Eq. (5.4).
Step 6. Use Mathematica’s built-in numerical solver to obtain the solution to the

system of equations in [Output 5].
Step 6. Evaluate yN (t) defined in Eq. (5.1) (in the case of homogeneous initial

conditions).
Step 7. Evaluate qn(t) and yN (t) defined in Eq. (5.8) (in the case of

nonhomogeneous initial conditions).

6 Convergence and error analysis
Within this section, we investigate the convergence and error estimates of the proposed
approach. We focus on the space Sn,N defined as follows:

Sn,N = Span
{
φ

(α,β)
n,0 (t),φ(α,β)

n,1 (t), . . . ,φ(α,β)
n,N (t)

}
.

Additionally, the error between y(t) and its approximation yN (t) can be defined by

EN (t) =
∣∣y(t) – yN (t)

∣∣. (6.1)

In the paper, we analyze the error of the numerical scheme by using the L2 norm error
estimate

‖EN‖2 = ‖y – yN‖2 =
(∫ �

0

∣
∣y(t) – yN (t)

∣
∣2 dt

)1/2

(6.2)

and the L∞ norm error estimate

‖EN‖∞ = ‖y – yN‖∞ = max
0≤t≤�

∣
∣y(t) – yN (t)

∣
∣. (6.3)
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Theorem 6.1 Assume that y(t) = tnu(t) and suppose that yN (t) has the form (5.1) and
represents the best possible approximation for y(t) out of Sn,N . Then there is a constant K
such that

‖EN‖∞ ≤ K�n+1

2λ

(
e�
4

)N

(N + 1)q–N–1 (6.4)

and

‖EN‖2 ≤ K�2n+3/2

2λ

(
e�
4

)N

(N + 1)q–N–1, (6.5)

where q = max{α,β , –1/2} < N + 1 and K = maxt∈[0,�] | dN+1u(η)
dtN+1 |,η ∈ [0,�].

Proof Using Theorem 3.3 in [45, p. 109], we can write the function u(t) as

u(t) = uN (t) +
K

(N + 1)!

N∏

k=0

(t – tk), (6.6)

where uN (t) is the interpolating polynomial for u(t) at the points tk , k = 0, 1, . . . , N , which
are the roots of P(α,β)

�,N+1(t) such that N > q – 1. Then we get

‖u – uN‖∞ ≤ K
(N + 1)!

∥
∥∥∥
∥

N∏

k=0

(t – tk)

∥
∥∥∥
∥∞

=
K

(N + 1)!cN+1
N+1

∥
∥P(α,β)

�,N+1(t)
∥
∥∞, (6.7)

where cN+1
N+1 = �(2N+λ+2)

�N+1(N+1)!�(N+λ+1) .
In view of formula [43, formula (7.32.2)], we obtain

∥∥P(α,β)
�,N+1

∥∥∞ � (N + 1)q, (6.8)

and hence

‖u – uN‖∞ ≤ K
�N+1�(N + λ + 1)(N + 1)q

�(2N + λ + 2)
, (6.9)

By using the asymptotic result (see [46, pp. 232–233])

�(m + λ) = O
(
mλ–1m!

)
, (2m)! =

1√
π

4mm!�(m + 1/2),

m! = O
(√

2πm
(

m
e

)m)
,

(6.10)

inequality (6.9) takes the form

‖u – uN‖∞ ≤ K�

2λ

(
e�
4

)N

(N + 1)q–N–1. (6.11)

Now consider the approximation y(t) � YN (t) = tnuN (t). Then

‖y – YN‖∞ ≤ �n‖u – uN‖∞ ≤ K�n+1

2λ

(
e�
4

)N

(N + 1)q–N–1. (6.12)
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Since the approximate solution yN (t) ∈ Sn,N represents the best possible approximation to
y(t), we get

‖y – yN‖∞ ≤ ‖y – h‖∞ ∀h ∈ Sn,N , (6.13)

and

‖y – yN‖2 ≤ ‖y – h‖2 ∀h ∈ Sn,N . (6.14)

Therefore

‖y – yN‖∞ ≤ ‖y – YN‖∞ ≤ K�n+1

2λ

(
e�
4

)N

(N + 1)q–N–1, (6.15)

and

‖y – yN‖2 ≤ ‖y – YN‖2 ≤ �n‖u – uN‖2 = �n
(∫ �

0

∣
∣u(t) – uN (t)

∣
∣2 dt

)1/2

≤ K�2n+3/2

2λ

(
e�
4

)N

(N + 1)q–N–1. (6.16)
�

The following corollary shows that the obtained error has a very rapid rate of conver-
gence.

Corollary 6.1 For all N > q – 1, we have the following two estimates:

‖EN‖∞ = O
(
(e�/4)N Nq–N–1), (6.17)

and

‖EN‖2 = O
(
(e�/4)N Nq–N–1). (6.18)

The next theorem emphasizes the stability of error by making an estimate of error prop-
agation.

Theorem 6.2 For any two successive approximations of y(t), we have

|yN+1 – yN | �O
(
(e�/4)N Nq–N–1), N > q – 1, (6.19)

where � means that there exists a generic constant d such that |yN+1 – yN | ≤
d(e�/4)N Nq–N–1.

Proof In view of Theorem 6.1, it is not difficult to obtain (6.19). �
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Figure 1 Approximate and exact solutions plots for Example 7.4 using α = β = 0

7 Numerical simulations
In this section, we give five examples to demonstrate the applicability and high efficiency of
the proposed method established in Sect. 5. The maximum absolute error (MAE) between
exact and approximate solutions is presented for evaluation. In the provided numerical
problems, we explain that MSJCOPMM gives the exact solution if the given problem has
a polynomial solution of degree N , as shown in Examples 7.1–7.3. This solution can be
found by combining φ

(α,β)
0,i (t), . . . ,φ(α,β)

N–2,i(t).
Furthermore, the computed errors to obtain some numerical solutions yN (t) using MSJ-

COPMM for N = 1, . . . , 12 are presented in two Tables 3 and 5. In these tables, we see
excellent computational results. The comparisons of MSJCOPMM and other techniques
in [23–25, 28, 47, 48] are presented in Tables 1, 2, 4, and 6. These tables confirm that
MSJCOPMM provides more precise results than the other techniques. In addition, as we
can see in Figs. 1 and 3, the exact and approximate solutions in Examples 7.4 and 7.5 are
in excellent agreement. Besides, Figs. 2(a), 4(a) and Figs. 2(b), 4(b) display absolute and
log-errors for various N values and different values of α,β as a way of demonstrating the
convergence and stability of the solutions, respectively, to Problems 7.4 and 7.5 when MSJ-
COPMM is applied. As well, Example 7.6 illuminates a valuable technique for assessing
accuracy in cases where the exact solution remains elusive. Along with the insightful re-
sults shown in Table 7, Figs. 5 and 6 also clearly demonstrate that MSJCOPMM produces
extremely accurate solutions.

Problem 7.1 Consider the differential equation [23, 24]

D2ty(t) + t1/2Dt/3y(t) + t1/3Dt/4y(t) + t1/4Dt/5y(t) + t1/5y(t) = g(t), 0 ≤ t ≤ �,
y(0) = 2, and y′(0) = 0,

}

(7.1)

where g(t) is chosen such that the exact solution is y(t) = 2 – t2

2 .
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Figure 2 Figures of obtained errors EN using various N and α = β = 0 for Example 7.4

Table 1 Comparison of ‖EN‖∞ between the two methods [23, 24] and SJCOPMM for Example 7.1
using α = β = 0

� MSJCOPMM [24] [23]

N = 0, 1, . . . , 6 N = 3 N = 4 N = 5 N = 3 N = 4 N = 5

1 0 0 0 0 0 2.2204×10–16 2.2204×10–16

2 0 0 0 0 0 4.4409×10–16 1.3323×10–15

4 0 0 0 0 2.2204×10–16 3.5527×10–15 3.1974×10–14

The application of proposed method SJCOPMM gives the exact solution in the form

y(t) = yN (t) =
N∑

i=0

ciφ
(α,β)
2,i (t) + 2, N = 0, 1, 2, . . . , 6,

where c0 = –1/2 and ci = 0, i = 1, 2, . . . , N .

Problem 7.2 Consider Bagley–Torvik equation [24, 49]

D2y(t) + D3/2y(t) + y(t) = t2 + 4
√

t/π + 2, 0 ≤ t ≤ �,
y(0) = y′(0) = 0,

}

(7.2)
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Figure 3 Approximate and exact solutions plots for Example 7.5 using α = 0 and β = 1

where the exact solution is y(t) = t2.
The application of proposed method SJCOPMM gives the exact solution in the form

y(t) = yN (t) =
N∑

i=0

ciφ
(α,β)
2,i (t), N = 0, 1, 2, . . . , 6,

where c0 = 1 and ci = 0, i = 1, 2, . . . , N .

Remark 7.1 It is worth noting that the exact solution of (7.2) is obtained using N = 0,α,β >
–1, whereas the authors in [24] presented the exact solution using N = 2. Moreover, the
authors in [49] show that the exact solution is obtained as N → ∞, and the best error
obtained was 2 × 10–10.

Problem 7.3 Consider the differential equation [24, 25, 28]

Dμ(t)y(t) – 10Dy(t) + y(t) = 10( t2–μ(t)

�(3–μ(t)) + t1–μ(t)

�(2–μ(t)) ) + 5t2 – 90 – t – 95,
0 ≤ t ≤ 1,

y(0) = 5, and y′(0) = 10,

⎫
⎪⎬

⎪⎭
(7.3)

where μ(t) = t+2et

7 . The exact solution is y(t) = 5(1 + t)2.
The application of proposed method MSJCOPMM gives the exact solution in the form

y(t) = yN (t) =
N∑

i=0

ciφ
(α,β)
2,i (t) + 5 + 10t, N = 0, 1, 2, . . . , 6,

where c0 = 5 and ci = 0, i = 1, 2, . . . , N .

Problem 7.4 Consider the nonlinear initial value problem, [47, 50]

Dμ(t)y(t) + sin(t)(y(t))2 = �(9/2)t7/2–μ(t)

�(9/2–μ(t)) + sin(t)t7, 0 < μ(t) ≤ 1, 0 ≤ t ≤ 1,
y(0) = 0, μ(t) = 1 – 0.5e–t ,

}

(7.4)
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Figure 4 Figures of obtained errors EN using various N, α = 0, and β = 1 for Example 7.5

Figure 5 Error plot for Example 7.6 using N = 14,α = 0, and β = 0

where the exact solution is y(t) = t7/2. This solution agrees perfectly with the numerical
solutions of accuracy 10–8 at N = 12, as shown in Table 3.
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Figure 6 Approximate solutions plots for Example 7.6 using N = 0, 3, 5 and α = β = 0

Table 2 Comparison of the methods in [24, 25, 28] and MSJCOPMM for Example 7.3 using α = β = 1

t MSJCOPMM(N = 0, 1, . . . , 6) [28] (N = 4) [25] (N = 2) [24](N = 2)

0.2 0 8.091305×10–12 1.818101×10–12 0
0.4 0 2.024535×10–12 1.817213×10–12 8.881784×10–16

0.6 0 9.564669×10–12 1.820765×10–12 1.776356×10–15

0.8 0 1.696030×10–12 1.818989×10–12 1.776356×10–15

1.0 0 1.734222×10–12 1.818989×10–12 0

Table 3 Errors obtained for Example 7.4 using various values for α,β at different N

α β Errors N = 2 N = 4 N = 6 N = 8 N = 10 N = 12

0 0 ‖EN‖∞ 6.33×10–3 5.83×10–5 4.58×10–6 7.42×10–7 1.78×10–7 5.49×10–8

‖EN‖2 3.69×10–3 3.46×10–5 2.58×10–6 3.89×10–7 8.64×10–8 2.47×10–8

1 1 ‖EN‖∞ 9.74×10–3 5.25×10–5 5.27×10–6 9.95×10–7 2.65×10–7 8.79×10–8

‖EN‖2 2.60×10–3 2.41×10–5 1.76×10–6 2.62×10–7 5.75×10–8 1.63×10–8

–1/3 1/3 ‖EN‖∞ 6.39×10–3 6.11×10–5 4.79×10–6 7.75×10–7 1.86×10–7 5.71×10–8

‖EN‖2 3.67×10–3 3.15×10–5 2.39×10–6 3.26×10–7 7.03×10–8 1.96×10–8

–1/2 1/2 ‖EN‖∞ 5.90×10–3 5.93×10–5 4.89×10–6 8.16×10–7 1.99×10–7 6.20×10–8

‖EN‖2 3.78×10–3 3.17×10–5 2.20×10–6 3.14×10–7 6.70×10–8 1.85×10–8

1/2 1/2 ‖EN‖∞ 7.10×10–3 4.02×10–5 3.38×10–6 5.95×10–7 1.52×10–7 4.51×10–8

‖EN‖2 2.69×10–3 2.54×10–5 1.86×10–6 2.75×10–7 1.23×10–7 1.68×10–8

Table 4 Comparison of MAE between the method [47] and MSJCOPMM for Example 7.4

t MSJCOPMM(α = –1/2,β = 1/2) [47]

N = 2 N = 6 N = 10 N = 2 N = 6 N = 10

0.2 4.26×10–3 1.19×10–6 3.11×10–8 5.69×10–3 9.75×10–6 8.06×10–7

0.4 3.68×10–3 8.91×10–7 7.28×10–8 2.34×10–3 8.02×10–6 6.34×10–7

0.6 5.42×10–3 9.87×10–7 1.93×10–8 2.78×10–3 7.03×10–6 5.53×10–7

0.8 1.98×10–4 5.46×10–7 2.41×10–8 2.52×10–3 5.97×10–6 4.59×10–7

1.0 5.56×10–4 2.41×10–7 4.29×10–9 1.66×10–2 2.89×10–5 1.95×10–6

Problem 7.5 Consider the initial value problem, [47, 48]

Dμ(t)y(t) + 3y′(t) – y(t) = g(t), 0 < t ≤ 1,
y(0) = 1, μ(t) = 0.25(1 + cos2(t)),

}

(7.5)

where g(t) is chosen such that the exact solution is y(t) = et . This solution agrees perfectly
with the numerical solutions of accuracy 10–16 at N = 11, as shown in Table 5.
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Table 5 Errors obtained and CPU time (seconds) for Example 7.5 using various values for α,β at
different N

α β Errors N = 1 N = 3 N = 5 N = 7 N = 9 N = 11

0 0 ‖EN‖∞ 1.56×10–2 5.83×10–5 6.18×10–8 5.19×10–11 2.98×10–14 6.66×10–16

‖EN‖2 9.71×10–3 1.21×10–5 3.83×10–8 3.26×10–11 1.83×10–14 6.20×10–16

CPU time 0.123 0.311 0.402 0.423 0.425 0.512
1 0 ‖EN‖∞ 3.19×10–2 1.21×10–4 2.07×10–7 7.92×10–11 1.24×10–13 6.66×10–16

‖EN‖2 8.53×10–3 2.55×10–5 3.73×10–8 3.20×10–11 1.81×10–14 3.26×10–16

CPU time 0.124 0.313 0.404 0.426 0.428 0.514
0 1 ‖EN‖∞ 3.42×10–2 1.35×10–4 2.39×10–7 2.37×10–10 1.50×10–13 6.66×10–16

‖EN‖2 2.50×10–2 9.73×10–5 1.69×10–7 1.65×10–10 1.03×10–13 5.50×10–16

CPU time 0.123 0.312 0.402 0.424 0.427 0.512
1/2 1/2 ‖EN‖∞ 1.79×10–2 4.98×10–5 7.91×10–8 6.43×10–11 3.84×10–14 8.88×10–16

‖EN‖2 8.66×10–3 2.87×10–5 4.34×10–8 3.80×10–11 2.18×10–14 4.01×10–16

CPU time 0.120 0.309 0.398 0.410 0.419 0.497
1 2 ‖EN‖∞ 3.81×10–2 1.94×10–4 4.12×10–7 5.02×10–10 3.77×10–13 3.61×10–16

‖EN‖2 2.66×10–3 1.53×10–4 3.52×10–7 4.27×10–10 3.20×10–13 1.23×10–16

CPU time 0.129 0.381 0.422 0.443 0.445 0.552

Table 6 Comparison of MAE between the methods [47, 48] and MSJCOPMM for Example 7.5

t MSJCOPMM(α = 0,β = 0) [48] [47]

N = 6 N = 10 N = 6 N = 10 N = 6 N = 10

0.1 1.15×10–9 8.33×10–17 8.66×10–9 1.04×10–12 2.56×10–8 4.40×10–14

0.3 1.71×10–9 0 1.60×10–8 4.57×10–14 2.43×10–8 4.23×10–14

0.5 1.89×10–9 0.5×10–16 2.49×10–8 2.82×10–11 2.44×10–8 4.24×10–14

0.7 1.85×10–9 0 4.19×10–8 3.12×10–11 2.47×10–8 4.29×10–14

0.9 1.28×10–9 4.44×10–16 5.93×10–9 1.46×10–10 2.56×10–8 4.43×10–14

Table 7 MAE for Example 7.6 using various values for α,β at different N

α β N = 0 N = 3 N = 6 N = 9 N = 12 N = 14

0 0 2.01×10–1 1.31×10–4 5.78×10–6 2.14×10–8 1.91×10–11 2.17×10–12

1/2 0 3.14×10–1 3.21×10–4 4.57×10–6 6.11×10–8 2.15×10–11 5.51×10–12

0 1/2 3.34×10–1 4.11×10–4 5.17×10–6 5.23×10–8 3.75×10–11 4.27×10–12

1/2 -1/2 1.90×10–1 7.13×10–5 6.19×10–7 4.16×10–8 2.91×10–12 1.01×10–12

-1/2 1/2 1.88×10–1 6.24×10–5 5.23×10–7 3.24×10–8 3.87×10–12 1.18×10–12

Problem 7.6 Consider the fractional-order nonlinear equation

D2y(t) + 2
tμ–ν Dt/4y(t) – e–y(t) = 0, 0 < t ≤ 1,

y(0) = y′(0) = 0,

}

(7.6)

where the explicit exact solution is not available, so the following error norm is used to check
the accuracy in this case:

‖EN‖∞ = max
t∈[0,1]

∣∣tD2yN (t) + 2tt/4–1Dt/4yN (t) – te–yN (t)∣∣. (7.7)

The application of MSJCOPMM with different choices of α and β and N = 0, 3, 6, 9, 12, 14
gives the numerical results shown in Table 7.

8 Conclusions
In this work, we have introduced a modified version of shifted JPs that satisfy homoge-
neous initial conditions. Moreover, by utilizing the OMs derived in Sect. 4 along with the
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CSM, we have developed an approximation technique for the given MTVOFDEs. The
proposed method, known as MSJCOPMM, has been applied and tested on five differ-
ent examples demonstrating its high accuracy and efficiency. We recognize the potential
for extending our results to boundary value problems (BVPs), where the investigation of
the system behavior at boundary conditions would provide valuable insights and further
enhance the applicability of our findings. Additionally, we believe that the theoretical find-
ings presented in this paper can be further employed to address other types of FDEs.
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