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Abstract
We investigate a second-order periodic system with singular potential and resonance.
Utilizing the main integral method and fixed point theorems, we establish the
existence and multiplicity of periodic solutions with respect to time under certain
assumptions on the unbounded or oscillatory term.
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1 Introduction and main result
Many scholars have investigated the singular second-order equation

ẍ + V ′(x) + g(x) = p(t) (1.1)

with functions V (x), g(x), and p(t) satisfying certain restrictions. The multiplicity and ex-
istence of periodic solutions for Eq. (1.1) are discussed by utilizing the topology degree
theory [1]. Qian and Torres [2] use the Poincaré–Birkhoff twist theorem to find the dy-
namical features of Eq. (1.1). Jiang [3] employs invariant curves and Moser’s small twist
theorem to discuss the boundedness of solutions for Eq. (1.1). The unbounded and pe-
riodic solutions of Eq. (1.1) may coexist [4]. Assuming that g(x) = 0 and p(t + π ) = p(t),
Capietto et al. [5] consider Eq. (1.1) with

V (x) =
1
2

x2
+ +

1
(1 – x2

–)ν
– 1, (1.2)

where x+ = max{x, 0}, x– = max{–x, 0}, and ν > 0 is an integer. Using the Moser twist the-
orem and the Lazer–Leach assumption

1 +
1
2

∫ π

0
p(t0 + θ ) sin θ dθ > 0 ∀t0 ∈ R,
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Capietto et al. [5] investigated the boundedness of solutions and quasi-periodic solutions
for Eq. (1.1). Following the ideas in [5], Jiang [3] and Liu [6] and Wang and Jiang [7] dis-
cussed the boundedness of solutions for Eq. (1.1) under different conditions.

To clearly understand the objective of our work, we recall the main result about Eq. (1.1)
in Lazer and Leach [8]. Suppose that g(x) is smooth and bounded and that V (x) satisfies
the conditions

lim
x→a+

V (x) = +∞, lim
x→+∞

2V (x)
x2 =

m2

4
,

where the domain of V (x) is (a, +∞), m > 0 is an integer, and the constant a belongs to
∈ (–∞, 0). Let

g∗(ρ) =
∫ 2π

0
g
(
ρ
∣∣sin(mt/2)

∣∣)∣∣sin(mt/2)
∣∣dt, p∗(θ ) =

∫ 2π

0
p(t + θ )

∣∣sin(mt/2)
∣∣dt.

Applying the analysis of phase plane and topological degree methods, it is proved in [8]
that Eq.‘(1.1) possesses at least one 2π-periodic solution, provided that there is g0 ∈ [g–∗ , g+∗ ]
(g–∗ = lim infρ→+∞ g∗(ρ), g+∗ = lim supρ→+∞ g∗(ρ)) (i.e.. p∗ has a regular value of g0) and the
number of zeros of p∗ – g0 in [0, 2π/m] is not 2.

In 2019, Ma [9] considered the periodic solution of Eq. (1.1). Suppose that V ′(x) =
n2x, p(t) ∈ C2(R/2πZ), and g(x) ∈ C1(R) with the restrictions

lim|x|→+∞ x– 1
2
∣∣g(x)

∣∣ = 0, lim
x→+∞ x

1
2
∣∣g ′(x)

∣∣ < +∞.

Ma [9] obtained that Eq. (1.1) possesses at least one 2π solution, provided that

∣∣∣∣
∫ 2π

0
p(t)e–int dt

∣∣∣∣ < lim sup
ρ→+∞

∣∣∣∣
∫ 2π

0
g(ρ cos θ ) cos θ dθ

∣∣∣∣,

and Eq. (1.1) possesses an unbounded sequence of 2π-periodic solutions if

∣∣∣∣
∫ 2π

0
p(t)e–int dt

∣∣∣∣ < min

{
lim sup
ρ→+∞

|
∫ 2π

0
g(ρ cos θ ) cos θ dθ ,

– lim inf
ρ→+∞

∣∣∣∣
∫ 2π

0
g(ρ cos θ ) cos θ dθ

∣∣∣∣
}

.

We observe that the function V (x) is globally defined in R and the function g(x) is un-
bounded or oscillatory in [9]. Note that in [8], V (x) possesses a repulsive singularity at a,
and g(x) is bounded. Also, in [5], V (x) possesses a repulsive singularity at –1, and g(x) = 0.

When the function V (x) is of the form (1.2), a natural question is to find restrictions im-
posed on unbounded function g(x) to make Eq. (1.1) have at least one π-periodic solution
and possess an unbounded sequence of π-periodic solutions. The objective of this work
is to handle this problem. Precisely speaking, we investigate the existence and multiplicity
of periodic solutions of the problem

⎧⎨
⎩

ẍ + V ′(x) + g(x) = p(t),

V (x) = 1
2 x2

+ + 1
(1–x2–)ν – 1, p(t) ∈ C2(S1),

(1.3)



Xing et al. Boundary Value Problems        (2023) 2023:110 Page 3 of 20

where S
1 = R/πZ and limx→+∞ xk– 1

2 g(k)(x) = 0, k = 0, 1. Here we state that the function
g(x) considered in our work is different from those in [5, 8] and is the same as that in [9].
The novelty of our work is that the function V (x) is of the the form (1.2), which is different
from those in [8, 9].

The auxiliary equation of Eq. (1.1) takes the form

ẍ + V ′(x) + g(x) = 0. (1.4)

The Hamiltonian function of (1.4) has the expression

H0(x, y) =
1
2

y2 + V (x) + G(x),

where G(x) =
∫ x

0 g(s) ds. For H > 0, we denote by τ (H) the least positive period of the orbit
�H : H0(x, y) = H , p̄ =

∫ π

0 p(s)eis ds. Set

�(H) =
√

H
(
τ (H) – π

)
. (1.5)

Equation (1.4) possesses the following autonomous Hamiltonian system:

x′ = y, y′ = –V ′(x) – g(x).

Now we state the main result of our work.

Theorem 1.1 Suppose that g(x) ∈ C1(R), p(t) ∈ C2(R/πZ), and

lim
x→+∞ xk– 1

2 g(k)(x) = 0, k = 0, 1. (1.6)

Then
(i) Problem (1.3) possesses at least one π -periodic solution if

|p̄| <
√

2
π

lim sup
H→+∞

�(H). (1.7)

(ii) Problem (1.3) possesses an unbounded sequence of π -periodic solutions if

|p̄| <
√

2
π

min
{

lim sup
H→+∞

�(H), – lim inf
H→+∞ �(H)

}
. (1.8)

In Sect. 2, we present several lemmas, and in Sect. 3, we provide the proof of Theo-
rem 1.1.

2 Preliminaries
2.1 Action-angle coordinates
To use action-angle variables, we write the auxiliary equations

x′ =
∂H1

∂y
, y′ = –

∂H1

∂x
(2.1)
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with the Hamiltonian function

H1(x, y) =
1
2

y2 + V (x).

Let T0(h) denote the time period of the integral curve �h of (2.1) with H1(x, y) = h.
Denote by I = I0(h) the area enclosed by the closed curve �h for h > 0. Assume that
–1 < –αh < 0 < βh satisfy V (–αh) = V (βh) = h and

I–(h) = 2
∫ αh

0

√
2
(
h – V (s)

)
ds, T–(h) = 2

∫ αh

0

1√
2(h – V (–s))

ds.

Thus we have

I0(h) = πh + 2
∫ αh

0

√
2
(
h – V (–s)

)
ds = πh + I–(h), (2.2)

T0(h) = I ′
0(h) = π + 2

∫ αh

0

1√
2(h – V (–s))

ds = π + T–(h). (2.3)

For conciseness in the following discussions, we always use c or C to represent positive
constants.

We acquire c
√

h < I–(h) < C
√

h. Let h = h0(I) be the inverse function of I = I0(h). Using
the expression of V (x) and the definition of I0(h), we derive that

cI < h0(I) < CI,
∣∣Ikh(k)

0 (I)
∣∣ < Ch(I) for k = 1, 2.

Lemma 2.1 [3] For n = 0, 1, 2, we have

dnT–(h)
dhn = (–1)n (2n – 1)!!

2n

√
2

h(2n+1)/2 + o
(

1
h(2n+1)/2

)
, h → +∞,

where

(2n – 1)!! =

⎧⎨
⎩

1 · 3 · . . . · (2n – 1), n ≥ 1,

1, n = 0.

For (x, y) ∈ (–1, +∞) ×R, we define the transformation �1 : (x, y) → (θ , I) by

θ (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

π
T0(h(x,y)) ( T–(h)

2 + arcsin x√
2h(x,y)

) if x > 0, y > 0,
π

T0(h(x,y)) ( T–(h)
2 + π – arcsin x√

2h(x,y)
) if x > 0, y < 0,

π
T0(h(x,y)) (

∫ x
–αh

1√
2(h(x,y))+1–(1–s2)–γ

ds) if x < 0, y > 0,
π

T0(h(x,y)) (T0(h(x, y)) –
∫ x

–αh
1√

2(h(x,y))+1–(1–s2)–γ
ds), x < 0, y < 0,

(2.4)

and

I(x, y) = I0
(
h(x, y)

)
= 2

∫ βh

–αh

√
2
(
h(x, y) – V (s)

)
ds.
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Note that the first equation in (1.3) possesses the Hamiltonian system

x′ =
∂H
∂y

, y′ = –
∂H
∂x

associated with

H(x, y, t) =
1
2

y2 + V (x) + G(x) – xp(t).

In the new variables (θ , I), we write the Hamiltonian systems of (1.3) and (1.4) in the forms

θ ′ =
∂H
∂I

, I ′ = –
∂H
∂θ

(2.5)

and

θ ′ =
∂H0

∂I
, I ′ = –

∂H0

∂θ
, (2.6)

respectively, where

H(θ , I, t) = πh0(I) + πG
(
x(I, θ )

)
– πx(I, θ )p(t) (2.7)

and

H0(θ , I, t) = πh0(I) + πG
(
x(I, θ )

)
. (2.8)

For x > 0, using (2.4) gives rise to

x =
√

2h sin

(
T0(h)

π
θ –

T–(h)
2

)
. (2.9)

Using formulas (2.5)–(2.9), we want to obtain estimates of the function G(x(I, θ )). We
need the following lemma.

Lemma 2.2 [3] For sufficiently large I , if x > 0, then

∣∣∣∣Ik ∂kx(I, θ )
∂Ik

∣∣∣∣ ≤ C
√

I, k ≤ 2.

For sufficiently large I , if x < 0, then

∣∣∣∣Ik ∂kx(I, θ )
∂Ik

∣∣∣∣ ≤ C(1 + x) ≤ C, k ≤ 2.

To transform the first equation in problem (1.3) into a nearly integrable equation, we
introduce the transformation �2 : (I, θ , t) → (H ,ϕ,η),

H(θ , I, t) = πh0(I) + πG
(
x(I, θ )

)
– πx(I, θ )p(t), ϕ = t, η = θ ,

that is, the time and energy are the new angular and action variables, respectively.
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As I → +∞, from (1.6), (2.2), and Lemma 2.2 we conclude that H/I → 1 and ∂H
∂I > 0.

Applying the implicit function theorem, we derive that there exists a function R2(H , t, θ )
belonging to C2 with |R2| < H/2π such that the function

I = I0

(
H
π

+ R2(H , t, θ )
)

(2.10)

satisfies (2.7). Thus, under the transform �2, the Hamiltonian function (2.7) is trans-
formed into the Hamiltonian function (2.10).

Note that the inverse function of I0 is h0. Using (2.7), we acquire

R2(H , t, θ ) = x
(

I0

(
H
π

+ R2

)
, θ

)
p(t) – G

(
x
(

I0

(
H
π

+ R2

)
, θ

))
. (2.11)

Utilizing (1.6), Lemma 2.2, and |R2| < H/2π gives rise to

∣∣R2(H , t, θ )
∣∣ ≤ ε(H)H

3
4 ,

where (here and further) ε(H) stands for a nonnegative function satisfying limH→+∞ ε(H) =
0.

Similarly, we can prove that there is a function R1(H , θ ) in space C2 with |R1| < H/2π

such that

I = I0

(
H
π

+ R1(H , t)
)

(2.12)

satisfies

H = πh0(I) + πG
(
x(I, θ )

)
. (2.13)

Thus we have

R1(H , θ ) = –G
(

x
(

I0

(
H
π

+ R1

)
, θ

))
(2.14)

and

∣∣R1(H , θ )
∣∣ ≤ ε(H)H

3
4 .

Let � = {θ ∈ S
1 : sin( T0(h)

π
θ – T–(h)

2 ) = 0}. Obviously, by Lemma 2.1 the measure of � is
zero.

Lemma 2.3 If the function R(H , t, θ ) belongs to C2 and |R(H , t, θ )| ≤ ε(H)H , provided that
h = H

π
+ R(H , t, θ ), then

lim
H→+∞(

√
2h)k– 1

2 g(k)
(√

2h sin

(
T0(h)

π
θ –

T–(h)
2

))
sink

(
T0(h)

π
θ –

T–(h)
2

)
= 0

for k = 0 and θ ∈ S
1 and for k = 1 and θ ∈ S

1 \ �.
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Proof From (1.6), for any ε > 0, there exist constants Mk > 0 such that

xk– 1
2 g(k)(x) < ε, x > Mk .

Since limH→+∞ h(H , t, θ ) → +∞ uniformly for t and θ \ �, there exist positive numbers
Mk > 0 such that for H > Mk ,

1
4√2h

max
|x|≤Mk

∣∣xkg(k)(x)
∣∣ < ε.

Thus, for |√2h sin( T0(h)
π

θ – T–(h)
2 )| > Mk , we have

∣∣∣∣(
√

2h)k– 1
2 g(k)

(√
2h sin

(
T0(h)

π
θ –

T–(h)
2

))
sink

(
T0(h)

π
θ –

T–(h)
2

)∣∣∣∣ ≤ ε,

and for |√2h sin( T0(h)
π

θ – T–(h)
2 )| ≤ Mk , we have

∣∣∣∣(
√

2h)k– 1
2 g(k)

(√
2h sin

(
T0(h)

π
θ –

T–(h)
2

))
sink

(
T0(h)

π
θ –

T–(h)
2

)∣∣∣∣
≤ 1

4√2h
max

|x|≤Mk

∣∣xkg(k)(x)
∣∣ < ε,

which ends the proof. �

For r ∈ R, when H � 1, we write u = u(H , t, θ ) ∈ C2(r, ε) if |∂k
Hu| ≤ ε(H)Hr–k for k =

0, 1, 2 and |∂k
H∂tu| ≤ CH 1

2 –k for k = 0, 1.

Lemma 2.4 Let h = H
π

+ u(H , t, θ ) with u ∈ C( 3
4 , ε). Then

∣∣g(k)(x
(
I0(h), θ

))(
∂Hx

(
I0(h), θ

))k+1∣∣ ≤ ε(H)H
3
4 –(k+1) (2.15)

for k = 0, 1 and θ ∈ S
1 \ �.

Proof When x > 0, by a direct computation we have

g(x)∂Hx

= g
(√

2h sin

(
T0(h)

π
θ –

T–(h)
2

))
1√
2h

(
1
π

+ ∂Hu
)

sin

(
T0(h)

π
θ –

T–(h)
2

)

+ g
(√

2h sin

(
T0(h)

π
θ –

T–(h)
2

))√
2h cos

(
T0(h)

π
θ –

T–(h)
2

)

×
[

1
π

T ′
0(h)θ +

T ′
–(h)
2

]
1
π

+ ∂H u)

and

g ′(x)(∂Hx)2

= g ′
(√

2h sin

(
T0(h)

π
θ –

T–(h)
2

))
1

2h

(
1
π

+ ∂H u
)2

sin2
(

T0(h)
π

θ –
T–(h)

2

)
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+ g ′
(√

2h sin

(
T0(h)

π
θ –

T–(h)
2

))
2h cos2

(
T0(h)

π
θ –

T–(h)
2

)

×
[

1
π

T ′
0(h)θ +

T ′
–(h)
2

]2( 1
π

+ ∂Hu
)2

+ 2g ′
(√

2h sin

(
T0(h)

π
θ –

T–(h)
2

))(
1
π

+ ∂H u
)2

sin

(
T0(h)

π
θ –

T–(h)
2

)

× cos

(
T0(h)

π
θ –

T–(h)
2

)
·
[

1
π

T ′
0(h)θ +

T ′
–(h)
2

]
.

From (2.3), Lemma 2.1, and Lemma 2.3 we obtain (2.15). When x < 0, using Lemma 2.2,
we acquire that (2.15) holds. The proof is finished. �

Lemma 2.5 For all ε > 0, t, and θ ∈ S
1 \ �, as H → +∞, we have

∣∣∂k
H R2(H , t, θ )

∣∣ ≤ ε(H)H
3
4 –k for k ≤ 2,

∣∣∂k
H∂ l

t R2(H , t, θ )
∣∣ ≤ CH

1
2 –k for k + l ≤ 2, l ≥ 1.

Proof (i) When k + l = 0, the conclusion follows from (1.6), (2.2), (2.11), and Lemma 2.2.
(ii) When k + l = 1, define

� = 1 – ∂Ix
(

I0

(
H
π

+ R2

)
, θ

)
T0

(
H
π

+ R2

)
p(t)

+ g(x)∂Ix
(

I0

(
H
π

+ R2

)
, θ

)
T0

(
H
π

+ R2

)
.

For |�| ≥ 1
2 and H � 1, we get

� · ∂HR2(H , t, θ ) = –
1
π

(� – 1), (2.16)

� · ∂tR2(H , t, θ ) = x
(

I0

(
H
π

+ R2

)
, θ

)
p′(t). (2.17)

Using Lemma 2.2 and (1.6) yields

∣∣∣∣– 1
π

(� – 1)
∣∣∣∣ ≤ ε(H)H

3
4 –1.

Applying Lemma 2.2 gives rise to

∣∣∣∣x
(

I0

(
H
π

+ R2

)
, θ

)
p′(t)

∣∣∣∣ ≤ C
√

H.

Thus |∂HR2(H , t, θ )| ≤ ε(H)H 3
4 –1 and |∂tR2(H , t, θ )| ≤ CH 1

2 .
(iii) When k + l = 2, differentiating both sides of (2.16) with respect to H and t, respec-

tively, we acquire

∂H� · ∂HR2 + �∂2
H R2 = –

1
π

∂H�,
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∂t� · ∂HR2 + �∂H∂tR2 = –
1
π

∂t�.

Differentiating both sides of (2.17) about t gives

∂t� · ∂tR2 + �∂2
t R2 = ∂Ix

(
I0

(
H
π

+ R2

)
, θ

)
T0

(
H
π

+ R2

)
∂tR2p′(t)

+ x
(

I0

(
H
π

+ R2

)
, θ

)
p′′(t).

A direct computation yields

∂H� = ∂2
I x

(
I0

(
H
π

+ R2

)
, θ

)
T2

0

(
H
π

+ R2

)(
1
π

+ ∂H R2

)
p(t)

+ ∂Ix
(

I0

(
H
π

+ R2

)
, θ

)
∂HT–

(
H
π

+ R2

)(
1
π

+ ∂H R2(H , t, θ )
)

p(t)

+ g ′
(

x
(

I0

(
H
π

+ R2

)
, θ

))
(∂Ix

(
I0

(
H
π

+ R2

)
T0

(
H
π

+ R2

))2( 1
π

+ ∂HR2

)

+ g
(

x
(

I0

(
H
π

+ R2

)
, θ

))
(∂2

I x(I0

(
H
π

+ R2

)
T2

0

(
H
π

+ R2

)(
1
π

+ ∂H R2

)

+ g
(

x
(

I0

(
H
π

+ R2

)
, θ

))
(∂Ix(I0

(
H
π

+ R2

)
∂HT–

(
H
π

+ R2

)(
1
π

+ ∂H R
)

.

From Lemmas 2.1–2.5 we have |∂H�| < ε(H)H– 5
4 and |∂H R2(H , t, θ )| < ε(H)H 3

4 –1.
Similarly to the above estimates, we have

∣∣∂2
H R2(H , t, θ )

∣∣ < ε(H)H
3
4 –2,

∣∣∂H∂tR2(H , t, θ )
∣∣ < CH

1
2 –1,

∣∣∂2
t R2(H , t, θ )

∣∣ < CH
1
2 –1.

The proof is finished. �

Using (2.14) and (2.15), similarly to the proof of Lemma 2.5, we acquire the conclusion.

Lemma 2.6 For all ε > 0, t, and θ ∈ S
1 \ �, as H → +∞, we have

∣∣∂k
H R1(H , θ )

∣∣ ≤ ε(H)H
3
4 –k for k ≤ 2. (2.18)

Next we rewrite (2.5) with new variables as a nearly integrable system. To handle this
process, we apply

R12 = R2(H , t, θ ) – R1(H , θ ), Rμ = μR2(H , t, θ ) + (1 – μ)R1(H , θ ),

h1 =
H
π

+ Rμ(H , t, θ ), h2 =
H
π

+ νR2(H , t, θ )

to express

R(H , t, θ ) = I0

(
H
π

+ R2(H , t, θ )
)

– I0

(
H
π

+ R1(H , θ )
)

– πx
(

I0

(
H
π

)
, θ

)
p(t). (2.19)
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Thus we obtain

R(H , t, θ )

= π (R2 – R1) + I–

(
H
π

+ R2

)
– I–

(
H
π

+ R1(H , θ )
)

– πx
(

I0

(
H
π

)
, θ

)
p(t)

= π

[
x
(

I0

(
H
π

+ R2

)
, θ

)
– x

(
I0

(
H
π

)
, θ

)]
p(t) + π

[
G

(
x
(

I0

(
H
π

+ R1

)
, θ

))

– G
(

x
(

I0

(
H
π

+ R2

)
, θ

))]
+ I–

(
H
π

+ R2

)
– I–

(
H
π

+ R1(H , θ )
)

= R1(H , t, θ ) + R2(H , t, θ ) + R3(H , t, θ ),

where

R1 = π

[∫ 1

0
∂Ix

(
I0(h2), θ

)
T0(h2)R2 dν

]
p(t),

R2 = π

∫ 1

0
g
(
x
(
I0(h1), θ

))
∂Ix

(
I0(h1), θ

)
T0(h1)R12 dμ,

R3 =
∫ 1

0
T–(h1)R12 dμ.

Lemma 2.7 For all ε > 0, t, and θ ∈ S
1 \ �, as H → +∞, the function R(H , t, θ ) possesses

the property

∣∣∂k
H∂ l

t R(H , t, θ )
∣∣ ≤ ε(H)H

1
4 –k for k + l ≤ 1. (2.20)

Proof (i) When k + l = 0, using Lemmas 2.1 and 2.5 and (2.18), we obtain (2.20).
(ii) When k = 1 and l = 0,

∂H R1 = π

[∫ 1

0
∂2

I x
(
I0(h2), θ

)
T2

0 (h2)
(

1
π

+ ν∂HR2

)
R2 dν

]
p(t)

+ π

[∫ 1

0
∂Ix

(
I0(h2), θ

)
T ′

0(h2)
(

1
π

+ ν∂HR2

)
R2 dν

]
p(t)

+ π

[∫ 1

0
∂Ix

(
I0(h2), θ

)
T0(h2)∂HR2) dν

]
p(t),

∂H R2 = π

[∫ 1

0
g ′(x

(
I0(h1), θ

))(
∂Ix

(
I0(h1), θ

)
T0(h1)

)2
(

1
π

+ ∂H Rμ

)
R12 dμ

]

+ π

[∫ 1

0
g
(
x
(
I0(h1), θ

))
∂Ix

(
I0(h1), θ

)
T ′

0(h1)
(

1
π

+ ∂HRμ

)
R12 dμ

]

+ π

[∫ 1

0
g
(
x
(
I0(h1), θ

))
∂Ix

(
I0(h1), θ

)
T0(h1)∂H R12 dμ

]

+ π

[∫ 1

0
g
(
x
(
I0(h1), θ

))
∂2

I x
(
I0(h1), θ

)
T2

0 (h1)
(

1
π

+ ∂H Rμ

)
R12 dμ

]
,
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and

∂H R3 =
[∫ 1

0
T ′

–(h1)
(

1
π

+ ∂HRμ

)
R12 dμ +

∫ 1

0
T–(h1)∂HR12 dμ

]
.

We derive (2.20) from Lemmas 2.2 and 2.4–2.6.
(iii) When k = 0 and l = 1,

∂tR1 = π

[∫ 1

0
∂2

I x
(
I0(h2), θ

)
T2

0 (h2)(ν∂tR2)R2 dν

]
p(t)

+ π

[∫ 1

0
∂Ix

(
I0(h2), θ

)
T ′

0(h2)(ν∂tR2)R2 dν

]
p(t)

+ π

[∫ 1

0
∂Ix

(
I0(h2), θ

)
T0(h2)∂tR2 dν

]
p(t)

+ π

[∫ 1

0
∂Ix

(
I0(h2), θ

)
T0(h2)R2 dν

]
p′(t),

∂tR2 = π

[∫ 1

0
g ′(x

(
I0(h1), θ

))[
∂Ix

(
I0(h1), θ

)
T0(h1)

]2(∂tRμ)R12 dμ

]

+ π

[∫ 1

0
g
(
x
(
I0(h1), θ

))
∂Ix

(
I0(h1), θ

)
T ′

0(h1)(∂tRμ)R12 dμ

]

+ π

[∫ 1

0
g
(
x
(
I0(h1), θ

))
∂Ix

(
I0(h1), θ

)
T0(h1)∂tR12 dμ

]

+ π

[∫ 1

0
g
(
x
(
I0(h1), θ

))
∂2

I x
(
I0(h1), θ

)
T2

0 (h1)∂tRμR12 dμ

]
,

and

∂tR3 =
∫ 1

0
T ′

–(h1)∂tRμR12 dμ +
∫ 1

0
T–(h1)∂tR12 dμ.

We obtain inequality (2.20) from Lemmas 2.1–2.2 and 2.4–2.6. �

Now we rewrite (2.5) with the variables H , t, θ . Utilizing (2.19) yields

I = I0

(
H
π

+ R1(H , θ )
)

+ πx
(

I0

(
H
π

)
, θ

)
p(t) + R(H , t, θ )

= I0

(
H
π

+ R1(H , θ )
)

+ πx(H , θ )p(t) + R̃(H , t, θ ), (2.21)

where

R̃(H , t, θ ) = π

∫ 1

0
∂Ix

(
H + μI–

(
H
π

)
, θ

)
p(t)I–

(
H
π

)
dμ + R(H , t, θ ).

For the new perturbation R̃, from Lemmas 2.1–2.2 and 2.7 we have

∣∣∂k
H∂ l

t R̃(H , t, θ )
∣∣ ≤ ε(H)H

1
4 –k for k + l ≤ 1. (2.22)
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Lemma 2.8 If (1.6) holds, then

lim
H→+∞ H– 1

4 +k�(k)(H) = 0, k = 0, 1. (2.23)

Proof Using (2.12) and (2.13), we get

τ (H) – π

=
∫ π

0
∂H I0

(
H
π

+ R1(H , θ )
)

dθ – π

=
∫ π

0

1
∂I[πh0(I) + πG(x(I, θ ))]

dθ – π

=
∫ π

0

1
1

1+π∂H R1+∂H I–( H
π +R1)

+ g(x)∂Ix[1 + π∂H R1 + ∂H I–( H
π

+ R1)]
dθ – π

=
∫ π

0

1 + π∂H R1 + ∂HI–( H
π

+ R1)
1 + g(x)∂Ix[1 + π∂H R1 + ∂H I–( H

π
+ R1)]2

dθ – π .

Applying (1.5), (2.2), and the definition of h0(I) gives rise to

�(H) =
√

H
∫ π

0

[
π∂H R1 + ∂H I–( H

π
+ R1) – g(x)∂Ix[1 + π∂H R1 + ∂H I–( H

π
+ R1)]2

1 + g(x)∂Ix[1 + π∂H R1 + ∂H I–( H
π

+ R1)]2

]
dθ .

(2.24)

Thus

H– 1
4 �(H)

= H
1
4

∫ π

0

[
π∂H R1 + ∂H I–( H

π
+ R1) – g(x)∂Ix[1 + π∂H R1 + ∂H I–( H

π
+ R1)]2

1 + g(x)∂Ix[1 + π∂H R1 + ∂HI–( H
π

+ R1)]2

]
dθ .

For k = 0, we obtain (2.23) from Lemmas 2.1, 2.4, and 2.6. Note that

τ ′(H) =
∫ π

0

π∂2
H R1 + ∂2

H I–( H
π

+ R1)( 1
π

+ ∂H R1)
1 + g(x)∂Ix[1 + π∂H R1 + ∂HI–( H

π
+ R1)]2

dθ

–
∫ π

0

g ′(x)(∂Ix)2[1 + π∂H R1 + ∂HI–( H
π

+ R1)]4

{1 + g(x)∂Ix[1 + π∂H R1 + ∂H I–( H
π

+ R1)]2}2
dθ

–
∫ π

0

g(x)(∂2
I x)[1 + π∂H R1 + ∂H I–( H

π
+ R1)]4

{1 + g(x)∂Ix[1 + π∂H R1 + ∂H I–( H
π

+ R1)]2}2
dθ

–
∫ π

0

2[1 + π∂H R1 + ∂H I–( H
π

+ R1)]2g(x)∂Ix[π∂2
HR1 + ∂2

H I–( H
π

+ R1)]
{1 + g(x)∂Ix[1 + π∂H R1 + ∂H I–( H

π
+ R1)]2}2

dθ .

Using Lemmas 2.1, 2.4, and 2.6, we get H 5
4 τ ′(H) ≤ ε(H). Thus we obtain

H
3
4 �′(H) =

1
2

H– 1
4 �(H) + H

5
4 τ ′(H) ≤ ε(H).

Hence (2.23) holds for k = 1. The proof is finished. �
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2.2 Canonical transformations
Lemma 2.9 If (1.6) holds, then there exists a canonical transform

�3 : H = ρ, t = τ + T(ρ, θ )

associated with T(ρ, θ + π ) = T(ρ, θ ) such that the transformed system of (2.21) takes the
form

dρ

dθ
= –∂τ Î(ρ, τ , θ ),

dτ

dθ
= ∂ρ Î(ρ, τ , θ ), (2.25)

where

Î(ρ, τ , θ ) = J(ρ) + πx(ρ, θ )p(τ ) + R̂(ρ, τ , θ )

and

J(ρ) =
1
π

∫ π

0
I0

(
ρ

π
+ R1(ρ, θ )

)
dθ .

For the new perturbation R̂ and for all ε > 0, t, and θ ∈ S
1 \ �, if H → +∞ and k + l ≤ 1,

then

∣∣∂k
ρ∂ l

τ R̂(ρ, τ , θ )
∣∣ ≤ ε(ρ)ρ

1
4 –k . (2.26)

Proof Define �3 implicitly by

ρ = H + ∂τ S(H , τ , θ ), t = τ + ∂HS(H , τ , θ ),

where the function S = S(H , τ , θ ) will be determined later. Using �3, (2.21) becomes

Ĩ(ρ, τ , θ ) = I0

(
H
π

+ R1(H , θ )
)

+ πx(H , θ )p(t) + R̃(H , t, θ ) –
∂S
∂θ

.

Now we choose

S =
∫ θ

0

[
I0

(
H
π

+ R1(H , θ )
)

– J(H)
]

dθ .

Therefore ρ = H . Assuming that T(H , θ ) = ∂HS(H , θ ), we know that �3 takes the form

H = ρ, t = τ + T(ρ, θ ).

and the function Ĩ reads as

Î(ρ, τ , θ ) = J(ρ) + πx(ρ, θ )p(τ ) + R̂(ρ, τ , θ ),

where

R̂(ρ, τ , θ ) = R̃
(
ρ, τ + T(ρ, θ ), θ

)
+ πx(ρ, θ )

∫ 1

0
p′(τ + μT(ρ, θ )

)
T(ρ, θ ) dμ.

By a direct computation, (2.26) is derived from Lemmas 2.1, 2.2, and 2.6–2.8. �
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3 Proof of main result
Now we introduce a small parameter δ > 0 satisfying

�4 : ρ = δ–2v, v ∈ [a, b],

where a and b such that b > a > 0 do not depend on δ > 0.
In the new variables (v, τ ), (2.25) takes the form

dv
dθ

= –
∂

∂τ
Î(v, τ , θ , δ),

dτ

dθ
=

∂

∂v
Î(v, τ , θ , δ), (3.1)

where

Î(v, τ , θ , δ) = δ2[J
(
δ–2v

)
+ πx

(
δ–2v, θ

)
p(τ ) + R̂

(
δ–2v, τ , θ

)]
.

Denote R̂(v, τ , θ , δ) = δ2R̂(δ–2v, τ , θ ). From (2.22) we derive that for k + l ≤ 1,

δ–1∣∣∂k
v ∂ l

τ R̂(v, τ , θ , δ)
∣∣ ≤ ε

(
δ–2v

)
v

1
4 –k as δ → 0+. (3.2)

Because of

τ
(
δ–2v

)
= π + δv– 1

2 �
(
δ–2v

)
, J ′(δ–2v

)
=

1
π

τ
(
δ–2v

)
,

we write system (3.1) in the form

⎧⎨
⎩

dv
dθ

= –πδ2x(δ–2v, θ )p′(τ ) – ∂τ R̂(v, τ , θ , δ),
dτ
dθ

= 1 + δ
π

v– 1
2 �(δ–2v) + δ2π∂vx(δ–2v, θ )p(τ ) + ∂vR̂(v, τ , θ , δ).

(3.3)

Let (v(θ , v0, τ0), τ (θ , v0, τ0)) denote the solution of (3.3) associated with the initial data

(
v(0, v0, τ0), τ (0, v0, τ0)

)
= (v0, τ0).

Utilizing (3.2), we conclude that if δ  1, then a solution of (3.3) exists in [0, 2π ] for any
(v0, τ0) ∈ [a, b] × [0,π ]. Moreover,

0 <
1
2

a ≤ v(θ , v0, τ0) ≤ 2b ∀θ ∈ [0, 2π ].

Assume that the solution (v(θ , v0, τ0), τ (θ , v0, τ0)) is of the form

v(θ , v0, τ0) = v0 + δF2(θ , v0, τ0)), τ (θ , v0, τ0) = τ0 + θ + δF1(θ , v0, τ0).

Then the Poincaré map of (3.3), represented by P, possesses the expression

P(v0, τ0) =
(
v0 + δF2(π , v0, τ0), τ0 + π + δF1(π , v0, τ0)

)
.
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Since (v(θ , v0, τ0), τ (θ , v0, τ0)) is a solution of (3.3), we acquire

⎧⎪⎪⎨
⎪⎪⎩

dF1
dθ

= 1
π

(v0 + δF2)– 1
2 �(δ–2(v0 + δF2))

+ πδ∂vx(δ–2(v0 + δF2), θ )p(τ ) + δ–1∂vR̂(v, τ , θ , δ),
dF2
dθ

= –πδx(δ–2(v0 + δF2), θ )p′(τ ) – δ–1∂τ R̂(v, τ , θ , δ).

(3.4)

From (3.2) and (3.4) we derive that

|F1| ≤ C, |F2| ≤ C

uniformly in θ ∈ S
1 \ �.

Lemma 2.9, (3.2), (3.3), and (3.4) yield

F1(π , v0, τ0) =
∫ π

0

[
1
π

(v0 + δF2)– 1
2 �

(
δ–2(v0 + δF2)

)

+ δπ∂vx
(
δ–2(v0 + δF2), θ

)
p(τ )

]
dθ + o(1),

F2(π , v0, τ0) = –π

∫ π

0
δx

(
δ–2(v0 + δF2), θ

)
p′(τ ) dθ + o(1).

Thus the Poincaré map P of (3.3) takes the form

P :

⎧⎨
⎩

τ1 = τ0 + π + δl1(v0, τ0, δ) + δo(1),

v1 = v0 + δl2(v0, τ0, δ) + δo(1),

where

l1(v0, τ0, δ) =
∫ π

0

[
1
π

(v0 + δF2)– 1
2 �

(
δ–2(v0 + δF2)

)

+ δπ∂vx
(
δ–2(v0 + δF2), θ

)
p(τ )

]
dθ

= v– 1
2

0 �
(
δ–2v0

)
+

∫ π

0
δπ∂vx

(
δ–2(v0 + δF2), θ

)
p(τ ) dθ + o(1)

= v– 1
2

0 �
(
δ–2v0

)
+

∫ π

0
δπ∂vx

(
δ–2v0, θ

)
p(τ0 + θ ) dθ + o(1) (3.5)

and

l2(v0, τ0, δ) = –π

∫ π

0
δx

(
δ–2(v0 + δF2), θ

)
p′(τ ) dθ

= –π

∫ π

0
δx

(
δ–2v0, θ

)
p′(t0 + θ ) dθ + o(1). (3.6)

Applying arguments similar to those in [5], we obtain the following estimates:

mes
{
θ ∈ [0,π ], x

(
v0

δ2 , θ
)

> 0
}

= π + δO(1),
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mes
{
θ ∈ [0,π ], x

(
v0

δ2 , θ
)

< 0
}

= δO(1).

When x < 0, we have that

∣∣∣∣x
(

v0

δ2

)∣∣∣∣ = O(1),
∣∣∣∣∂Ix

(
v0

δ2

)∣∣∣∣ = δ2O(1).

When x > 0, from the definition of θ it follows that

x
(

v0

δ2 , θ
)

=
√

2ρ0

δ2π
sin θ + O(1), ∂Ix

(
v0

δ2 , θ
)

=

√
δ2

2πρ0
sin θ + δ2O(1).

Thus from (3.5) we obtain

l1(v0, τ0, δ)

= v– 1
2

0 �
(
δ–2v0

)
+ δπ

∫
{θ∈[0,π ]:x>0}

∂vx
(
δ–2v0, θ

)
p(τ0 + θ ) dθ + o(1)

= v– 1
2

0 �
(
δ–2v0

)
+ δπ

∫
{θ∈[0,π ]:x>0}

δ–2

√
δ2

2πv0
sin θp(τ0 + θ ) dθ + o(1)

= v– 1
2

0 �
(
δ–2v0

)
+ π

∫ π

0

√
1

2πv0
sin θp(τ0 + θ ) dθ + o(1)

= v– 1
2

0

[
�

(
δ–2v0

)
+

√
π

2

∫ π

0
sin θp(τ0 + θ ) dθ

]
+ o(1). (3.7)

Similarly, we derive from (3.6) that

l2(v0, τ0, δ) = –π

∫ π

0
δx

(
δ–2v0, θ

)
p′(τ0 + θ ) dθ + o(1)

= –πδ

∫
{θ∈[0,π ]:x>0}

x
(
δ–2v0, θ

)
p′(τ0 + θ ) dθ + o(1)

= –πδ

√
2ρ0

δ2π

∫
{θ∈[0,π ]:x>0}

p′(τ0 + θ ) sin θ dθ + o(1)

= –
√

2πρ0

∫ π

0
p′(τ0 + θ ) sin θ dθ + o(1). (3.8)

We conclude that the Poincaré map P reads as

P :

⎧⎨
⎩

τ1 = τ0 + π + δl1(v0, τ0, δ) + δo(1),

v1 = v0 + δl2(v0, τ0, δ) + δo(1).
(3.9)

Using

∣∣∣∣
∫ π

0
sin θp(τ0 + θ ) dθ

∣∣∣∣ =
∣∣∣∣
∫ τ0+π

τ0

p(s)(sin s cos τ0 – cos θ sin τ0) ds
∣∣∣∣ ≤ |p̄| (3.10)
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and noticing (1.7), we acquire

lim sup
H→+∞

�(H) >
√

π

2
|p̄|. (3.11)

Let � > 0 and

� ≤ lim sup
H→+∞

�(H) –
√

π

2
|p̄|.

Since
√

H�′(H) → 0 as H → +∞, there exists a number H̄ > 1
b > 0 satisfying

∣∣√H�′(H)
∣∣ ≤ min

{
b– 1

2 �

4(a–1 – b–1)
,
�

16

}
(3.12)

for H ≥ H̄ . Utilizing (3.11), we can choose a sequence {H1
m}∞m=1 with H̄ ≤ H1

m → +∞ such
that

H1
m+1 >

b
a

H1
m (3.13)

and

�
(
H1

m
)

>
3
4
� +

√
π

2
|p̄|. (3.14)

Take δ1m = (bH1
m)– 1

2 . Then we have δ1m → 0 as m → +∞. It follows from (3.13) and (3.14)
that

δ–2
1m

(
a–1 – b–1) = H1

m

(
b
a

– 1
)

< H1
m+1,

and hence [δ–2
1mb–1, δ–2

1mb–1 + (a–1 – b–1)δ–1
1m] ⊂ [δ–2

1mb–1, δ–2
1ma–1] ⊂ [H1

m, H1
m+1].

For any H ∈ [δ–2
1mb–1, δ–2

1mb–1 + (a–1 – b–1)δ–1
1m], we claim that

�(H) >
1
4
� +

√
π

2
|p̄|. (3.15)

Indeed, suppose that there is H1∗
m ∈ [δ–2

1mb–1, δ–2
1mb–1 + (a–1 – b–1)δ–1

1m] such that

�
(
H1∗

m
) ≤ 1

4
� +

√
π

2
|p̄|.

Using (3.12), we have

1
2
� ≤ ∣∣�(

H1∗
m

)
– �

(
H1

m
)∣∣

=
∣∣�′(H1

m + μ
(
H1∗

m – H1
m
))∣∣(H1∗

m – H1
m
)(

μ ∈ [0, 1]
)

=
|√H1

m + μ(H1∗
m – H1

m)�′(H1
m + μ(H1∗

m – H1
m))|(H1∗

m – H1
m)√

H1
m + μ(H1∗

m – H1
m)
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≤ b– 1
2 � ((a–1 – b–1)δ–1

m )
4(a–1 – b–1)δ–1

m b– 1
2

,

≤ �

4
,

which is a contradiction. Thus (3.15) holds.
Let

D1 =
{

(ρ, τ ) : ρ ∈ [
δ–2

1mb–1, δ–2
1mb–1 +

(
a–1 – b–1)δ–1

1m
]}

.

Taking B1 = {(x, y) : �4�3�2�1(x, y) ⊂ D1} and using the fixed point theorem in Ding [10],
we derive that (1.7) in Theorem 1.1 is a consequence of (3.7)–(3.9) and (3.10)–(3.11).

Considering (1.8), we assume that

lim inf
H→+∞ �(H) < –

√
2
π

|p̄|. (3.16)

Let ω̂ > 0 and

ω̂ ≤ –
√

2
π

|p̄| – lim inf
H→+∞ �(H).

Since
√

H�′(H) → 0 as H → +∞, there exists a number Ĥ > 1
b > 0 such that

∣∣√H�′(H)
∣∣ ≤ min

{
b– 1

2 ω̂

4(a–1 – b–1)
,
ω̂

16

}
(3.17)

for H ≥ Ĥ . Combining (3.16), we can find a sequence {H2
m}∞m=1 associated with Ĥ ≤ H2

m →
+∞ satisfying

H2
m+1 >

b
a

H2
m (3.18)

and

�
(
H2

m
) ≤ –

3
4
ω̂ –

√
2
π

|p̄|. (3.19)

Taking δ2m = (bH2
m)– 1

2 , we get δ2m → 0 as m → +∞. It follows from (3.18) that

δ–2
2m

(
a–1 – b–1) = H2

m

(
b
a

– 1
)

< H2
m+1,

and hence H ∈ [δ–2
2mb–1, δ–2

2mb–1 + (a–1 – b–1)δ–1
2m] ⊂ [H2

m, H2
m+1].

For any H ∈ [δ–2
2mb–1, δ–2

2mb–1 + (a–1 – b–1)δ–1
2m], we claim that

�(H) < –
1
4
ω̂ –

√
2
π

|p̄|. (3.20)
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Indeed, assume that there is H2∗
m ∈ [δ–2

2mb–1, δ–2
2mb–1 + (a–1 – b–1)δ–1

2m] such that

�
(
H2∗

m
) ≥ –

1
4
� –

√
2
π

|p̄|.

Then using (3.17), (3.18), and (3.19) we get

1
2
ω̂ ≤ ∣∣�(

H2∗
m

)
– �

(
H2

m
)∣∣

=
∣∣�′(H2

m + μ
(
H2∗

m – H2
m
))∣∣(H2∗

m – H2
m
)(

μ ∈ [0, 1]
)

=
|√H2

m + μ(H2∗
m – H2

m)�′(H2
m + μ(H2∗

m – H2
m))|(H∗

m – H2
m)√

H2
m + μ(H2∗

m – H2
m)

≤ b– 1
2 ω̂((a–1 – b–1)δ–1

m )
4(a–1 – b–1)δ–1

m b– 1
2

≤
ˆ̂ω
4

,

which is a contradiction. Thus (3.20) is valid.
Let

D2 =
{

(ρ, τ ) : ρ ∈ [
δ–2

2mb–1, δ–2
2mb–1 +

(
a–1 – b–1)δ–1

2m
]}

and B2 = {(x, y) : �4�3�2�1(x, y) ⊂ D2}.
Now we choose {H1mk }+∞

1 and {H2mk }+∞
1 such that H1mk < H1mk +1 < H2mk < H2mk +1 and

let

D3 =
{

(ρ, τ ) : ρ ∈ [
δ–2

1mk
b–1, δ–2

2mk
b–1 +

(
a–1 – b–1)δ–1

2mk

]}
.

Setting B3 = {(x, y) : �4�3�2�1(x, y) ⊂ D3} and using the twist theorem in Ding [11], we
obtain that inequality (1.8) in Theorem 1.1 is a consequence of (3.10), (3.15), (3.7), and
(3.20). The proof of Theorem 1.1 is finished.

To verify the given conditions and understand our main result, we give the following
remark.

Remark 3.1 Using Lemmas 2.1, 2.4, and 2.6, Eq. (2.24) takes the form

�(H) =
√

2π
3
2 +

√
H

∫ π

0

(
π∂H R1 – g(x)∂Ix

)
dθ + o(1).

Combining (2.14) with Lemma 2.4, we have ∂H R1 = –g(x)∂Ix + o( 1√
H

). Thus we obtain

�(H) =
√

2π
3
2 –

√
H

∫ π

0
(π + 1)g(x)∂Ix) dθ + o(1).

By the results in [5], x =
√

2H
π

sin θ + O(1), ∂Ix =
√

1
2πH sin θ + O( 1

H ), and

�(H) =
√

2π
3
2 –

1√
2π

∫ π

0
(π + 1)g

(√
2H
π

sin θ

)
sin θ dθ + o(1).
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For g(x) and V (x) in problem (1.3), if g(x) satisfies (1.6) and p(t) satisfies (1.7), then we
know that the equation

ẍ + V ′(x) + sin ln
(
1 + x2) = p(t)

has at least one π-periodic solutions. Letting p(t) satisfy (1.8), we conclude that the equa-
tion

ẍ + V ′(x) + ln
(
1 + x2) sin ln

(
1 + x2) = p(t)

has an unbounded sequence of π-periodic solutions.

Acknowledgements
The authors would like to thank the anonymous referees for their valuable and helpful comments, which led to
a meaningful improvement of the paper.

Funding
This work is supported by National Natural Science Foundation of China (No. 12361042) and the 14th Five Year Key
Discipline of Xinjiang Autonomous Region (78756342).

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare no competing interests.

Author contributions
Dr. Xing and Dr. Wang give all the computaions and derivations of the paper. Lai checks the whole paper and corrects the
paper and gives some suggeations. All authors contribute equally in this works.

Author details
1The School of Math. and Statis., Yili Normal University, 835000, Yining, China. 2The School of Math., Southwestern
University of Finance and Economics, Wenjiang, 611130, Chengdu, China.

Received: 16 July 2023 Accepted: 11 November 2023

References
1. Fonda, A., Toder, R.: Periodic orbits of radially symmetric Keplerian-like systems: a topological degree approach.

J. Differ. Equ. 244, 3235–3264 (2008)
2. Qian, D., Torres, P.J.: Bouncing solutions of an equation with attractive singularity. Proc. R. Soc. Edinb. A 134, 201–214

(2004)
3. Jiang, S.: Boundedness of solutions for a class of second-order differential equation with singularity. Bound. Value

Probl. 84, 1–15 (2013)
4. Liu, Q., Torres, P.J., Qian, D.: Periodic, quasiperiodic and unbounded solutions of radially symmetric systems with

repulsive singularities at resonance. Nonlinear Differ. Equ. Appl. 22, 1115–1142 (2015)
5. Capietto, A., Dambrosio, W., Liu, B.: On the boundedness of solutions to a nonlinear singular oscillator. Z. Angew.

Math. Phys. 60, 1007–1034 (2009)
6. Liu, B.: Quasi-periodic solutions of forced isochronous oscillators at resonance. J. Differ. Equ. 246, 3471–3495 (2009)
7. Wang, H.Y., Jiang, S.J.: Boundedness of solutions of forced isochronous oscillators with singularity at resonance. Adv.

Differ. Equ. 2014, 55 (2014)
8. Lazer, A.C., Leach, D.E.: Bounded perturbations of forced harmonic oscillators at resonance. Ann. Mat. Pura Appl. 82,

49–68 (1969)
9. Ma, S.: Existence and multiplicity of periodic solutions for semilinear Duffing equations at resonance. Int. J. Qual.

Theory Differ. Equ. Appl. 5, 33–44 (2019)
10. Ding, T.R.: Nonlinear oscillation at the point of resonance. Sci. Sin., Ser. A 1, 1–13 (1982)
11. Ding, W.Y.: A generalization of Poincaré–Birkhoff theorem. Proc. Am. Math. Soc. 88, 341–346 (1983)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Existence and multiplicity of periodic solutions for a nonlinear resonance equation with singularities
	Abstract
	Mathematics Subject Classiﬁcation
	Keywords

	Introduction and main result
	Preliminaries
	Action-angle coordinates
	Canonical transformations

	Proof of main result
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Author contributions
	Author details
	References
	Publisher's Note


