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1 Introduction
Fractional integrals and fractional derivatives have a history as old as calculus. Fractional
differential equations involving fractional-order derivatives have gained much importance
in recent years because of their variety of practical applications in different fields of science
and engineering. Fixed point theory and measures of noncompactness (m.n.c.) are widely
used in solving different types of differential and integral equations. m.n.c. was first intro-
duced by Kuratowski [17] in 1930. After that, Darbo [6] generalized Schauder’s fixed point
theorem with the help of Kuratowski m.n.c. Presently, a huge number of new research
works related to different types of integral and differential equations have been done by
several mathematicians. Arab et al. [2] studied the solvability of fractional functional-
integral equations using m.n.c. In [8], the authors established some new fixed point theo-
rems involving m.n.c. and control functions. Furthermore, by employing this m.n.c., they
discussed the existence of solutions to integral equations in a Banach space. In [7], the
authors presented the existence of solutions to the nonlinear functional integral equa-
tions in two variables with the help of fixed point theory. In [15], the authors discussed
the existence of solutions to functional integral equations by using m.n.c. and operator-
type contractions. Das et al. [10] analyzed the problem of the existence of solutions to a
generalized proportional fractional integral equation via new fixed point theorems.

In [5], the authors considered the applications of m.n.c. in the study of asymptotic stabil-
ity. Deb et al. [11] discussed new fixed point theorems via m.n.c. and their applications on
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fractional equations involving an operator with iterative relations. In [4], the authors dis-
cussed the existence of solutions for infinite systems of differential equations in tempered
sequence spaces. In [20], the authors worked on the solvability of nonlinear functional in-
tegral equations of two variables in a Banach algebra. In [19], the authors first introduced
a new tempered sequence space and introduced an m.n.c. in this space. Furthermore, by
using m.n.c. and generalizing Darbo’s fixed point theorem, they discussed the existence
of solutions to an infinite system of fractional differential equations. In [12], the authors
presented a generalization of Darbo’s fixed point theorem, and they used it to investigate
the solvability of an implicit fractional order integral equation in �p (1 ≤ p < ∞) spaces. In
[13], the authors established a new tempered sequence space, i.e., the tempered sequence
space �α

p (p ≥ 1) and obtained an m.n.c. in this space. Also, they studied the solvability of
an infinite system of Langevin fractional differential equations in this space by using m.n.c.
with Darbo’s fixed point theorem. In [18], the authors discussed the solvability of an infi-
nite system of fractional differential equations in a new tempered sequence space. In [14],
the authors studied the existence of solutions for an infinite system of Hilfer fractional
boundary value problems in tempered sequence spaces by using Meir-Keeler condensing
operators with some numerical examples. Das et al. investigated the solvability of gener-
alized fractional integral equations of two variables in [9]. They developed a fixed point
theorem that broadened Darbo’s fixed point theorem (DFPT) by employing the measure of
noncompactness and a contraction operator. Additionally, they discovered the associated
coupled fixed point theorem, used this generalized DFPT to solve generalized fractional
integral equations of two variables, and presented an example to explain their conclusions.

In this investigation, we study the following hybrid differential equation

d
d�

[
Ł(�)

F(�, Ł(�))

]
= �

(
�, Ł(�)

)
, � ∈ [0, b] = J and Ł(0) = 0

and the following fractional hybrid differential equation

Dq
[

Ł(�)
F(�, Ł(�))

]
= �

(
�, Ł(�)

)
, 0 < q < 1,� ∈ [0, b] = J and Ł(0) = 0,

where

Dqf (t) =
1

�(n – α)

(
d
dt

)(n) ∫ t

0

f (s)
(t – s)α–n+1 ds, n = [α] + 1

and [α] denotes the integer part of number α.

2 Preliminaries
First, we recall the definition of an m.n.c. (see [3]).

Assume that ‖ · ‖H is a norm on a real Banach space H and W(π , d0) = {θ ∈ H : ‖θ –
π‖H ≤ d0}.

Let,
• The collection of all non-empty and bounded subsets of H be denoted by MH and the

collection of all non-empty relatively compact subsets of H be denoted by NH ,
• The closure and the convex closure of V ⊆ H be denoted by V̄ and ConvV ,

respectively,
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• R = (–∞,∞), and R+ = [0,∞).

Definition 2.1 [3] An m.n.c. in H is a function G : MH →R+ that satisfies the given con-
ditions:

(i) ∀V ∈ MH , G(V) = 0 gives V is relatively compact,
(ii) ker G = {V ∈ MH : G(V) = 0} 
= ∅,

(iii) V ⊆ V1 �⇒ G(V) ≤ G(V1),
(iv) G(V̄) = G(V),
(v) G(ConvV) = G(V),

(vi) G(κV + (1 – κ)V1) ≤ κG(V) + (1 – κ)G(V1) for all κ ∈ [0, 1],
(vii) if Vp ∈ MH , Vp = V̄p, Vp+1 ⊂ Vp for all p = 1, 2, 3, 4, . . . and limp→∞ G(Vp) = 0 then⋂∞

p=1 Vp 
= ∅.

The subfamily kerG , defined by (ii), represents the kernel of measure G , and since
G(V∞) ≤ G(Vp) for any p, we can say that G(V∞) = 0. Then, V∞ =

⋂∞
p=1 Vp ∈ kerG .

2.1 Useful theorems and definitions
First, we state some important theorems:

Theorem 2.2 (Schauder [1]) Assume that Q is a non-empty, bounded, closed and convex
subset (n.b.c.c.s.) of a Banach Space H . Then every compact continuous mapping J : Q→Q
has at least one fixed point.

Theorem 2.3 (Darbo [6]) Assume that Q is an n.b.c.c.s. of a Banach Space H , and let
J : Q→Q be a continuous mapping. Let us have a constant χ ∈ [0, 1) such that

G(Jω) ≤ χ · G(ω), ω ⊂Q.

Then, there exists at least one fixed point for J in Q.

Now, we define some functions that are important for generalization of the Darbo’s fixed
point theorem (DFPT).

Definition 2.4 A pair of operators (ψ ,φ), where ψ ,φ : (0,∞) → (0,∞), is a pair of gen-
eralized altering distance functions if subsequent postulates hold:

(1) ψ is nondecreasing and continuous;
(2) limn→∞ φ(tn) = 0 �⇒ limn→∞ tn = 0.

Definition 2.5 [16] A simulation function is an operator � : [0,∞)2 → [0,∞) satisfying
the following conditions:

(1) �(0, 0) = 0;
(2) �(a, b) < b – a, a, b > 0;
(3) if {an} and {bn} are sequences in (0,∞) so that lim

n→∞ an = lim
n→∞ bn > 0, then

lim sup
n→∞

�(an, bn) < 0.
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3 Fixed point theorems
Theorem 3.1 Assume that E is an n.b.c.c.s. of a Banach space H . Also, let K : E → E be a
continuous mapping with

ψ
(
G(KP)

) ≤ α
(
G(P)

)
ψ

(
G(P)

)
– β

(
G(P)

)
φ
(
G(P)

)
, (3.1)

where α,β : [0,∞) → [0, 1) are continuous, (ψ ,φ) is a pair of generalized altering distance
functions, P⊂ E and G is an arbitrary m.n.c. Then, K has at least one fixed point in E.

Proof First, we consider the sequence {Er}∞r=1 with E1 = E and Er+1 = Conv(KEr) for all
r ∈N (the set of natural numbers). So, KE1 = KE ⊆ E = E1, E2 = Conv(KE1) ⊆ E = E1. By
proceeding in the same manner, we get E1 ⊇ E2 ⊇ E3 ⊇ · · · ⊇ Er ⊇ Er+1 ⊇ · · · .

If G(Er0 ) = 0 for some r0 ∈ N, then Er0 is a compact set. Then, using Theorem 2.2, we
can say that K has a fixed point in E.

So, let G(Er) > 0 for all r ∈N.
Now,

ψ
(
G(Er+1)

)
= ψ

(
G

(
Conv(KEr)

))
= ψ

(
G(KEr)

)
≤ α

(
G(Er)

)
ψ

(
G(Er)

)
– β

(
G(Er)

)
φ
(
G(Er)

)
≤ α

(
G(Er)

)
ψ

(
G(Er)

)
.

Since {G(Er)}∞r=1 is a nonnegative decreasing sequence; therefore, it is convergent to
some nonnegative number a (say), i.e., lim

r→∞G(Er) = a. Let a 
= 0. So, as r → ∞, we get,

ψ(a) ≤ α(a)ψ(a),

which implies

α(a) ≥ 1,

which contradicts our assumption. Hence, a = 0, which gives

lim
r→∞G(Er) = 0.

As we have Er ⊇ Er+1, from part (vii) of Definition 2.1, we get E∞ =
⋂∞

r=1 Er is a non-
empty, closed, convex set, which is invariant under K and belongs to kerG . Thus, by
Schauder’s theorem (Theorem 2.2), K has at least one fixed point in E. �

Corollary 3.2 Assume that E is an n.b.c.c.s. of H . Also, let K : E → E be a continuous
mapping with

ψ
(
G(KP)

) ≤ χψ
(
G(P)

)
, (3.2)
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where χ ∈ [0, 1), P ⊂ E and G is an arbitrary m.n.c. Then, K has at least one fixed point
in E.

Proof Putting α ≡ χ ∈ [0, 1) and β ≡ 0 in equation (3.1) of Theorem 3.1, we can get the
above result. �

Remark 3.3 If we chose ψ(t) = t for all t ∈ [0,∞) in equation (3.2), then we get

G(KP) ≤ χG(P).

Hence, we conclude that our fixed point theorem is a generalization of DFPT.

Theorem 3.4 Assume that E is an n.b.c.c.s. of H . Also, let K : E → E be a continuous
mapping with

(
G(KP) + l

)G(KP) ≤ lβ(G(P))G(P), l > 1, (3.3)

where β : [0,∞) → [0, 1) is continuous, P⊂ E and G is an arbitrary m.n.c. Then, K has at
least one fixed point in E.

Proof First, we consider the sequence {Er}∞r=1 with E1 = E and Er+1 = Conv(KEr) for all
r ∈ N (the set of natural numbers). Also, KE1 = KE ⊆ E = E1, and E2 = Conv(KE1) ⊆ E =
E1. Proceeding in the same manner, we get E1 ⊇ E2 ⊇ E3 ⊇ · · · ⊇ Er ⊇ Er+1 ⊇ · · · .

Let G(Er0 ) = 0 for some r0 ∈ N. So, Er0 is a compact set. Then, using Theorem 2.2, we
conclude that K has a fixed point in E.

Let G(Er) > 0 for all r ∈ N.
Now,

(
G(Er+1) + l

)G(Er+1)

=
(
G

(
ConvK(Er)

)
+ l

)G(ConvK(Er))

=
(
G

(
K(Er)

)
+ l

)G(K(Er))

≤ lβ(G(Er))G(Er).

Since G(Er+1) + l > l, G(Er+1) ≤ β(G(Er))G(Er). Also, as β(G(Er)) ∈ [0, 1), so G(Er+1) <
G(Er).

Since {G(Er)}∞r=1 is a nonnegative decreasing sequence, it is convergent to some nonneg-
ative number a (say), i.e., limr→∞ G(Er) = a. So, as r → ∞, we get

a ≤ β(a)a.

If a > 0, then

β(a) ≥ 1,

which contradicts our assumption. Hence, a = 0, which gives

lim
r→∞G(Er) = 0.
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Thus, we have Er ⊇ Er+1. Now, from part (vii) of Definition 2.1, E∞ =
⋂∞

r=1 Er is a
non-empty, closed, convex set, which is invariant under K and belongs to kerG . Thus,
by Schauder’s theorem (Theorem 2.2), K has at least one fixed point in E. �

Theorem 3.5 Assume that E is an n.b.c.c.s. of a Banach space H . Also, let K : E → E be a
continuous mapping with

�
{(
G(KP) + l

)G(KP), lβ(G(P))G(P)} ≥ 0, l > 1, (3.4)

where � is a simulation function, β : [0,∞) → [0, 1) is continuous, P ⊂ E and G is an
arbitrary m.n.c. Then, K has at least one fixed point in E.

Proof First, we consider the sequence {Er}∞r=1 with E1 = E and Er+1 = Conv(KEr) for all
r ∈ N (the set of natural numbers). It is obvious that KE1 = KE ⊆ E = E1 and E2 =
Conv(KE1) ⊆ E = E1. By proceeding in the same manner, we get E1 ⊇ E2 ⊇ E3 ⊇ · · · ⊇
Er ⊇ Er+1 ⊇ · · · .

Let G(Er0 ) = 0 for some r0 ∈ N. So, Er0 is a compact set. Then, using Theorem 2.2, we
conclude that K has a fixed point in E.

Let G(Er) > 0 for all r ∈ N.
If we apply the properties of simulation functions, then

�
{(
G(KP) + l

)G(KP), lβ(G(P))G(P)} ≥ 0,

implies

(
G(KP) + l

)G(KP) ≤ lβ(G(P))G(P).

Now, we can apply the steps of the above theorem to get the desired result. �

4 Measure of noncompactness on C([0, b])
Let us consider the set of all real continuous functions on J = [0, b], which is denoted by
H = C(J). Then, H is a Banach space with the norm

‖X‖ = sup
{∣∣X(q)

∣∣ : q ∈ J
}

, X ∈ H .

Assume that �(
= ∅) ⊆ H is bounded. For X ∈ � and for a σ > 0, μ(X,σ ) is the modulus of
the continuity of X that is written as

μ(X,σ ) = sup
{∣∣X(q1) – X(q2)

∣∣ : q1, q2 ∈ J , |q2 – q1| ≤ σ
}

.

We also define

μ(�,σ ) = sup
{
μ(X,σ ) : X ∈ �

}

and

μ0(�) = lim
σ→0

μ(�,σ ),
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where the m.n.c. in H is denoted by the function μ0, and the Hausdorff m.n.c. is denoted
by ζ and defined by ζ (�) = 1

2μ0(�) (see [3]).

5 Solvability of a hybrid differential equation
In this portion, we will check the existence of a solution to the following hybrid differential
equation in the Banach space H :

d
d�

[
Ł(�)

F(�, Ł(�))

]
= �

(
�, Ł(�)

)
, � ∈ [0, b] = J and Ł(0) = 0. (5.1)

Equation (5.1) is equivalent to the hybrid integral equation (5.2) given as

Ł(�) = F
(
�, Ł(�)

) ∫ �

0
�

(
u, Ł(u)

)
du. (5.2)

Let

Yg =
{
Ł ∈ H : ‖Ł‖ ≤ g

}
.

To establish the existence of a solution to (5.1), we need the following assumptions:
(I) F : J ×R →R is continuous, and there is a constant £1 > 0 satisfying

∣∣F(
�, Ł1(x)

)
– F

(
�, Ł2(y)

)∣∣ ≤ £1
∣∣Ł1(x) – Ł2(y)

∣∣,
for all �, x, y ∈ J and Ł1, Ł2 ∈ H .

Also, for all � ∈ J ,

F(�, 0) = z0 > 0.

(II) � : J ×R→R is continuous, and there is a constant �1 > 0 satisfying

∣∣�(
�, Ł1(x)

)
– �

(
�, Ł2(y)

)∣∣ ≤ �1
∣∣Ł1(x) – Ł2(y)

∣∣,
for all �, x, y ∈ J and Ł1, Ł2 ∈ H .

Also, for all � ∈ J ,

�(�, 0) = 0.

(III) There is a positive number g0 such that

b(£1g0 + z0)�1 < 1.

Theorem 5.1 Under assumptions (I)-(III), the equation (5.2) has at least one solution in H .

Proof We consider the operator S : H → H defined as

(SŁ)(�) = F
(
�, Ł(�)

)∫ �

0
�

(
u, Ł(u)

)
du.
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Step (1): In this step, we will prove that the operator S maps Yg0 into Yg0 . Let Ł ∈ Yg0 .
Now, we have

∣∣(SŁ)(�)
∣∣

≤ ∣∣F(
�, Ł(�)

)∣∣ ∫ �

0

∣∣�(
u, Ł(u)

)∣∣du

≤ [∣∣F(
�, Ł(�)

)
– F(�, 0)

∣∣ +
∣∣F(�, 0)

∣∣] ∫ �

0

[∣∣�(
�, Ł(�)

)
– �(�, 0)

∣∣ +
∣∣�(�, 0)

∣∣]du

≤ (
£1‖Ł‖ + z0

)∫ �

0
�1‖Ł‖du

≤ (
£1‖Ł‖ + z0

)
�1‖Ł‖b

≤ (£1g0 + z0)�1g0b.

Hence, ‖Ł‖ ≤ g0 gives

‖S‖ < g0,

due to assumption (III). So, S maps Yg0 to Yg0 .
Step (2): In this section, the continuity of S on Yg0 will be established. Let σ > 0 and

Ł, Ł′ ∈Yg0 such that ‖Ł – Ł′‖ < σ . Then,

∣∣(SŁ)(�) –
(
SŁ′)(�)

∣∣
=

∣∣∣∣F(
�, Ł(�)

)∫ �

0
�

(
u, Ł(u)

)
du – F

(
�, Ł′(�)

)∫ �

0
�

(
u, Ł′(u)

)
du

∣∣∣∣
≤

∣∣∣∣[F(
�, Ł(�)

)
– F

(
�, Ł′(�)

)]∫ �

0
�

(
u, Ł(u)

)
du

∣∣∣∣
+

∣∣F(
�, Ł′(�)

)∣∣
∣∣∣∣
∫ �

0

[
�

(
u, Ł(u)

)
– �

(
u, Ł′(u)

)]
du

∣∣∣∣
≤ ∣∣F(

�, Ł(�)
)

– F
(
�, Ł′(�)

)∣∣ ∫ �

0

∣∣�(
u, Ł(u)

)∣∣du

+
∣∣F(

�, Ł′(�)
)∣∣ ∫ �

0

∣∣�(
u, Ł(u)

)
– �

(
u, Ł′(u)

)∣∣du

≤ £1
∥∥Ł – Ł′∥∥b�1‖Ł‖ +

(
£1

∥∥Ł′∥∥ + z0
)∥∥Ł – Ł′∥∥b�1

< £1σb�1g0 + (£1g0 + z0)σb�1.

If σ → 0, then |(SŁ)(�) – (SŁ′)(�)| → 0, i.e., ‖SŁ – SŁ′‖ → 0. Hence, S is continuous
on Yg0 .

Step (3): Now, assume that �Ł (
= ∅) ⊆ Yg0 . Let σ > 0 be arbitrary and choose Ł ∈ �Ł

and �1,�2 ∈ J such that |�2 – �1| ≤ σ with �2 ≥ �1.
We have,

∣∣(SŁ)(�1) – (SŁ)(�2)
∣∣

=
∣∣∣∣F(

�1, Ł(�1)
)∫ �1

0
�

(
u, Ł(u)

)
du – F

(
�2, Ł(�2)

)∫ �2

0
�

(
u, Ł(u)

)
du

∣∣∣∣
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≤
∣∣∣∣F(

�1, Ł(�1)
)∫ �1

0
�

(
u, Ł(u)

)
du – F

(
�1, Ł(�2)

)∫ �1

0
�

(
u, Ł(u)

)
du

∣∣∣∣
+

∣∣∣∣F(
�1, Ł(�2)

)∫ �1

0
�

(
u, Ł(u)

)
du – F

(
�1, Ł(�2)

)∫ �2

0
�

(
u, Ł(u)

)
du

∣∣∣∣
+

∣∣F(
�2, Ł(�2)

)
– F

(
�1, Ł(�2)

)∣∣ ∫ �2

0

∣∣�(
u, Ł(u)

)∣∣du

≤ ∣∣F(
�1, Ł(�1)

)
– F

(
�1, Ł(�2)

)∣∣ ∫ �1

0

∣∣�(
u, Ł(u)

)∣∣du

+
∣∣F(

�1, Ł(�2)
)∣∣ ∫ �2

�1

∣∣�(
u, Ł(u)

)∣∣du

+
∣∣F(

�2, Ł(�2)
)

– F
(
�1, Ł(�2)

)∣∣ ∫ �2

0

∣∣�(
u, Ł(u)

)∣∣du

≤ £1�1bg0
∣∣Ł(�1) – Ł(�2)

∣∣
+

∣∣F(
�1, Ł(�2)

)∣∣�1g0|�2 – �1|
+

∣∣F(
�2, Ł(�2)

)
– F

(
�1, Ł(�2)

)∣∣�1g0b

≤ £1�1bg0μ(Ł,σ ) +
∣∣F(

�1, Ł(�2)
)∣∣�1g0|�2 – �1|

+
∣∣F(

�2, Ł(�2)
)

– F
(
�1, Ł(�2)

)∣∣�1g0b,

where

μ(Ł,σ ) = sup
{∣∣Ł(�2) – Ł(�1)

∣∣; |�2 – �1| ≤ σ ;�1,�2 ∈ J
}

.

Since F is continuous, |F(�2, Ł(�2)) – F(�1, Ł(�2))| → 0 as σ → 0.
Therefore,

μ(SŁ,σ ) ≤ £1�1bg0μ(Ł,σ )

+ sup
|�2–�1|≤σ

∣∣F(
�1, Ł(�2)

)∣∣�1g0σ

+ sup
|�2–�1|≤σ

∣∣F(
�2, Ł(�2)

)
– F

(
�1, Ł(�2)

)∣∣�1g0b.

As σ → 0, via taking the supŁ∈�Ł
, we get

μ0(S�Ł) ≤ £1�1bg0μ0(�Ł).

Thus, by Corollary 3.2, S has a fixed point in �Ł ⊆Yg0 , i.e., equation (5.1) has a solution
in H = C(J). �

Now, we consider an example to demonstrate Theorem 5.1.

Example 5.2 Let us take the following HDE :

d
dρ

[
Ł(�)(1 + �2)

2 + Ł(�)

]
=

�3Ł(�)
3 + 2�2 , (5.3)

where � ∈ [0, 1] = J and Ł(0) = 0.
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Here,

F(�, Ł) =
2 + Ł

1 + �2 ,

b = 1,

and

�(�, Ł) =
�3Ł

3 + 2�2 .

It is also trivial that F is continuous and

∣∣F(
�, Ł1(x)

)
– F

(
�, Ł2(y)

)∣∣ ≤ £1
∣∣Ł1(x) – Ł2(y)

∣∣,
for all �, x, y ∈ J and Ł1, Ł2 ∈ H . Therefore, £1 = 1 and z0 = F(�, 0) = 2

1+�2 ≤ 2. � is also
continuous such that

∣∣�(
�, Ł1(x)

)
– �

(
�, Ł2(y)

)∣∣ ≤ 1
3
∣∣Ł1(x) – Ł2(y)

∣∣,
for all �, x, y ∈ J and Ł1, Ł2 ∈ H .

Therefore, �(�, 0) = 0 and �1 = 1
3 .

Now, from the inequality of assumption (III), we have g0+2
3 < 1 and g0 < 1. Then, we can

say that assumption (III) is also fulfilled for the value

g0 =
1
2

.

Thus, all the presumptions from (I) to (III) of Theorem 5.1 are fulfilled. According to
Theorem 5.1, we can say that there exists a solution for the equation (5.3) in H = C(J).

6 Solvability of fractional hybrid differential equation
In this portion, the existence of a solution to a hybrid fractional differential equation in a
Banach space H will be established.

Consider the following fractional hybrid differential equation:

Dq
[

Ł(�)
F(�, Ł(�))

]
= �

(
�, Ł(�)

)
, 0 < q < 1,� ∈ [0, b] = J and Ł(0) = 0. (6.1)

Equation (6.1) is equivalent to the following hybrid integral equation:

Ł(�) =
F(�, Ł(�))

�(q)

∫ �

0
(� – u)q–1�

(
u, Ł(u)

)
du. (6.2)

Let

Yg =
{
Ł ∈ H : ‖Ł‖ ≤ g

}
.

To establish the existence of a solution of (6.2), we need the following assumptions:



Das et al. Boundary Value Problems        (2023) 2023:112 Page 11 of 15

(I) F : J ×R →R is continuous, and there exists a constant £1 > 0 satisfying

∣∣F(
�, Ł1(x)

)
– F

(
�, Ł2(y)

)∣∣ ≤ £1
∣∣Ł1(x) – Ł2(y)

∣∣,
for all �, x, y ∈ J and Ł1, Ł2 ∈ H .

Also, let, for all � ∈ J ,

F(�, 0) = z0 > 0.

(II) � : J ×R→R is continuous, and there is a constant �1 > 0 such that

∣∣�(
�, Ł1(x)

)
– �

(
�, Ł2(y)

)∣∣ ≤ �1
∣∣Ł1(x) – Ł2(y)

∣∣,
for all �, x, y ∈ J and Ł1, Ł2 ∈ H .

Also, for all � ∈ J ,

�(�, 0) = 0.

(III) There is a positive number g0 such that

bq(£1g0 + z0)�1

�(q + 1)
≤ 1.

Theorem 6.1 Under assumptions (I)-(III), equation (6.2) has at least one solution in H =
C(J).

Proof We consider the operator S : H → H defined as

(SŁ)(�) =
F(�, Ł(�))

�(q)

∫ �

0
(� – u)q–1�

(
u, Ł(u)

)
du.

Step (1): In this step, we will prove that the operator S maps Yg0 into Yg0 . Let Ł ∈ Yg0 .
Now, we have

∣∣(SŁ)(�)
∣∣

≤ |F(�, Ł(�))|
�(q)

∫ �

0
(� – u)q–1∣∣�(

u, Ł(u)
)∣∣du

≤ 1
�(q)

[∣∣F(
�, Ł(�)

)
– F(�, 0)

∣∣ +
∣∣F(�, 0)

∣∣]

×
∫ �

0
(� – u)q–1[∣∣�(

u, Ł(u)
)

– �(u, 0)
∣∣ +

∣∣�(u, 0)
∣∣]du

≤ 1
�(q)

(
£1‖Ł‖ + z0

)∫ �

0
(� – u)q–1�1‖Ł‖du

≤ 1
�(q)

(
£1‖Ł‖ + z0

)
�1‖Ł‖bq

q

≤ (£1g0 + z0)�1g0bq

�(q + 1)
.
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Hence, ‖Ł‖ ≤ g0 gives

‖S‖ ≤ g0.

Due to assumption (III), S maps Yg0 to Yg0 .
Step (2): In this section, continuity of S on Yg0 will be established. Let σ > 0 and Ł, Ł′ ∈

Yg0 such that ‖Ł – Ł′‖ < σ . Then,

∣∣(SŁ)(�) –
(
SŁ′)(�)

∣∣
=

1
�(q)

∣∣∣∣F(
�, Ł(�)

) ∫ �

0
(� – u)q–1�

(
u, Ł(u)

)
du

– F
(
�, Ł′(�)

)∫ �

0
(� – u)q–1�

(
u, Ł′(u)

)
du

∣∣∣∣
≤ 1

�(q)

∣∣∣∣[F(
�, Ł(�)

)
– F

(
�, Ł′(�)

)] ∫ �

0
(� – u)q–1�

(
u, Ł(u)

)
du

∣∣∣∣
+

1
�(q)

∣∣F(
�, Ł′(�)

)∣∣
∣∣∣∣
∫ �

0
(� – u)q–1[�(

u, Ł(u)
)

– �
(
u, Ł′(u)

)]
du

∣∣∣∣
≤ 1

�(q)
∣∣F(

�, Ł(�)
)

– F
(
�, Ł′(�)

)∣∣ ∫ �

0
(� – u)q–1∣∣�(

u, Ł(u)
)∣∣du

+
1

�(q)
∣∣F(

�, Ł′(�)
)∣∣ ∫ �

0
(� – u)q–1∣∣�(

u, Ł(u)
)

– �
(
u, Ł′(u)

)∣∣du

≤ 1
�(q + 1)

£1
∥∥Ł – Ł′∥∥bq�1‖Ł‖ +

1
�(q + 1)

(
£1

∥∥Ł′∥∥ + z0
)∥∥Ł – Ł′∥∥bq�1

<
1

�(q + 1)
{

£1σbq�1g0 + (£1g0 + z0)σbq�1
}

.

If σ → 0, then |(SŁ)(�) – (SŁ′)(�)| → 0, i.e., ‖SŁ – SŁ′‖ → 0. Hence, S is continuous
on Yg0 .

Step (3): Now, assume that �Ł(
= ∅) ⊆Yg0 . Let σ > 0 be arbitrary and choose Ł ∈ �Ł and
�1,�2 ∈ J such as |�2 – �1| ≤ σ with �2 ≥ �1.

Now,

∣∣(SŁ)(�1) – (SŁ)(�2)
∣∣

=
1

�(q)

∣∣∣∣F(
�1, Ł(�1)

)∫ �1

0
(� – u)q–1�

(
u, Ł(u)

)
du

– F
(
�2, Ł(�2)

)∫ �2

0
(� – u)q–1�

(
u, Ł(u)

)
du

∣∣∣∣
≤ 1

�(q)

∣∣∣∣F(
�1, Ł(�1)

)∫ �1

0
(� – u)q–1�

(
u, Ł(u)

)
du

– F
(
�1, Ł(�2)

)∫ �1

0
(� – u)q–1�

(
u, Ł(u)

)
du

∣∣∣∣
+

1
�(q)

∣∣∣∣F(
�1, Ł(�2)

)∫ �1

0
(� – u)q–1�

(
u, Ł(u)

)
du

– F
(
�1, Ł(�2)

)∫ �2

0
(� – u)q–1�

(
u, Ł(u)

)
du

∣∣∣∣
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+
1

�(q)
∣∣F(

�2, Ł(�2)
)

– F
(
�1, Ł(�2)

)∣∣ ∫ �2

0
(� – u)q–1∣∣�(

u, Ł(u)
)∣∣du

≤ 1
�(q)

∣∣F(
�1, Ł(�1)

)
– F

(
�1, Ł(�2)

)∣∣ ∫ �1

0
(� – u)q–1∣∣�(

u, Ł(u)
)∣∣du

+
1

�(q)
∣∣F(

�1, Ł(�2)
)∣∣ ∫ �2

�1

(� – u)q–1∣∣�(
u, Ł(u)

)∣∣du

+
1

�(q)
∣∣F(

�2, Ł(�2)
)

– F
(
�1, Ł(�2)

)∣∣ ∫ �2

0
(� – u)q–1∣∣�(

u, Ł(u)
)∣∣du

≤ 1
�(q + 1)

£1�1bqg0
∣∣Ł(�1) – Ł(�2)

∣∣

+
1

�(q + 1)
∣∣F(

�1, Ł(�2)
)∣∣�1g0

{
–(�1 – �2)q – (�2 – �1)q}

+
1

�(q)
∣∣F(

�2, Ł(�2)
)

– F
(
�1, Ł(�2)

)∣∣�1g0bq

≤ 1
�(q + 1)

£1�1bqg0μ(Ł,σ )

+
1

�(q + 1)
∣∣F(

�1, Ł(�2)
)∣∣�1g0

{
–(�1 – �2)q – (�2 – �1)q}

+
1

�(q)
∣∣F(

�2, Ł(�2)
)

– F
(
�1, Ł(�2)

)∣∣�1g0bq,

where

μ(Ł,σ ) = sup
{∣∣Ł(�2) – Ł(�1)

∣∣; |�2 – �1| ≤ σ ;�1,�2 ∈ J
}

.

Since F is continuous, |F(�2, Ł(�2)) – F(�1, Ł(�2))| → 0 as σ → 0.
As σ → 0, taking supŁ∈�Ł

, we get

μ0(S�Ł) ≤ 1
�(q + 1)

£1�1bqg0μ0(�Ł).

Thus, by Corollary 3.2, S has a fixed point in �Ł ⊆ Yg0 , i.e., the equation (6.1) has a
solution in H = C(J). �

Now, with the help of the following example, Theorem 6.1 will be verified.

Example 6.2 Consider the following FHDE:

D
1
2

[
Ł(�)(1 + �2)

2 + Ł(�)

]
=

�3Ł(�)
3 + 2�2 (6.3)

for � ∈ [0, 1] = J and Ł(0) = 0.

Here,

F(�, Ł) =
2 + Ł

1 + �2 ,

b = 1, q =
1
2

,
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and

�(�, Ł) =
�3Ł

3 + 2�2 .

It is also trivial that F is continuous and

∣∣F(
�, Ł(x)

)
– F

(
�, Ł′(y)

)∣∣ ≤ ∣∣Ł(x) – Ł′(y)
∣∣.

Therefore, £1 = 1 and z0 = F(�, 0) = 2
1+�2 ≤ 2. � is also continuous such that

∣∣�(
�, Ł(x)

)
– �

(
�, Ł′(y)

)∣∣ ≤ 1
3
∣∣Ł(x) – Ł′(y)

∣∣.

Therefore, �(�, 0) = 0 and �1 = 1
3 .

Now, from the inequality in assumption (III), we have

g0 + 2
3�( 3

2 )
< 1 �⇒ g0 < 3�

(
3
2

)
– 2 ≈ 0.658.

Then, we can say that assumption (III) is also fulfilled for the value g0 = 1
2 . Thus, all the

presumptions of Theorem 6.1 are fulfilled. According to Theorem 6.1, we can say that
there exists a solution for equation (6.3) in H = C(J).
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