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1 Introduction
In 1843, Irish mathematician William Rowan Hamilton [1] introduced the concept of
quaternion on the basis of complex numbers. In a quaternion set H, the quaternion q
is denoted by

q = q0 + q1i + q2j + q3k,

where q0, q1, q2, q3 are real numbers, and i, j, k satisfy the following operations:

i2 = j2 = k2 = –1, ij = –ji = k, ki = –ik = j, jk = –kj = i.

Similar to complex numbers, the quaternion q can be regarded as a four-dimensional real
vector q = (q0, q1, q2, q3)T ∈ R

4. With quaternion vectors, rotations in three and four di-
mensions can be algebraically processed. Thus quaternions show more advantages than
real-valued vectors in physics and engineering applications. But even more important,
quaternions are 4-vectors whose multiplication rules are controlled by a simple noncom-
mutative division algebra. In other words, quaternions are not exchanged regarding mul-
tiplication operations.

To the best of our knowledge, the theory of ordinary differential equations (ODEs) has
been relatively systematic and complete [2–4]. But quaternion-valued differential equa-
tions (QDEs) are a new type of differential equations. Due to the noncommutativity of
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multiplication, many properties in the fields of real or complex numbers cannot be applied
to the field of quaternions directly, which brings a great challenge to the development of
QDEs.

♣ Qualitative properties of QDEs
In 2006, Campos and Mawhin [5] considered the existence of periodic solutions of first-

order QDE

q′ = a(t)q + c(t, q)

by using topological degree methods. In 2009, Wilczyński [6] continued to study the
quaternion Riccati equations

q′ = q2 + f (t)

by means of isolating segments and the Brouwer fixed point theorem. In the same year,
Gasull, Llibre, and Zhang [7] studied the first-order homogeneous QDE

q′ = aqn,

in which they described the phase portraits of the homogeneous QDEs and discussed the
periodic orbits, homoclinic loops, and invariant tori at n = 2, 3. In 2011, Zhang [8] studied
the global structure of the quaternion Bernoulli equation

q′ = aq + aqn.

By using the Liouvillian theorem of integrability and the topological characterization of
2-dimensional torus, they proved that the quaternion Bernoulli equations may have in-
variant tori that possess a full Lebesgue measure subset of H. In 2018, Cai and Kou [9]
transformed the process of solving QDEs to an algebraic quaternion problem by Laplace
transformation, which provides a new approach to study the linear QDEs.

Most of the above mentioned works focused on one-dimensional QDEs, and they mainly
discussed the qualitative properties of QDEs (e.g., the existence of periodic orbits, homo-
clinic loops, and invariant tori, integrability, the existence of periodic solutions, and so
on). They did not provide the algorithm to compute the exact solutions to linear QDEs. In
2021, Xia, Kou, and Liu [10] gave a systematic framework for the theory of linear QDEs.
They proved that the set of all the solutions to the linear homogenous QDEs is actually
a right-free module, not a linear vector space. On the noncommutativity of the quater-
nion algebra, many concepts and properties for the ODEs cannot be used. They should
be redefined accordingly. A definition of Wronskian is introduced under the framework
of quaternions, which is different from the standard one in ODEs. Liouville formula for
QDEs is given. Recently, Xia [11] developed the classical method of constant variation and
gave a method for solving linear inhomogeneous quaternion-valued differential equations.
It is worth noting that their research does not involve boundary value problems of QDEs

⎧
⎨

⎩

q(n) = f (t, q, q′, . . . , q(n–1)), t ∈ J ,

U(q) = B,
(1.1)

where J ⊂R is a real interval, B ∈H
n, f ∈ C(J ×H

n,H), U : C(n–1)(J ,H) →H
n.
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♣ Boundary value problems of QDEs
In this paper, we continue to study the general theory of linear QDEs and pay more

attention to boundary value problems (BVPs) of second-order linear QDEs under linear
boundary conditions

⎧
⎨

⎩

q′′ + a1(t)q′ + a2(t)q = f (t), t ∈ J ,

U1(q) = B1, U2(q) = B2,
(1.2)

where J = [a, b] ⊂ R, a1(t), a2(t) ∈ C(J ,H), and f (t), Ui(q) ∈ C(J ,H), U1, U2 are linear with
respect to q, that is, U(q) satisfies a linear relationship

U(αq) = αU(q), U(q1 + q2) = U(q1) + U(q2).

When

f (t) ≡ 0, t ∈ J , and B1 = B2 = 0 (1.3)

hold, (1.2) is called the quaternion homogeneous linear BVP; when

f (t) ≡ 0, t ∈ J , or B1 = B2 = 0

holds, (1.2) is called the quaternion semi-homogeneous linear BVP; when (1.3) are not sat-
isfied, (1.2) is called inhomogeneous quaternion linear BVP.

By the application of quaternion matrix theory, we prove the solvability of the boundary
value problem in both the resonant (ddet Q(q) = 0) and nonresonant (ddet Q(q) �= 0) cases,
where the definition of double determinant ddet Q can be found in Sect. 3.2.

We also give the Green’s function of homogeneous and inhomogeneous boundary value
problems, and then we verify the properties of Green’s function, which are similar to
ODEs, such as the solution of BVPs can be uniquely expressed as an integral equation.
We will discuss this problem in Sturm–Liouville type boundary value conditions

q(a) + q′(a) = B1, q(b) + q′(b) = B2, (1.4)

and periodic boundary value conditions

q(a) – q(b) = 0, q′(a) – q′(b) = 0. (1.5)

This paper is organized as follows. In Sect. 2, we give some basic results on quaternion
and quaternion matrix including but not limited to determinant, rank, right (left) eigen-
value, and Cramer’s rule of linear quaternion algebraic equation. In Sect. 3, we discuss the
solvability of BVPs for second-order linear QDEs in resonant and nonresonant cases. You
will also see some computational examples in this section. In Sects. 4 and 5, we calculate
the Green’s function of second-order BVPs under Sturm–Liouville type boundary value
conditions and periodic boundary value conditions, respectively.
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2 Preliminary
In this section, we give some definitions of quaternion matrix such as the definition of
determinant [12], double determinant [13], inverse matrix [13, 14], and left or right eigen-
values [15–17]. Moreover, we give Cramer’s rule [12, 18, 19] of linear quaternion algebraic
equation, which is used to discuss the solvability of BVPs for second-order linear QDEs.

2.1 Quaternion and quaternion matrix
First of all, we define for the quaternion q ∈H with

q = q0 + q1i + q2j + q3k,

where q0, q1, q2, q3 are real numbers and H is the set of quaternions. In addition,

Rq = q0 and 	q = q1i + q2j + q3k

denote the real part and the imaginary part of q respectively. And the conjugate is

q̄ = q0 – q1i – q2j – q3k = Rq – 	q.

For any q and h = h0 + h1i + h2j + h3k, it is easy to check that

qh = h̄q̄, R{qh̄} = R{q̄h},

and

qh = q0h0 – q1h1 – q2h2 – q3h3 + (q0h1 + q1h0 + q2h3 – q3h2)i

+ (q0h2 – q1h3 + q2h0 + q3h1)j + (q0h3 + q1h2 – q2h1 + q3h0)k.

For given q, h ∈H, we introduce the inner product

〈q, h〉 = q0h0 + q1h1 + q2h2 + q3h3,

and the modulus

‖q‖ =
√〈q, q〉 =

(
q2

0 + q2
1 + q2

2 + q2
3
) 1

2 .

After simple calculation, it can be concluded that

‖q‖2 = qq̄, ‖qh‖ = ‖q‖‖h‖.

Then

q–1 =
q̄

‖q‖2 when q �= 0.

At last, we should note that for any q = q0 + q1i + q2j + q3k ∈H, it can be rewritten as

q = (q0 + q1i) + (q2 + q3i)j,
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that is, for any q ∈ H, there exist Q1, Q2 ∈ C such that q = Q1 + Q2j. Similarly, for any
A ∈ H

n×n, there exist A1, A2 ∈ C
n×n such that A = A1 + A2j; for any ν ∈ H

n, there exist
ν1,ν2 ∈C

n such that ν = ν1 + ν2j.

2.2 Determinant and double determinant
For any A = (aij)2×2 ∈H

2×2, the determinant based on expanding along the first row is

r det

(
a11 a12

a21 a22

)

= a11a22 – a12a21,

and the determined based on permutation is defined as follows:

det
p

(
a11 a12

a21 a22

)

= ε(σ1)a22a11 + ε(σ2)a21a12 = a22a11 – a21a12, (2.1)

where σ1 = (2)(1), σ2 = (21), and

ε(σ1) = (–1)(1–1)+(1–1) = 1, ε(σ2) = (–1)(2–1) = –1.

For

A =

(
a11 a12

a21 a22

)

,

A+ is the conjugate transpose of A, that is,

A+ =

(
a11 a12

a21 a22

)

,

where aij is the quaternion. As a result,

r det
(
AA+)

= ‖a11‖2‖a22‖2 + ‖a12‖2‖a21‖2 – a12ā22a21ā11 – a11ā21a22ā12, (2.2)

det
P

(
A+A

)
= ‖a11‖2‖a22‖2 + ‖a12‖2‖a21‖2 – ā12a11ā21a22 – ā22a21ā11a12. (2.3)

Remark 2.1 To our knowledge,

a12ā22a21ā11 = a11ā21a22ā12, ā12a11ā21a22 = ā22a21ā11a12, (2.4)

that is to say,

r det
(
AA+)

= det
P

(
A+A

)
. (2.5)

Proof Obviously, (2.4) is true, which implies that

r det
(
AA+)

= ‖a11‖2‖a22‖2 + ‖a12‖2‖a21‖2 – 2R{a12ā22a21ā11}
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and

det
P

(
A+A

)
= ‖a11‖2‖a22‖2 + ‖a12‖2‖a21‖2 – 2R{ā12a11ā21a22}

are both real numbers. It is worth noticing that

R{a12ā22a21ā11} = R{ā12a11ā21a22}

holds under the circumstance of R{qh̄} = R{q̄h}. For simplicity, we may take

r det
(
AA+)

= det
P

(
A+A

)
= ‖a11‖2‖a22‖2 + ‖a12‖2‖a21‖2 – 2R{a12ā22a21ā11}. (2.6)

In conclusion, our proof is complete. �

Definition 2.1 For any A = (aij)2×2 ∈ H
2×2, the real number

ddet A := r det
(
AA+)

= det
P

(
A+A

)
(2.7)

is called double determinant.

Due to the noncommutativity algebra of quaternion, Cramer’s rule for linear systems of
equations over the real domain no longer applies to quaternion field. Now we introduce
Cramer’s rule for systems of linear equations with quaternion.

Lemma 2.1 (see [12]) For the right linear equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,

. . .

an1x1 + an2x2 + · · · + annxn = bn,

(2.8)

where aij, bi ∈ H, i, j = 1, 2, . . . , n. Denote αj = (a1j, a2j, . . . anj)T , A = (α1,α2, . . . ,αn), and β =
(b1, b2, . . . , bn)T . If ddet A �= 0, then there exists a unique solution

xj =
1

ddet A
D̄j, (2.9)

where

Dj = det
p

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α+
1
...

α+
j–1

α+
n

α+
j+1
...

α+
n–1

β+

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(

α1, . . . ,αj–1,αn,αj+1, . . . ,αn–1,αj

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, j = 1, 2, . . . , n. (2.10)
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In fact, invertible matrix in the matrix analysis of real and complex matrices is intro-
duced in the same way for quaternion matrix.

Definition 2.2 (see [14]) A matrix A ∈ H
n×n is called invertible when there exists B ∈

H
n×n such that AB = BA = In, where In is the identity matrix. Denote the unique B by A–1.

Lemma 2.2 (see [13]) The matrix A = (aij)n×n = (α1,α2, . . . ,αn) ∈ H
n×n is invertible if and

only if ddet A �= 0. Moreover, A–1 = (bjk)n×n, where

bjk =
1

ddet A
ω̄kj, k, j = 1, 2, . . . , n, (2.11)

ωkj = det
p

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α+
1
...

α+
j–1

α+
n

α+
j+1
...

α+
n–1

e+
k

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(

α1 · · ·αj–1αnαj+1 · · ·αn–1αj

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.12)

2.3 Right (left) eigenvalue of quaternionic matrix
Due to the lack of commutativity in multiplication, quaternion matrices also have left and
right eigenvalues.

Definition 2.3 For a matrix A ∈H
2×2, if

Ax = xλ (or Ax = λx) (2.13)

and x is the nonzero quaternion column vector, then the quaternion λ is called the right
(left) eigenvalue.

Definition 2.4 For A ∈ H
n×n, suppose A = A1 + A2j with A1, A2 ∈ C

n×n. Define the com-
plex adjoint matrix of A

φ(A) =

(
A1 A2

–A2 A1

)

. (2.14)

For ν ∈H
n, suppose ν = ν1 + ν2j with ν1,ν2 ∈C

n, define the complex adjoint vector of ν

ϕ(ν) =

(
ν1

–ν2

)

,

then denote

ϕ(ν)∗ =

(
ν2

ν1

)

.
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Lemma 2.3 (see [16]) For A ∈H
n×n, ν,μ ∈H

n, and λ ∈C, Aν = μ + νλ holds if and only if
φ(A)ϕ(ν) = ϕ(μ) + ϕ(ν)λ holds.

Lemma 2.4 (see [17]) For A ∈ H
n×n, ν ∈ H

n, and λ ∈ C, Aν = νλ holds if and only if
φ(A)ϕ(ν) = ϕ(ν)λ holds.

2.4 Rank of quaternionic matrix
Next, we give some results on the rank of quaternionic matrix, the reader will find these
in [20] and [21].

Definition 2.5 Let A be any nonzero m × n matrix on the ring R. Define the order of the
subsquare with the largest nonzero factor in A as the rank of A, and simplify it as rank A.

Definition 2.6 The number of rows of A that constitute the largest possible sub-block
(not necessarily a square) with non-right zero factors is called the left rank of the rows of
A, the column number of the largest possible sub-block of non-left zero factors formed by
the columns of A is called the column-right rank of A.

Remark 2.2 Base on the definition of rank, it is easy to check that:
(1) Both the row-left rank and column-right rank of A are equal to the rank of A;
(2) For a zero matrix, all the above rank numbers are defined as 0;
(3) The above definition naturally applies to the skew field, and the rank of the matrix A

on the skew field is the order of the largest nonsingular sub-block in A.

Proposition 2.5 (see [20]) On the skew field, the sufficient and necessary condition for
AX = β to have a solution is that rank(A,β) = rank A.

For convenience, we give the following more general conclusion and proof.

Lemma 2.6 (see [21]) Suppose that F is a skew field and A ∈ Fm×n. A sufficient and neces-
sary condition for matrix equation

Am×nXn×s = Bm×s (2.15)

to have a solution on F is that

rank A = rank(A, B) = r,

where 0 ≤ r ≤ min{m, n}.

Proof Suppose rank A = r, then there exist invertible matrices P, Q such that

PAQ =

(
Ir O
O O

)

and

rank A = rank(PA) = rank(AQ) = rank(PAQ).
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Let

Y = Q–1X, PB =

(
B1

B2

)

,

where B1 is the r × s matrix and B2 is the (m – r) × s matrix, then (2.15) has a solution,
that is,

(
Ir O
O O

)

Y =

(
B1

B2

)

has a solution if and only if B2 = O(m–r)×s. Obviously,

rank(A, B) = rank

(

P(A, B)

(
Q O
O Is

))

= rank(PAQ, PB)

= rank

(
Ir O B1

O O B2

)

.

From this, we can obtain B2 = O(m–r)×s if and only if rank(A, B) = r = rank A. �

3 Solvability of BVPs for second-order linear QDEs
In this section, we consider the solvability of boundary value problems (BVPs) of second-
order linear QDEs under the linear boundary conditions

⎧
⎨

⎩

q′′ + a1(t)q′ + a2(t)q = f (t), t ∈ J ,

U1(q) = B1, U2(q) = B2,

where J = [a, b] ⊂ R, a1(t), a2(t) ∈ C(J ,H), and f (t) ∈ C(J ,H). For convenience, we give
some basic theory of linear QDEs, which can be found in [10].

3.1 Some lemmas
Consider the linear system

dx
dt

= A(t)x(t), (3.1)

where x(t) ∈ H
n, A(t) is an n × n continuous quaternion-valued function matrix on the

interval I = [a, b], I ⊆R.
Suppose that x1(t), x2(t), . . . , xn(t) are solutions of linear system (3.1) if

x1(t)r1 + x2(t)r2 + · · · + xn(t)rn = 0, ri ∈ H

implies that

r1 = · · · = rk = 0, t ∈ I,
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then x1(t), x2(t), . . . , xn(t) is said to be right independent. Otherwise, x1(t), x2(t), . . . , xn(t) is
said to be right dependent. Denote

M(t) =
(
x1(t), x2(t), . . . , xn(t)

)

=

⎛

⎜
⎜
⎜
⎜
⎝

x11(t) x12(t) . . . x1n(t)
x21(t) x22(t) . . . x2n(t)

... . . .
...

...
xn1(t) xn2(t) . . . xnn(t)

⎞

⎟
⎟
⎟
⎟
⎠

is a solution matrix of (3.1), if x1(t), x2(t), . . . , xn(t) are right independent, it is said to be a
fundamental matrix of (3.1).

Definition 3.1 The Wronskian of solutions x1(t), x2(t), . . . , xn(t) is defined by

WQDE(t) = ddet M(t) = det
P

(
M+(t)M(t)

)
.

Remark 3.1 When n = 2, we can obtain

WQDE(t) = ddet M(t) := r det
(
M(t)M+(t)

)
= det

P

(
M+(t)M(t)

)
.

Lemma 3.1 (see [15]) Suppose that x1(t), x2(t), . . . , xn(t) are solutions of linear system (3.1),
then x1(t), x2(t), . . . , xn(t) are right independent on interval I if and only if WQDE(t) �= 0.

Lemma 3.2 (see [15]) If q(t) is differentiable and if q(t)q′(t) = q′(t)q(t), it follows from that

[
exp q(t)

]′ =
[
exp q(t)

]
q′(t) = q′(t)

[
exp q(t)

]
, (3.2)

where exp q(t) =
∑∞

n=0
qn(t)

n! is the exponential function of q(t).

Lemma 3.3 (see [17]) Let �(t) be a fundamental matrix of homogenous equations (3.1).
Any solution ψH (t) of linear homogenous equations

dx
dt

= A(t)x(t) (3.3)

can be represented by

ψH (t) = �(t)q,

where q is a constant quaternionic vector.

Lemma 3.4 (see [11])(Variation of constants formula) The general solution of nonhomoge-
nous equation

dx
dt

= A(t)x(t) + f (t) (3.4)
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is given by

ψNH (t) = �(t)q + �(t)
∫ t

t0

�–1(s)f (s) ds, (3.5)

where t0 ∈ [a, b], q is a constant quaternionic vector.

3.2 Solvability of BVPs
From now on, we analyze the homogeneous equation

q′′ + a1(t)q′ + a2(t)q = 0 (3.6)

and the inhomogeneous equation

q′′ + a1(t)q′ + a2(t)q = f (t). (3.7)

By the transformation

⎧
⎨

⎩

q11 = q,

q12 = q′,

equations (3.6) and (3.7) can be converted into

(
q11

q12

)′
=

(
0 1

–a2(t) –a1(t)

)(
q11

q12

)

, (3.8)

(
q11

q12

)′
=

(
0 1

–a2(t) –a1(t)

)(
q11

q12

)

+

(
0

f (t)

)

, (3.9)

respectively. Simultaneously,

A(t) =

(
0 1

–a2(t) –a1(t)

)

, F(t) =

(
0

f (t)

)

.

Because q1(t), q2(t) are linearly independent solutions of equation (3.6), define

�(t) =

(
q1(t) q2(t)
q′

1(t) q′
2(t)

)

=
(
�1(t),�2(t)

)
. (3.10)

Proposition 3.5 �(t) is a fundamental matrix of equation (3.8).



Liu et al. Boundary Value Problems        (2023) 2023:113 Page 12 of 34

Proof It is easy to verify that �′
1(t) = A(t)�1(t), �′

2(t) = A(t)�2(t). Therefore, �(t) =
(�1(t),�2(t)) is a solution matrix of equation (3.8). And more importantly,

WQDE(t) = ddet�(t)

= r det�(t)�+(t)

= r det

(
q1(t) q2(t)
q′

1(t) q′
2(t)

)(
q̄1(t) q̄′

1(t)
q̄2(t) q̄′

2(t)

)

=
∥
∥q1(t)

∥
∥2∥∥q′

2(t)
∥
∥2 +

∥
∥q′

1(t)
∥
∥2∥∥q2(t)

∥
∥2

– q2(t)q̄′
2(t)q′

1(t)q̄1(t) – q1(t)q̄′
1(t)q′

2(t)q̄2(t)

=
∥
∥q1(t)

∥
∥2∥∥q′

2(t)
∥
∥2 +

∥
∥q′

1(t)
∥
∥2∥∥q2(t)

∥
∥2 – 2R

{
q1(t)q̄′

1(t)q′
2(t)q̄2(t)

}
.

(3.11)

For convenience, we can assume that

q1(t) = a0(t) + a1(t)i + a2(t)j + a3(t)k,

q2(t) = b0(t) + b1(t)i + b2(t)j + b3(t)k.

Therefore,

q2(t)q̄′
2(t) =

(
b0(t) + b1(t)i + b2(t)j + b3(t)k

)(
b′

0(t) – b′
1(t)i – b′

2(t)j – b′
3(t)k

)

= A0(t) + A1(t)i + A2(t)j + A3(t)k,

q2(t)q̄′
2(t)q′

1(t) =
(
A0(t) + A1(t)i + A2(t)j + A3(t)k

)(
a′

0(t) + a′
1(t)i + a′

2(t)j + a′
3(t)k

)

= B0(t) + B1(t)i + B2(t)j + B3(t)k,

q2(t)q̄′
2(t)q′

1(t)q̄1(t) =
(
B0(t) + B1(t)i + B2(t)j + B3(t)k

)(
a0(t) – a1(t)i – a2(t)j – a3(t)k

)

=
(
B0(t)a0(t) + B1(t)a1(t) + B2(t)a2(t) + B3(t)a3(t)

)

+
(
–B0(t)a1(t) + B1(t)a0(t) – B2(t)a3(t) + B3(t)a2(t)

)
i

+
(
–B0(t)a2(t) + B1(t)a3(t) + B2(t)a0(t) – B3(t)a1(t)

)
j

+
(
–B0(t)a3(t) – B1(t)a2(t) + B2(t)a1(t) + B3(t)a0(t)

)
k

with

A0(t) = b0(t)b′
0(t) + b1(t)b′

1(t) + b2(t)b′
2(t) + b3(t)b′

3(t),

A1(t) = –b0(t)b′
1(t) + b1(t)b′

0(t) – b2(t)b′
3(t) + b3(t)b′

2(t),

A2(t) = –b0(t)b′
2(t) + b1(t)b′

3(t) + b2(t)b′
0(t) – b3(t)b′

1(t),

A3(t) = –b0(t)b′
3(t) – b1(t)b′

2(t) + b2(t)b′
1(t) + b3(t)b′

0(t),

B0(t) = A0(t)a′
0(t) – A1(t)a′

1(t) – A2(t)a′
2(t) – A3(t)a′

3(t),

B1(t) = A0(t)a′
1(t) + A1(t)a′

0(t) + A2(t)a′
3(t) – A3(t)a′

2(t),

B2(t) = A0(t)a′
2(t) – A1(t)a′

3(t) + A2(t)a′
0(t) + A3(t)a′

1(t),

B3(t) = A0(t)a′
3(t) – A1(t)a′

2(t) – A2(t)a′
1(t) + A3(t)a′

0(t).
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Through a series of calculations, we are able to obtain WQDE(t) �= 0, which implies that
�(t) is a fundamental matrix of equation (3.8). �

Proposition 3.6 The inhomogeneous equation (3.7) has a solution

z(t) =
1

ddet�(t)

∫ t

a

(
q1(t)ω̄21(s) + q2(t)ω̄22(s)

)
f (s) ds. (3.12)

Proof From Lemma 2.1, Lemma 2.2, and Lemma 3.4, it easily follows that

z(t) = �(t)
∫ t

a
�–1(s)F(s) ds (3.13)

is a solution to the inhomogeneous equation (3.9). It should be noted that

�–1(t) =
1

ddet�(t)

(
ω̄11(t) ω̄21(t)
ω̄12(t) ω̄22(t)

)

,

then

�(t)
∫ t

a
�–1(s)F(s) ds =

1
ddet�(t)

∫ t

a
�(t)

(
ω̄11(s) ω̄21(s)
ω̄12(s) ω̄22(s)

)(
0

f (s)

)

ds

=
1

ddet�(t)

∫ t

a

(
q1(t) q2(t)
q′

1(t) q′
2(t)

)(
ω̄11(s) ω̄21(s)
ω̄12(s) ω̄22(s)

)(
0

f (s)

)

ds

=
1

ddet�(t)

∫ t

a

(
(q1(t)ω̄21(s) + q2(t)ω̄22(s))f (s)
(q′

1(t)ω̄21(s) + q′
2(t)ω̄22(s))f (s)

)

ds.

The first component of the above equation gives the solution to equation (3.9), that is,

1
ddet�(t)

∫ t

a

(
q1(t)ω̄21(s) + q2(t)ω̄22(s)

)
f (s) ds, (3.14)

where

ω21(t) = det
P

(
�+

2 (t)
e+

2

)
(

�2(t) �1(t)
)

= det
P

(
q̄2(t) q̄′

2(t)
0 1

)(
q2(t) q1(t)
q′

2(t) q′
1(t)

)

= det
P

(
‖q2(t)‖2 + ‖q′

2(t)‖2 q̄2(t)q1(t) + q̄′
2(t)q′

1(t)
q′

2(t) q′
1(t)

)

=
∥
∥q2(t)

∥
∥2q′

1(t) – q′
2(t)q̄2(t)q1(t),

(3.15)
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ω22(t) = det
P

(
�+

1 (t)
e+

2

)
(

�1(t) �2(t)
)

= det
P

(
q̄1(t) q̄′

1(t)
0 1

)(
q1(t) q2(t)
q′

1(t) q′
2(t)

)

= det
P

(
‖q1(t)‖2 + ‖q̄′

1(t)‖2 q̄1(t)q2(t) + q̄′
1(t)q′

2(t)
q′

1(t) q′
2(t)

)

=
∥
∥q1(t)

∥
∥2q′

2(t) – q′
1(t)q̄1(t)q2(t).

(3.16)

The special solution of the inhomogeneous equation (3.7) can be obtained by taking the
conjugate of equations (3.15) and (3.16) into equation (3.14). �

Substituting q1(t), q2(t) separately into U1(q), U2(q), we get U1(q1), U1(q2), U2(q1),
U2(q2), let

Q(q) =

(
U1(q1) U1(q2)
U2(q1) U2(q2)

)

,

then

ddet Q(q) = det
p

(
Q+(q)Q(q)

)

=
∥
∥U1(q2)

∥
∥2∥∥U2(q1)

∥
∥2 +

∥
∥U2(q2)

∥
∥2∥∥U1(q1)

∥
∥2

– U1(q2)U1(q1)U2(q1)U2(q2) – U2(q2)U2(q1)U1(q1)U1(q2).

If ddet Q(q) �= 0, we say that BVP (1.2) is a nonresonant boundary value problem. BVP (1.2)
called the resonant boundary value problem when ddet Q(q) = 0.

3.2.1 Nonresonant problem
Theorem 3.1 If ddet Q(q) �= 0, then the quaternion semi-homogeneous linear boundary
value problem

⎧
⎨

⎩

q′′ + a1(t)q′ + a2(t)q = f (t),

U1(q) = U2(q) = 0,
(3.17)

and
⎧
⎨

⎩

q′′ + a1(t)q′ + a2(t)q = 0,

U1(q) = B1, U2(q) = B2,
(3.18)

all have a unique solution, respectively

ϕ(t) =
1

ddet Q(q)
[
q1(t)D̄1 + q2(t)D̄2 + ddet Q(q) · z(t)

]
, t ∈ [a, b], (3.19)

ψ(t) =
1

ddet Q(q)
[
q1(t)D̄3 + q2(t)D̄4

]
, t ∈ [a, b]. (3.20)
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Further,

q(t) =
1

ddet Q(q)
[
q1(t)D̄5 + q2(t)D̄6 + ddet Q(q) · z(t)

]
, t ∈ [a, b], (3.21)

is the unique solution of inhomogeneous BVP (1.2), where z(t) is given by (3.12),

D̄1 =
∥
∥U1(q1)

∥
∥2U2(q2)U2(z) +

∥
∥U2(q1)

∥
∥2U1(q2)U1(z)

– U2(q2)U2(q1)U1(q1)U1(z) – U1(q2)U1(q1)U2(q1)U2(z),
(3.22)

D̄2 =
∥
∥U1(q2)

∥
∥2U2(q1)U2(z) +

∥
∥U2(q2)

∥
∥2U1(q1)U1(z)

– U2(q1)U2(q2)U1(q2)U1(z) – U1(q1)U1(q2)U2(q2)U2(z),
(3.23)

D̄3 = –
∥
∥U1(q1)

∥
∥2U2(q2)B2 –

∥
∥U2(q1)

∥
∥2U1(q2)B1

+ U2(q2)U2(q1)U1(q1)B1 + U1(q2)U1(q1)U2(q1)B2,
(3.24)

D̄4 = –
∥
∥U1(q2)

∥
∥2U2(q1)B2 –

∥
∥U2(q2)

∥
∥2U1(q1)B1

+ U2(q1)U2(q2)U1(q2)B1 + U1(q1)U1(q2)U2(q2)B2,
(3.25)

D̄5 = –
∥
∥U1(q1)

∥
∥2U2(q2)

(
B2 – U2(z)

)
–

∥
∥U2(q1)

∥
∥2U1(q2)

(
B1 – U1(z)

)

+ U1(q2)U1(q1)U2(q1)
(
B2 – U2(z)

)
+ U2(q2)U2(q1)U1(q1)

(
B1 – U1(z)

)
,

(3.26)

D̄6 = –
∥
∥U1(q2)

∥
∥2U2(q1)

(
B2 – U2(z)

)
–

∥
∥U2(q2)

∥
∥2U1(q1)

(
B1 – U1(z)

)

+ U2(q1)U2(q2)U1(q2)
(
B1 – U1(z)

)
+ U1(q1)U1(q2)U2(q2)

(
B2 – U2(z)

)
.

(3.27)

Proof Suppose that the general solution of a second-order nonhomogeneous quaternion-
value linear differential equation

q′′ + a1(t)q′ + a2(t)q = f (t)

is

q(t) = q1(t)c1 + q2(t)c2 + z(t). (3.28)

From U1(q) = U2(q) = 0, we know that

⎧
⎨

⎩

U1(q1)c1 + U1(q2)c2 + U1(z) = 0,

U2(q1)c1 + U2(q2)c2 + U2(z) = 0.

In other words,

Q(q)C = β

with

Q(q) =

(
U1(q1) U1(q2)
U2(q1) U2(q2)

)

=
(

γ1 γ2

)
,
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C =

(
c1

c2

)

, β =

(
–U1(z)
–U2(z)

)

.

Therefore,

(
c1

c2

)

=
1

ddet Q(q)

(
D̄1

D̄2

)

, (3.29)

where

D1 = det
p

(
γ +

1

β+

)
(

γ2 γ1

)

= det
P

(
U1(q1) U2(q1)
–U1(z) –U2(z)

)(
U1(q2) U1(q1)
U2(q2) U2(q1)

)

=
∥
∥U1(q1)

∥
∥2U2(z)U2(q2) +

∥
∥U2(q1)

∥
∥2U1(z)U1(q2)

– U1(z)U1(q1)U2(q1)U2(q2) – U2(z)U2(q1)U1(q1)U1(q2),

D̄1 =
∥
∥U1(q1)

∥
∥2U2(q2)U2(z) +

∥
∥U2(q1)

∥
∥2U1(q2)U1(z)

– U2(q2)U2(q1)U1(q1)U1(z) – U1(q2)U1(q1)U2(q1)U2(z),

D2 = det
p

(
γ +

2

β+

)
(

γ1 γ2

)

= det
P

(
U1(q2) U2(q2)
–U1(z) –U2(z)

)(
U1(q1) U1(q2)
U2(q1) U2(q2)

)

=
∥
∥U1(q2)

∥
∥2U2(z)U2(q1) +

∥
∥U2(q2)

∥
∥2U1(z)U1(q1)

– U1(z)U1(q2)U2(q2)U2(q1) – U2(z)U2(q2)U1(q2)U1(q1),

D̄2 =
∥
∥U1(q2)

∥
∥2U2(q1)U2(z) +

∥
∥U2(q2)

∥
∥2U1(q1)U1(z)

– U2(q1)U2(q2)U1(q2)U1(z) – U1(q1)U1(q2)U2(q2)U2(z).

Hence,

ϕ(t) = q1(t)c1 + q2(t)c2 + z(t)

=
1

ddet Q(q)
[
q1(t)D̄1 + q2(t)D̄2 + ddet Q(q)z(t)

]
.

According to the above discussion, the unique solution of the boundary value problem of
semi-homogeneous differential equation (3.17) can be obtained.

The proofs of the remaining two conclusions are analogous to the proof above. Suppose
that the general solution of a second-order homogeneous quaternion-value linear differ-
ential equation

q′′ + a1(t)q′ + a2(t)q = 0
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is

q(t) = q1(t)c1 + q2(t)c2. (3.30)

In this case, let

D3 = det
p

(
U1(q1) U2(q1)

B1 B2

)(
U1(q2) U1(q1)
U2(q2) U2(q1)

)

= –
∥
∥U1(q1)

∥
∥2B2U2(q2) –

∥
∥U2(q1)

∥
∥2B1U1(q2)

+ B1U1(q1)U2(q1)U2(q2) + B2U2(q1)U1(q1)U1(q2),

D̄3 = –
∥
∥U1(q1)

∥
∥2U2(q2)B2 –

∥
∥U2(q1)

∥
∥2U1(q2)B1

+ U2(q2)U2(q1)U1(q1)B1 + U1(q2)U1(q1)U2(q1)B2,

D4 = det
P

(
U1(q2) U2(q2)

B1 B2

)(
U1(q1) U1(q2)
U2(q1) U2(q2)

)

= –
∥
∥U1(q2)

∥
∥2B2U2(q1) –

∥
∥U2(q2)

∥
∥2B1U1(q1)

+ B1U1(q2)U2(q2)U2(q1) + B2U2(q2)U1(q2)U1(q1),

D̄4 = –
∥
∥U1(q2)

∥
∥2U2(q1)B2 –

∥
∥U2(q2)

∥
∥2U1(q1)B1

+ U2(q1)U2(q2)U1(q2)B1 + U1(q1)U1(q2)U2(q2)B2.

Furthermore, suppose that

q(t) = q1(t)c1 + q2(t)c2 + z(t)

is the general solution of BVP (1.2). At the moment, let

D5 = det
p

(
U1(q1) U2(q1)

B1 – U1(z) B2 – U2(z)

)(
U1(q2) U1(q1)
U2(q2) U2(q1)

)

= –
∥
∥U1(q1)

∥
∥2B2 – U2(z)U2(q2) –

∥
∥U2(q1)

∥
∥2B1 – U1(z)U1(q2)

+ B1 – U1(z)U1(q1)U2(q1)U2(q2) + B2 – U2(z)U2(q1)U1(q1)U1(q2),

D̄5 = –
∥
∥U1(q1)

∥
∥2U2(q2)

(
B2 – U2(z)

)
–

∥
∥U2(q1)

∥
∥2U1(q2)

(
B1 – U1(z)

)

+ U1(q2)U1(q1)U2(q1)
(
B2 – U2(z)

)
+ U2(q2)U2(q1)U1(q1)

(
B1 – U1(z)

)
,

D6 = det
P

(
U1(q2) U2(q2)

B1 – U1(z) B2 – U2(z)

)(
U1(q1) U1(q2)
U2(q1) U2(q2)

)

= –
∥
∥U1(q2)

∥
∥2B2 – U2(z)U2(q1) –

∥
∥U2(q2)

∥
∥2B1 – U1(z)U1(q1)

+ B1 – U1(z)U1(q2)U2(q2)U2(q1) + B2 – U2(z)U2(q2)U1(q2)U1(q1),

D̄6 = –
∥
∥U1(q2)

∥
∥2U2(q1)

(
B2 – U2(z)

)
–

∥
∥U2(q2)

∥
∥2U1(q1)

(
B1 – U1(z)

)

+ U2(q1)U2(q2)U1(q2)
(
B1 – U1(z)

)
+ U1(q1)U1(q2)U2(q2)

(
B2 – U2(z)

)
.

From this point of view, we completed the main proof process. �
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Remark 3.2 If Theorem 3.1 studies the problem of boundary value over the domain of
real numbers,equations (3.19), (3.20), (3.21) will be written in the form of a determinant
expression. Owing the noncommutativity of the quaternion algebra, many properties of
ordinary differential equations are not valid for quaternion-value differential equations,
resulting in the complex form of the solutions of Theorem 3.1.

Remark 3.3 Theorem 3.1 only gives the method of solving when ddet Q(q) �= 0. Obviously,
(3.19)∼(3.21) do not hold when ddet Q(q) = 0.

On the basis of the above conclusions, we give some examples to solve the semi-
homogeneous boundary value problem.

Example 3.1 Consider the following QDEs:

q′′ + jq′ + (1 – k)q = 0, t ∈ [0, 1]. (3.31)

Setting q11 = q and q12 = q′, the equation can be converted to

(
q11

q12

)′
=

(
0 1

k – 1 –j

)(
q11

q12

)

, (3.32)

where

A =

(
0 1

k – 1 –j

)

=

(
0 1

–1 0

)

+

(
0 0
i –1

)

j.

Then

φ(A) =

⎛

⎜
⎜
⎜
⎝

0 1 0 0
–1 0 i –1
0 0 0 1
i 1 –1 0

⎞

⎟
⎟
⎟
⎠

and

∣
∣λE – φ(A)

∣
∣ = λ4 + 3λ2 + 2 = 0, (3.33)

hence, λ1 = i, λ2 =
√

2i, λ3 = –i, λ4 = –
√

2i.
According to Lemma 2.4, we can see that the eigenvector of λ1 = i is ϕ(ν1) = (0, 0, 1, i)T .

Then we get

ν1 =

(
–j
k

)

.

The eigenvector of λ2 =
√

2i is ϕ(ν2) = (1,
√

2i, –(1 +
√

2)i, 2 +
√

2)T and

ν2 =

(
1 – (1 +

√
2)k√

2i – (2 +
√

2)j

)

.
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Let

�(t) =
(
ν1eλ1t ,ν2eλ2t) =

(
–jeit (1 – (1 +

√
2)k)e

√
2it

keit (
√

2i – (2 +
√

2)j)e
√

2it

)

, (3.34)

then

�+(t) =

(
je–it –ke–it

(1 + (1 +
√

2)k)e–
√

2it (–
√

2i + (2 +
√

2)j)e–
√

2it

)

,

and from (3.11) we have

WQDE(t) = ddet�(t) = r det
(
�(t)�+(t)

)
= 4 + 2

√
2 �= 0. (3.35)

Consequently, �(t) is a fundamental matrix of (3.32), and –jeit , (1 – (1 +
√

2)k)e
√

2it are
two linearly independent solutions to (3.31).

Example 3.2 Consider the following QDEs:

⎧
⎨

⎩

q′′ + jq′ + (1 – k)q = it, t ∈ [0, 1],

U1(q) = U2(q) = 0.
(3.36)

From Proposition 3.6 and its proof, we can discover that

ω̄21(t) = (4 + 2
√

2)(1 + k)e–it ,

ω̄22(t) =
[
–(

√
2 + 1)i + j

]
e–

√
2it .

In addition,

z(t) =
1

4 + 2
√

2

∫ t

0

[
–(4 + 2

√
2)jei(t–s) + (4 + 2

√
2)je

√
2i(t–s)]is ds

=
∫ t

0
ksei(t–s) – kse

√
2i(t–s) ds

(3.37)

is a solution to (3.36). At this time,

U1(q1) = q1(0) = –j, U1(q2) = q2(0) = 1 – (1 +
√

2)k,

U2(q1) = q1(1) = –jei, U2(q2) = q2(1) =
(
1 – (1 +

√
2)k

)
e
√

2i,

U1(z) = z(0) = 0, U2(z) = z(1) =
2 –

√
2

2
j +

1
2

k – kei +
1
2

ke
√

2i,

then

Q(q) =

(
–j 1 – (1 +

√
2)k

–jei (1 – (1 +
√

2)k)e
√

2i

)
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and

ddet Q(q) = det
p

(
Q+(q)Q(q)

)
= (4 + 2

√
2)

(
2 – e(

√
2–1)i – e(1–

√
2)i) �= 0. (3.38)

As pointed out in Theorem 3.1, we soon show

D̄1 =
(

–
3(1 +

√
2)

2
+

3k
2

)

+
(

1 +
√

2
2

+
√

2
2

i –
2 –

√
2

2
j –

1
2

k
)

e–i

+
(

1 +
√

2
2

–
1
2

k
)

e(
√

2–1)i

+
(

1 +
√

2
2

–
√

2
2

i +
2 –

√
2

2
j +

1
2

k
)

e–
√

2i + (1 +
√

2 – k)e(1–
√

2)i,

D̄2 = – (6 + 3
√

2)i +
(
–2 + (2 +

√
2)i

)
e–i + (2 +

√
2)ie(

√
2–1)i

+
(
2 – (2 +

√
2)i

)
e–

√
2i + (4 + 2

√
2)ie(1–

√
2)i.

Finally, the solution of BVP (3.36) can be obtained by substituting the above two equations
and (3.37) into (3.19).

3.2.2 Resonant problem
In the case of resonance, the difficulty with BVP (1.2) is that given the general solution
(3.28) to this equation, substituting into boundary conditions and having

⎧
⎨

⎩

U1(q1)c1 + U1(q2)c2 + U1(z) = B1,

U2(q1)c1 + U2(q2)c2 + U2(z) = B2,
(3.39)

which is a question to find the solutions of c1, c2.
Based on what we already know about linear algebra and Lemmas 2.5 and 2.6, the con-

dition for the above equation to have solution for c1, c2 is

rank

(
U1(q1) U1(q2)
U2(q1) U2(q2)

)

= rank

(
U1(q1) U1(q2) B1 – U1(z)
U2(q1) U2(q2) B2 – U2(z)

)

:= rank Q∗(q). (3.40)

Case 1: If rank Q(q) = 0, then the two conditions for c1, c2 to have solutions are

U1(z) = B1, U2(z) = B2. (3.41)

Case 2: If rank Q(q) = 1, assuming that U1(q1) �= 0, then c1 and c2 have solutions, which
requires that

∣
∣
∣
∣
∣

U1(q1) B1 – U1(z)
U2(q1) B2 – U2(z)

∣
∣
∣
∣
∣

= 0 (3.42)

under the circumstance that above all elements commute with each other. So now we
introduce the following theorem.
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Theorem 3.2 Supposing that ddet Q(q) = 0, if rank Q(q) = rank Q∗(q), then BVP (1.2) has a
solution.

If Case 1 is true, for ∀c1, c2 ∈H,

q(t) = q1(t)c1 + q2(t)c2 + z(t) (3.43)

is a solution to BVP (1.2); when one of the conditions in (3.41) is not true, BVP (1.2) has no
solution.

If Case 2 holds, for ∀c ∈H,

q(t) =
[

q2(t) – q1(t)
U1(q1)U1(q2)
‖U1(q1)‖2

]

c + q1(t)
U1(q1)(B1 – U1(z))

‖U1(q1)‖2 + z(t) (3.44)

is a solution to BVP (1.2); when one of the conditions in Case 2 is not satisfied, BVP (1.2)
has no solution.

Proof Based on the above analysis, it is obvious that BVP (1.2) has a solution when Case 1
is true. Now we turn our attention to formulating the main result of Case 2.

From the first formula in (3.39), it easily follows that

c1 =
[
U1(q1)

]–1[B1 – U1(z) – U1(q2)c2
]
. (3.45)

Let c2 = c, then (3.43) can be denoted by

q(t) = q1(t)
(
U1(q1)

)–1[B1 – U1(z) – U1(q2)c
]

+ q2(t)c + z(t)

=
[
q2(t) – q1(t)

(
U1(q1)

)–1U1(q2)
]
c + q1(t)

[
U1(q1)

]–1(B1 – U1(z)
)

+ z(t)

=
[

q2(t) – q1(t)
U1(q1)U1(q2)
‖U1(q1)‖2

]

c + q1(t)
U1(q1)(B1 – U1(z))

‖U1(q1)‖2 + z(t). (3.46)

This is the end of the proof. �

4 Green’s function of Sturm–Liouville type boundary value problem
Green’s function plays an important role in the study of boundary value problems. With
the help of Green’s function, the unique solutions for the boundary value problem

⎧
⎨

⎩

q′′ + a1(t)q′ + a2(t)q = f (t), t ∈ J ,

U1(q) = U2(q) = 0,

and
⎧
⎨

⎩

q′′ + a1(t)q′ + a2(t)q = f (t), t ∈ J ,

U1(q) = B1, U2(q) = B2

can be expressed in the form of an integral with respect to f (t) at ddet Q(q) �= 0, thus pro-
viding a convenient way to study the connection between the solution q(t) and f (t) and
laying the foundation for the study of nonlinear boundary problems. We will discuss each
of them in two parts.
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4.1 Semi-homogeneous boundary problem
In this section, we are going to discuss the semi-homogeneous BVP (3.17)

⎧
⎨

⎩

q′′ + a1(t)q′ + a2(t)q = f (t),

U1(q) = U2(q) = 0,

and Green’s function.
When ddet Q(q) �= 0, according to Theorem 3.1, the solution ϕ(t) can be written as

ϕ(t) =
1

ddet Q(q)
q1(t)

[∥
∥U2(q1)

∥
∥2U1(q2) – U2(q2)U2(q1)U1(q1)

]
U1(z)

+
1

ddet Q(q)
q1(t)

[∥
∥U1(q1)

∥
∥2U2(q2) – U1(q2)U1(q1)U2(q1)

]
U2(z)

+
1

ddet Q(q)
q2(t)

[∥
∥U2(q2)

∥
∥2U1(q1) – U2(q1)U2(q2)U1(q2)

]
U1(z)

+
1

ddet Q(q)
q2(t)

[∥
∥U1(q2)

∥
∥2U2(q1) – U1(q1)U1(q2)U2(q2)

]
U2(z)

+
1

ddet Q(q)
ddet Q(q) · z(t). (4.1)

Due to

Ui(z) =
1∑

j=0

z(j)(ti),

namely,

U1(z) =
1∑

j=0

z(j)(t1) =
1

ddet�(t)

∫ t

a

1∑

j=0

[
q(j)

1 (t1)ω̄21(s) + q(j)
2 (t1)ω̄22(s)

]
f (s) ds,

U2(z) =
1∑

j=0

z(j)(t2) =
1

ddet�(t)

∫ t

a

1∑

j=0

[
q(j)

1 (t2)ω̄21(s) + q(j)
2 (t2)ω̄22(s)

]
f (s) ds.

Let

h1(s) =
1∑

j=0

[∥
∥U2(q1)

∥
∥2U1(q2) – U2(q2)U2(q1)U1(q1)

][
q(j)

1 (t1)ω̄21(s) + q(j)
2 (t1)ω̄22(s)

]

+
1∑

j=0

[∥
∥U1(q1)

∥
∥2U2(q2) – U1(q2)U1(q1)U2(q1)

][
q(j)

1 (t2)ω̄21(s) + q(j)
2 (t2)ω̄22(s)

]
,

h2(s) =
1∑

j=0

[∥
∥U2(q2)

∥
∥2U1(q1) – U2(q1)U2(q2)U1(q2)

][
q(j)

1 (t1)ω̄21(s) + q(j)
2 (t1)ω̄22(s)

]

+
1∑

j=0

[∥
∥U1(q2)

∥
∥2U2(q1) – U1(q1)U1(q2)U2(q2)

][
q(j)

1 (t2)ω̄21(s) + q(j)
2 (t2)ω̄22(s)

]
,

g(t, s) = q1(t)ω̄21(s) + q2(t)ω̄22(s).
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In consequence, we get

ϕ(t) =
1

ddet Q(q)
1

ddet�(t)

{∫ ti

a

[
q1(t)h1(s) + q2(t)h2(s)

]
f (s) ds

+
∫ t

a
ddet Q(q) · g(t, s)f (s) ds

}

.

When s ∈ (a, b), Green’s function G(t, s) is defined by

⎧
⎨

⎩

1
ddet Q(q)

1
ddet�(t) (q1(t)h1(s) + q2(t)h2(s)), a ≤ t < s < b,

1
ddet Q(q)

1
ddet�(t) (q1(t)h1(s) + q2(t)h2(s) + ddet Q(q) · g(t, s)), a < s < t ≤ b.

(4.2)

Then the unique solution of BVP (3.17) is expressed as an integral form

ϕ(t) =
∫ b

a
G(t, s)f (s) ds. (4.3)

Obviously, G(t, s) is only concerned with homogeneous linear boundary value problem

⎧
⎨

⎩

q′′ + a1(t)q′ + a2(t)q = 0, t ∈ J ,

U1(q) = U2(q) = 0
(4.4)

not with the nonhomogeneous term f (t), G(t, s) is the Green’s function for homoge-
neous boundary value problem (4.4). The role of Green’s function G(t,s) is to express the
unique solution to the semi-homogeneous BVP (3.17) as integral form (4.3) in the case of
ddet Q(q) �= 0.

Proposition 4.1 Evidently, Green’s function has the following properties (P):
(P1) G(t, s) is continuous on [a, b] × (ti–1, ti), ∂G

∂t , ∂2G
∂t2 exist and continue on the [a, b] ×

(ti–1, t) ∪ (t, ti);
(P2)

∂G(t, s)
∂t

∣
∣
∣
∣
t=s+

–
∂G(t, s)

∂t

∣
∣
∣
∣
t=s–

=
1

ddet�(t)
g ′(t, s);

(P3)

∂2G(t, s)
∂t2 + a1(t)

∂G(t, s)
∂t

+ a2(t)G(t, s) = 0 if s �= t;

(P4) Any given ti–1 < s < ti,

U1
(
G(., s)

)
= U2

(
G(., s)

)
= 0.

The function G(t, s) on [a, b] × [a, b] satisfying property (P) can also be defined as Green’s
function of homogeneous BVP (4.4).
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Proof Taking the derivative of (4.2), when a ≤ t < s < b, we can observe that

∂G
∂t

=
1

ddet Q(q)
1

ddet�(t)
(
q′

1(t)h1(s) + q′
2(t)h2(s)

)
, (4.5)

∂2G
∂t2 =

1
ddet Q(q)

1
ddet�(t)

(
q′′

1(t)h1(s) + q′′
2(t)h2(s)

)
,

and

∂2G
∂t2 + a1(t)

∂G
∂t

+ a2(t)G(t, s)

=
1

ddet Q(q)
1

ddet�(t)
(
q′′

1(t) + a1(t)q′
1(t) + a2(t)q1(t)

)
h1(s)

+
1

ddet Q(q)
1

ddet�(t)
(
q′′

2(t) + a1(t)q′
2(t) + a2(t)q2(t)

)
h2(s)

= 0. (4.6)

When a < s < t ≤ b,

∂G
∂t

=
1

ddet Q(q)
1

ddet�(t)
(
q′

1(t)h1(s) + q′
2(t)h2(s) + ddet Q(q) · g ′(t, s)

)
, (4.7)

∂2G
∂t2 =

1
ddet Q(q)

1
ddet�(t)

(
q′′

1(t)h1(s) + q′′
2(t)h2(s) + ddet Q(q) · g ′′(t, s)

)
,

then

∂2G
∂t2 + a1(t)

∂G
∂t

+ a2(t)G(t, s)

=
1

ddet Q(q)
1

ddet�(t)
(
q′′

1(t) + a1(t)q′
1(t) + a2(t)q1(t)

)
h1(s)

+
1

ddet Q(q)
1

ddet�(t)
(
q′′

2(t) + a1(t)q′
2(t) + a2(t)q2(t)

)
h2(s)

+
1

ddet�(t)
(
g ′′(t, s) + a1(t)g ′(t, s) + a2(t)g(t, s)

)

=
1

ddet�(t)
{[

q′′
1(t) + a1(t)q′

1(t) + a2(t)q1(t)
]
ω̄21(s)

+
[
q′′

2(t) + a1(t)q′
2(t) + a2(t)q2(t)

]
ω̄21(s)

}

= 0. (4.8)

In brief, (P1) and (P3) are true.
In the next moment, we give the proofs of (P2) and (P4). From (4.5) and (4.7), as we soon

show,

∂G(t, s)
∂t

∣
∣
∣
∣
t=s+

–
∂G(t, s)

∂t

∣
∣
∣
∣
t=s–

=
1

ddet�(t)
g ′(t, s). (4.9)
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Owing to U1, U2 being linear with respect to q and Ui(q) = 0, when a ≤ t < s < b,

Ui
(
G(t, s)

)
=

1
ddet Q(q)

1
ddet�(t)

(
Ui(q1)h1(s) + Ui(q2)h2(s)

)
= 0. (4.10)

When a < s < t ≤ b,

Ui
(
G(t, s)

)
=

1
ddet Q(q)

1
ddet�(t)

[
Ui(q1)h1(s) + Ui(q2)h2(s)) + ddet Q(q) · Ui

(
g(t, s)

)]

=
1

ddet�(t)
(
Ui(q1)ω̄21(s) + Ui(q2)ω̄22(s)

)

= 0.

Above all, it is clear from the analysis of ϕ(t) that there is a function G(t,s) satisfying (P)
for ddet Q(q) �= 0. �

Theorem 4.1 Suppose that BVP (4.4) satisfies ddet Q(q) �= 0, G(t, s) satisfies properties (P),
then the unique solution of BVP (3.17) is written as an integral form

ϕ(t) =
∫ b

a
G(t, s)f (s) ds. (4.11)

Proof The conclusion that BVP (3.17) has a unique solution is guaranteed by Theorem 3.1.
Just prove that (4.11) satisfies both the differential equation in BVP (3.17) and the bound-
ary conditions.

Since G(t, s) is discontinuous at t, integral (4.11) is divided into two integrals from a to
t and from t to b, and then differentiated separately to obtain

ϕ′(t) = G(t, s)f (s)|t=s+ +
∫ t

a

∂G(t, s)
∂t

f (s) ds – G(t, s)f (s)|t=s– +
∫ b

t

∂G(t, s)
∂t

f (s) ds

=
∫ b

a

∂G(t, s)
∂t

f (s) ds,

ϕ′′(t) =
∂G(t, s)

∂t
f (s)

∣
∣
∣
∣
t=s+

+
∫ t

a

∂2G(t, s)
∂t2 f (s) ds –

∂G(t, s)
∂t

f (s)|t=s– +
∫ b

t

∂2G(t, s)
∂t2 f (s) ds

=
∫ b

a

∂2G(t, s)
∂t2 f (s) ds +

1
ddet�(t)

g ′(t, s)f (t).

Let L(D) = D2 + a1(t)D + a2(t), since L(D) is linear, then

L(D)ϕ(t) = ϕ′′(t) + a1(t)ϕ′(t) + a2(t)ϕ(t)

=
∫ b

a

[
∂2G(t, s)

∂t2 + a1(t)
∂G(t, s)

∂t
+ a2(t)G(t, s)

]

f (t) ds +
1

ddet�(t)
g ′(t, s)f (t)

=
1

ddet�(t)
(
q′

1(t)ω̄21(t) + q′
2(t)ω̄22(t)

)
f (t).

From (3.15) and (3.16), we know that

q′
1(t)ω̄21(t) + q′

2(t)ω̄22(t)
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= q′
1(t)q̄′

1(t)
∥
∥q2(t)

∥
∥2 – q′

1(t)q̄1(t)q2(t)q̄′
2(t) + q′

2(t)q̄′
2(t)

∥
∥q1(t)

∥
∥2

– q′
2(t)q̄2(t)q1(t)q̄′

1(t)

=
∥
∥q′

1(t)
∥
∥2∥∥q2(t)

∥
∥2 +

∥
∥q′

2(t)
∥
∥2∥∥q1(t)

∥
∥2 – 2R

{
q′

1(t)q̄1(t)q2(t)q̄′
2(t)

}
. (4.12)

Comparing the above formula with (3.11), we can find

R
{

q′
1(t)q̄1(t)q2(t)q̄′

2(t)
}

= R
{

q1(t)q̄′
1(t)q′

2(t)q̄2(t)
}

,

therefore, 1
ddet�(t) = q′

1(t)ω̄21(t) + q′
2(t)ω̄22(t). To be more precise,

L(D)ϕ(t) =
1

ddet�(t)
(
q′

1(t)ω̄21(t) + q′
2(t)ω̄22(t)

)
f (t) = f (t). (4.13)

Meanwhile,

Ui(ϕ) =
∫ b

a
Ui

(
G(t, s)

)
f (s) ds = 0. (4.14)

Based on the above discussion, the conclusion is valid. �

Then some examples are presented to verify the validity of the above theory.

Example 4.1 Consider Green’s function for the following BVP:

⎧
⎨

⎩

q′′ + jq′ + (1 – k)q = it, t ∈ [0, 1],

U1(q) = U2(q) = 0.

Based on Example 3.1 and Example 3.2, after a series of complex calculations, we have

∥
∥U2(q1)

∥
∥2U1(q2) – U2(q2)U2(q1)U1(q1) =

(
1 + (1 +

√
2)k

)(
1 – e(1–

√
2)i),

∥
∥U1(q1)

∥
∥2U2(q2) – U1(q2)U1(q1)U2(q1) =

(
1 + (1 +

√
2)k

)(
e–

√
2i – e–i),

∥
∥U2(q2)

∥
∥2U1(q1) – U2(q1)U2(q2)U1(q2) = (4 + 2

√
2)j

(
1 – e(

√
2–1)i),

∥
∥U1(q2)

∥
∥2U2(q1) – U1(q1)U1(q2)U2(q2) = (4 + 2

√
2)j

(
e–i – e–

√
2i),

and

1∑

j=0

(
q(j)

1 (t1)ω̄21(s) + q(j)
2 (t1)ω̄22(s)

)

=
(
q1(0) + q′

1(0)
)
ω̄21(s) +

(
q2(0) + q′

2(0)
)
ω̄22(s)

= –(4 + 2
√

2)(j – k)e–is + (4 + 2
√

2)(1 + j – k)e–
√

2is,
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1∑

j=0

(
q(j)

1 (t2)ω̄21(s) + q(j)
2 (t2)ω̄22(s)

)

=
(
q1(1) + q′

1(1)
)
ω̄21(s) +

(
q2(1) + q′

2(1)
)
ω̄22(s)

= –(4 + 2
√

2)(j – k)ei–is + (4 + 2
√

2)(1 + j – k)e
√

2i–
√

2is,

then

h1(s) = (4 + 2
√

2)(2 +
√

2 – i + j +
√

2k)
(
2 – e(1–

√
2)i – e(

√
2–1)i)e–

√
2is, (4.15)

h2(s) = (24 + 16
√

2)(1 + i)
(
2 – e(1–

√
2)i – e(

√
2–1)i)e–is, (4.16)

g(t, s) = (4 + 2
√

2)j
(
e
√

2i(t–s) – ei(t–s)). (4.17)

By taking advantage of these results and (3.38), (3.43), Green’s function can be obtained
in the following form.

When 0 ≤ t < s < 1,

G(t, s) =
1

4 + 2
√

2
(
1 –

√
2i – (2 +

√
2)j – k

)
ei(t–

√
2s)

+
(
1 + i – (1 +

√
2)(j + k)

)
ei(

√
2t–s).

When 0 < t < s ≤ 1,

G(t, s) =
1

4 + 2
√

2
(
1 –

√
2i – (2 +

√
2)j – k

)
ei(t–

√
2s)

+
(
1 + i – (1 +

√
2)(j + k)

)
ei(

√
2t–s) + j

(
e
√

2i(t–s) – ei(t–s)).

Example 4.2 Consider Green’s function for the following BVP:

⎧
⎨

⎩

q′′ + jq′ = f (t, q), t ∈ [0, 1],

U1(q) = U2(q) = 0.
(4.18)

By conversion, the above equation is transformed into

(
q11

q12

)′
=

(
0 1
0 –j

)(
q11

q12

)

+

(
0

f (t, q)

)

, (4.19)

where

A =

(
0 1
0 –j

)

=

(
0 1
0 0

)

+

(
0 0
0 –1

)

j.

Then

φ(A) =

⎛

⎜
⎜
⎜
⎝

0 1 0 0
0 0 0 –1
0 0 0 1
0 1 0 0

⎞

⎟
⎟
⎟
⎠

,
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and

∣
∣λE – φ(A)

∣
∣ = λ2(λ2 + 1

)
= 0, (4.20)

thus, λ1 = λ2 = 0, λ3 = i, λ4 = –i.
When λ1 = 0, we can arrive at ϕ(ν1) = (1, 0, 0, 0)T and ν1 = (1, 0)T . When λ3 = i, we can

arrive at ϕ(ν2) = (1, i, –i, 1)T and ν2 = (1 – k, i – j)T . Let

�(t) =
(
ν1eλ1t ,ν2eλ2t) =

(
1 (1 – k)eit

0 (i – j)eit

)

, (4.21)

then

�+(t) =

(
1 0

(1 + k)e–it (–i + j)e–it

)

,

and from (3.11), we get

WQDE(t) = ddet�(t) = r det
(
�(t)�+(t)

)
= 2 �= 0. (4.22)

As a consequence, �(t) is a fundamental matrix of homogeneous equation, and 1, (1 –
k)eit are the two linearly independent solutions to the homogeneous equation of (4.19).

After the same calculation as Example 3.2 and Example 4.1, we get the following results:

ω̄21(t) = –2j, ω̄22(t) = (–i + j)e–it ,

and the solution of (4.18) is

z(t) =
1
2

∫ t

0
2j

(
ei(t–s) – 1

)
f (s, q) ds. (4.23)

Moreover,

U1(q1) = q1(0) = 1, U1(q2) = q2(0) = 1 – k,

U2(q1) = q1(1) = 1, U2(q2) = q2(1) = (1 – k)ei,

then

Q(q) =

(
1 1 – k
1 (1 – k)ei

)

,

and

ddet Q(q) = det
p

(
Q+(q)Q(q)

)
= 2

(
2 – ei – e–i) �= 0. (4.24)

In addition,

∥
∥U2(q1)

∥
∥2U1(q2) – U2(q2)U2(q1)U1(q1) = (1 + k)

(
1 – e–i),
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∥
∥U1(q1)

∥
∥2U2(q2) – U1(q2)U1(q1)U2(q1) = (1 + k)

(
e–i – 1

)
,

∥
∥U2(q2)

∥
∥2U1(q1) – U2(q1)U2(q2)U1(q2) = 2

(
1 – ei),

∥
∥U1(q2)

∥
∥2U2(q1) – U1(q1)U1(q2)U2(q2) = 2

(
1 – e–i),

and

1∑

j=0

(
q(j)

1 (t1)ω̄21(s) + q(j)
2 (t1)ω̄22(s)

)

=
(
q1(0) + q′

1(0)
)
ω̄21(s) +

(
q2(0) + q′

2(0)
)
ω̄22(s)

= –2j + (2 + 2j)e–is,

1∑

j=0

(
q(j)

1 (t2)ω̄21(s) + q(j)
2 (t2)ω̄22(s)

)

=
(
q1(1) + q′

1(1)
)
ω̄21(s) +

(
q2(1) + q′

2(1)
)
ω̄22(s)

= –2j + (2 + 2j)ei–is,

then

h1(s) = 2(1 – i + j + k)
(
2 – e–i – ei)e–is, (4.25)

h2(s) = –4j
(
2 – ei – e–i), (4.26)

g(t, s) = 2j
(
ei(t–s) – 1

)
. (4.27)

Based on all of these calculations, we can write out the form of Green’s function, which is

G1(t, s) =

⎧
⎨

⎩

1
2 (1 – i + j + k)e–is – (i + j)eit , 0 ≤ t < s < 1,
1
2 (1 – i + j + k)e–is – (i + j)eit + j(ei(t–s) – 1), 0 < s < t ≤ 1.

(4.28)

So the solution to BVP (4.18) can be uniquely expressed as

ϕ1(t) =
∫ 1

0
G1(t, s)f (s, q) ds. (4.29)

Corollary 4.1 From what has been discussed above, it is not difficult for us to show that
the Green’s function of

q′′ + a1(t)q′ = f (t, q) (4.30)

can also be obtained, and (4.29) is the solution of (4.30).
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4.2 Inhomogeneous boundary value problem
In the following content, we continue to consider the inhomogeneous boundary value
problem

⎧
⎨

⎩

q′′ + a1(t)q′ + a2(t)q = f (t), t ∈ J ,

U1(q) = B1, U2(q) = B2.
(4.31)

Similar to the method for the semi-homogeneous boundary value problem, when
ddet Q(q) �= 0, the solution q(t) can be denoted by

q(t) =
1

ddet Q(q)
q1(t)

[
U2(q2)U2(q1)U1(q1) –

∥
∥U2(q1)

∥
∥2U1(q2)

](
B1 – U1(z)

)

+
1

ddet Q(q)
q1(t)

[
U1(q2)U1(q1)U2(q1) –

∥
∥U1(q1)

∥
∥2U2(q2)

](
B2 – U2(z)

)

+
1

ddet Q(q)
q2(t)

[
U2(q1)U2(q2)U1(q2) –

∥
∥U2(q2)

∥
∥2U1(q1)

](
B1 – U1(z)

)

+
1

ddet Q(q)
q2(t)

[
U1(q1)U1(q2)U2(q2) –

∥
∥U1(q2)

∥
∥2U2(q1)

](
B2 – U2(z)

)

+
1

ddet Q(q)
ddet Q(q) · z(t), (4.32)

where

B1 – U1(z) = B1 –
1

ddet�(t)

∫ t

a

1∑

j=0

[
q(j)

1 (t1)ω̄21(s) + q(j)
2 (t1)ω̄22(s)

]
f (s) ds,

B2 – U2(z) = B2 –
1

ddet�(t)

∫ t

a

1∑

j=0

[
q(j)

1 (t2)ω̄21(s) + q(j)
2 (t2)ω̄22(s)

]
f (s) ds.

Let

h11(s) =
1∑

j=0

[
U2(q2)U2(q1)U1(q1) –

∥
∥U2(q1)

∥
∥2U1(q2)

][
q(j)

1 (t1)ω̄21(s) + q(j)
2 (t1)ω̄22(s)

]

+
1∑

j=0

[
U1(q2)U1(q1)U2(q1) –

∥
∥U1(q1)

∥
∥2U2(q2)

][
q(j)

1 (t2)ω̄21(s) + q(j)
2 (t2)ω̄22(s)

]
,

h22(s) =
1∑

j=0

[
U2(q1)U2(q2)U1(q2) –

∥
∥U2(q2)

∥
∥2U1(q1)

][
q(j)

1 (t1)ω̄21(s) + q(j)
2 (t1)ω̄22(s)

]

+
1∑

j=0

[
U1(q1)U1(q2)U2(q2) –

∥
∥U1(q2)

∥
∥2U2(q1)

][
q(j)

1 (t2)ω̄21(s) + q(j)
2 (t2)ω̄22(s)

]

and

h3 =
[
U2(q2)U2(q1)U1(q1) –

∥
∥U2(q1)

∥
∥2U1(q2)

]
B1

+
[
U1(q2)U1(q1)U2(q1) –

∥
∥U1(q1)

∥
∥2U2(q2)

]
B2,
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h4 =
[
U2(q1)U2(q2)U1(q2) –

∥
∥U2(q2)

∥
∥2U1(q1)

]
B1

+
[
U1(q1)U1(q2)U2(q2) –

∥
∥U1(q2)

∥
∥2U2(q1)

]
B2,

g(t, s) = q1(t)ω̄21(s) + q2(t)ω̄22(s).

Then

q(t) =
1

ddet Q(q)
1

ddet�(t)

{

–
∫ ti

a

[
q1(t)h11(s) + q2(t)h22(s)

]
f (s) ds

+
∫ t

a
ddet Q(q) · g(t, s)f (s) ds

}

+
1

ddet Q(q)
1

ddet�(t)
[
q1(t)h3 + q2(t)h4

]
,

(4.33)

and Green’s function G2(t, s) is defined by

⎧
⎨

⎩

1
ddet Q(q)

1
ddet�(t) [–q1(t)h11(s) – q2(t)h22(s)], a ≤ t < s < b,

1
ddet Q(q)

1
ddet�(t) [–q1(t)h11(s) – q2(t)h22(s) + ddet Q(q) · g(t, s)], a < s < t ≤ b.

(4.34)

Therefore the solution of BVP (4.31) can be expressed as a form of

q(t) =
∫ b

a
G2(t, s)f (s) ds +

1
ddet Q(q)

1
ddet�(t)

(
q1(t)h3 + q2(t)h4

)
. (4.35)

Remark 4.1 It can be seen from the above that not all solutions of boundary value prob-
lems can be written in the form of integral of Green’s function, but they can be expressed
in the form related to Green’s function.

5 Green’s functions for periodic boundary problem
In this section, we introduce Green’s function for periodic boundary problems and use
the Green’s function to transform differential equation into integral equation. Due to the
noncommutativity of quaternion algebra, we cannot easily find the Green’s function for
second-order quaternion differential equations. If a(t) is a real function, then the commu-
tativity will be satisfied, and Green’s function will be obtained. After that, we consider the
Green’s function for second-order quaternion differential equations with the real variable
coefficients.

Let us take the following equation as an example:

⎧
⎨

⎩

q′′ = a2(t)q + f (t, q), t ∈ [0, T],

q(0) = q(T), q′(0) = q′(T),
(5.1)

where a(t) : [0, T] →R, A(t) =
∫ t

0 a(s) ds : [0, T] →R, and f (t, q) : [0, T] ×H →H.
By using the reduced order method, we convert the above second-order differential

equation into the following two first-order differential equations:

q′(t) = a(t)q(t) + q1(t), (5.2)

q′
1(t) = –a(t)q1(t) + f (t, q). (5.3)
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The solution of quaternion differential equation q′(t) = a(t)q(t) is

q(t) =
[
exp A(t)

]
C, C ∈ H, t ∈ [0, T], (5.4)

and satisfies q′(t) = a(t)[exp A(t)]C = a(t)q(t). Using the constant change method, we can
obtain the solutions of (5.2), that is,

q(t) =
[
exp A(t)

]
C(t). (5.5)

Differentiating the above equation, we get

q′(t) = a(t)
[
exp A(t)

]
C(t) +

[
exp A(t)

]
C′(t).

According to this, we find that

C′(t) =
[
exp A(t)

]–1q1(t),

C(t) = C(0) +
∫ t

0

[
exp A(s)

]–1q1(s) ds.

Due to q(0) = q(T), using (5.4), as we soon show,

C(0) =
[
exp A(T)

]
C(T),

and

C(T) = C(0) +
∫ T

0

[
exp A(s)

]–1q1(s) ds

=
[
exp A(T)

]
C(T) +

∫ T

0

[
exp A(s)

]–1q1(s) ds.

In other words,

C(T) =
[
1 – exp A(T)

]–1
∫ T

0

[
exp A(s)

]–1q1(s) ds,

C(0) =
[
exp A(T)

][
1 – exp A(T)

]–1
∫ T

0

[
exp A(s)

]–1q1(s) ds.

On account of the above equations, we have

q(t) = exp A(t)
{

exp A(T)
[
1 – exp A(T)

]–1
∫ T

0

[
exp A(s)

]–1q1(s) ds

+
∫ t

0

[
exp A(s)

]–1q1(s) ds
}

= exp A(t)
{
[
1 – exp A(T)

]–1
∫ t

0

[
exp A(s)

]–1q1(s) ds

+
[
1 – exp A(T)

]–1
exp A(T)

∫ T

t

[
exp A(s)

]–1q1(s) ds
}
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=
∫ t

0
exp A(t)

[
1 – exp A(T)

]–1[
exp

(
–A(s)

)]
q1(s) ds

+
∫ T

t
exp A(t)

[
1 – exp A(T)

]–1
exp A(T)

[
exp

(
–A(s)

)]
q1(s) ds

=
∫ t

0

eA(t)–A(s)

1 – eA(T) q1(s) ds +
∫ T

t

eA(t)–A(s)+A(T)

1 – eA(T) q1(s) ds.

It is easy to say that the Green’s functions of (5.2) and (5.3) are

g1(t, s) =

⎧
⎨

⎩

eA(t)–A(s)

1–eA(T) , 0 ≤ s ≤ t ≤ T ,
eA(t)–A(s)+A(T)

1–eA(T) , 0 ≤ t ≤ s ≤ T ,
(5.6)

g2(t, s) =

⎧
⎨

⎩

eA(s)–A(t)+A(T)

eA(T)–1 , 0 ≤ s ≤ t ≤ T ,
eA(s)–A(t)

eA(T)–1 , 0 ≤ t ≤ s ≤ T .
(5.7)

Hence,

q(t) =
∫ T

0
g1(t, s)q1(s) ds,

q1(t) =
∫ T

0
g2(t, s)f

(
s, q(s)

)
ds.

Combining the two formulas above, we have

q(t) =
∫ T

0
g1(t, τ )

∫ T

0
g2(τ , s)f

(
s, q(s)

)
ds dτ

=
∫ T

0

∫ T

0
g1(t, τ )g2(τ , s)f

(
s, q(s)

)
ds dτ

=
∫ T

0

[∫ T

0
g1(t, s)g2(s, τ ) ds

]

f
(
τ , q(τ )

)
dτ

=
∫ T

0

[∫ T

0
g1(t, τ )g2(τ , s) dτ

]

f
(
s, q(s)

)
ds.

We define the Green’s function of the second-order quaternion differential equation as

G3(t, s) =
∫ T

0
g1(t, τ )g2(τ , s) dτ . (5.8)

Remark 5.1 If we replace a(t) in the example above with a and a ∈ R, we are going to get
a simpler form of Green’s function like this

G4(t, s) =
∫ T

0
g3(t, τ )g4(τ , s) dτ ,

g3(t, s) =

⎧
⎨

⎩

ea(t–s)

1–eaT , 0 ≤ s ≤ t ≤ T ,
ea(t–s+T)

1–eaT , 0 ≤ t ≤ s ≤ T ,

g4(t, s) =

⎧
⎨

⎩

ea(s–t+T)

eaT –1 , 0 ≤ s ≤ t ≤ T ,
ea(s–t)

eaT –1 , 0 ≤ t ≤ s ≤ T .
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Proof Using the same method as in the example above, this proof is analogous to that of
the proof above. �
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1. Dimitrić, R., Goldsmith, B.: Sir William Rowan Hamilto. Math. Intell. 11, 29–30 (1989)
2. Hale, J.K.: Ordinary Differential Equations, 2nd edn. Krieger, Huntington (1980)
3. Hartman, P.: Ordinary Differential Equations. SIAM, Philadelphia (2002). (English summary)
4. Arnold, V.I.: Ordinary Differential Equations. Springer, Berlin (1992). Translated from the third Russian edition by Roger

Cooke
5. Campos, J., Mawhin, J.: Periodic solutions of quaternionic-valued ordinary differential equations. Ann. Mat. Pura Appl.

(4) 185, S109–S127 (2006)
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