
Bai et al. Boundary Value Problems        (2023) 2023:114 
https://doi.org/10.1186/s13661-023-01803-5

R E S E A R C H Open Access

Existence and multiplicity of solutions for
boundary value problem of singular
two-term fractional differential equation with
delay and sign-changing nonlinearity
Rulan Bai1, Kemei Zhang1* and Xue-Jun Xie2

*Correspondence:
zhkm90@126.com
1School of Mathematical Sciences,
Qufu Normal University, Qufu,
273165, Shandong Province,
People’s Republic of China
Full list of author information is
available at the end of the article

Abstract
In this paper, we consider the existence of solutions for a boundary value problem of
singular two-term fractional differential equation with delay and sign-changing
nonlinearity. By means of the Guo–Krasnosel’skii fixed point theorem and the
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1 Introduction
In this paper, we study the following two-term fractional differential equation with delay:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–Dα
0+ x(t) + ax(t) = λf

(
t, x(t – τ )

)
, t ∈ (0, 1) \ {τ },

x(t) = η(t), t ∈ [–τ , 0],

x(0) = x′(0) = x′′(0) = · · · = x(n–2)(0) = 0,

x(1) = 0,

(1.1)

where n–1 < α < n, n = [α]+1, n ≥ 3 (n ∈ N ), a > 0, Dα
0+ is the standard Riemann–Liouville

fractional derivative, λ is a positive constant, f (t, x) : (0, 1) × R+ → R is continuous, may
change sign, and be singular at t = 0, t = 1, and x = 0, where R+ = (0, +∞), η ∈ C[–τ , 0],
and η(t) > 0 for t ∈ [–τ , 0), η(0) = 0.

Recently, fractional differential equations have been extensively studied, among which
the existence of positive solutions to fractional differential equations was considered in
[1, 8, 10–12, 15, 16, 19, 20] and [6, 22]. In particular, the nonlinear terms of the prob-
lems studied in [8, 10–12, 19] can change sign and are singular at time or space variables.
In practical problems, delay is a nonnegligible factor, which can reasonably express the
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influence of the past on the present. Therefore the delay differential equation has a wide
range of applications in control theory, signal processing, biology, finance, and many other
fields [4, 10, 12, 14, 21]. In addition, unlike the above research problems, the fractional dif-
ferential equations of two terms are studied in [2, 3, 17, 18].

Mu et al. [12] investigated the singular boundary value problems for the following non-
linear fractional differential equations with delay by the Guo–Krasnosel’skii fixed point
theorem:

⎧
⎪⎪⎨

⎪⎪⎩

Dαx(t) + λf
(
t, x(t – τ )

)
= 0, t ∈ (0, 1) \ {τ },

x(t) = η(t), t ∈ [–τ , 0],

x′(1) = x′(0) = 0,

(1.2)

where 2 < α ≤ 3, Dα is the standard Riemann–Liouville derivative, λ is a positive constant,
and f (t, x) may change sign and be singular at t = 1, t = 0, and x = 0.

Liu and Zhang [10] considered the existence of a positive solution for the following prob-
lem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
0+ x(t) + f

(
t, x(t – τ )

)
= 0, t ∈ (0, 1) \ {τ },

x(t) = η(t), t ∈ [–τ , 0],

x′(0) = x′′(0) = · · · = x(n–2)(0) = 0,

x(n–2)(1) = 0,

(1.3)

where n – 1 < α ≤ n, n = [α] + 1, Dα
0+ is the standard Riemann–Liouville fractional deriva-

tive, τ ∈ (0, 1), f (t, x) : (0, 1) × R+ → R is continuous, may change sign, and be singular at
t = 0, t = 1, and x = 0, where R+ = (0, +∞), η ∈ C[–τ , 0], η(t) > 0 for t ∈ [–τ , 0), and η(0) = 0.

Wang [17] considered a class of Riemann–Liouville type two-term fractional boundary
value problems:

⎧
⎨

⎩

–Dα
0+ u(t) + au(t) = y(t), 0 < t < 1,

u(0) = u′(0) = 0, u(1) = 0,
(1.4)

where 2 < α < 3, a > 0, and Dα
0+ is the standard Riemann–Liouville derivative. Some pos-

itive properties of the Green’s function are deduced by using techniques of analysis, and
two applications are given by the Guo–Krasnosel’skii fixed point theorem and monotone
iterative technique.

Compared with problems (1.2) and (1.3), we discuss the two-term fractional differential
equation and show that problem (1.1) has at least two positive solutions. Problem (1.1) is a
generalization of the problem studied in [17] when τ = 0 and n = 3. By means of the Guo–
Krasnosel’skii fixed point theorem and the Leray–Schauder nonlinear alternative theorem
we obtaim the existence of at least two positive solutions or three nontrivial solutions of
(1.1), respectively.

This paper is organized as follows. In Sect. 2, we introduce some definitions and give
preliminary results to be used in the proof of our main theorems. In Sect. 3, we establish
the existence and multiplicity of solutions for problem (1.1) based on some fixed point
theorems.
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2 Basic definitions and preliminaries
In this section, we introduce some basic definitions, theorems, and lemmas.

Definition 2.1 ([13]) The Riemann–Liouville fractional integral of order α > 0 for a func-
tion f is defined as

Iα
0+ f (t) =

1
�(α)

∫ t

0
(t – s)α–1f (s) ds,

provided that the right-hand side is pointwise defined on (0, +∞), where � is the gamma
function defined by

�(α) =
∫ +∞

0
e–ttα–1 dt, α > 0.

Definition 2.2 ([13]) The Riemann–Liouville fractional derivative of order α (n – 1 < α <
n) for a function f is defined as

Dα
0+ f (t) =

1
�(n – α)

(
d
dt

)n ∫ t

0
(t – s)n–α–1f (s) ds,

provided that the right-hand side is pointwise defined on (0, +∞), where n = [α] + 1, [α]
denotes the integer part of number α, and � is the gamma function.

For convenience, we give the following notations:

h(x) =
+∞∑

k=0

(kα + α – (n – 1))(kα + α – n)xk

�((k + 1)α)
, (2.1)

g(t) = tα–1Eα,α
(
atα

)
, (2.2)

gn–2(t) = tα–(n–1)Eα,α
(
atα

)
, (2.3)

where

Eα,α(x) =
+∞∑

k=0

xk

�((k + 1)α)

is the Mittag-Leffler function.
By (2.1) we know that h is strictly increasing on [0, +∞), h(0) < 0, and

lim
x→+∞ h(x) = +∞.

Then h has a unique positive root a∗, that is, h(a∗) = 0.
(H1) a ∈ (0, a∗] is a constant.

Lemma 2.3 ([9]) Let n – 1 < α ≤ n (n ∈ N), let λ ∈ R, and let y be a real function on R.
Then the equation

Dαu(t) – λu(t) = y(t), t > 0,
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is solvable, and its general solution is given by

u(t) =
∫ t

0
(t – s)α–1Eα,α

[
λ(t – s)α

]
y(s) ds +

n∑

j=1

cjtα–1Eα,α+1–j
(
λtα

)

with arbitrary cj ∈R, j = 1, . . . , n, where Eα,β is the Mittag-Leffler function.

Lemma 2.4 Let n – 1 < α ≤ n and y ∈ L1[0, 1] ∩ C(0, 1). Then the unique solution of the
two-term boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

–Dα
0+ u(t) + au(t) = λy(t), t ∈ (0, 1),

u(0) = u′(0) = u′′(0) = · · · = u(n–2)(0) = 0,

u(1) = 0

(2.4)

is given by

u(t) = λ

∫ 1

0
G(t, s)y(s) ds, t ∈ [0, 1],

where

G(t, s) =
1

g(1)

⎧
⎨

⎩

g(t)g(1 – s), 0 ≤ t ≤ s ≤ 1,

g(t)g(1 – s) – g(t – s)g(1), 0 ≤ s ≤ t ≤ 1.
(2.5)

Proof By Lemma 2.3 we know that the general solution of the equation

–Dα
0+ u(t) + au(t) = λy(t)

can be expressed by

u(t) = –λ

∫ t

0
g(t – s)y(s) ds + c1g(t) + c2g ′(t) + c3g ′′(t) + · · · + cng(n–1)(t).

Since u(0) = u′(0) = · · · = u(n–1)(0) = 0, we deduce that cn = cn–1 = · · · = c2 = 0.
It follows from u(1) = 0 that

c1 =
λ

∫ 1
0 g(1 – s)y(s) ds

g(1)
.

Therefore the solution of (2.4) is

u(t) = –λ

∫ t

0
g(t – s)y(s) ds +

λ
∫ 1

0 g(1 – s)y(s) ds
g(1)

g(t)

=
λ

∫ 1
0 g(t)g(1 – s)y(s) ds – λ

∫ t
0 g(t – s)g(1)y(s) ds

g(1)

=
λ

∫ t
0 [g(t)g(1 – s) – g(t – s)g(1)]y(s) ds + λ

∫ 1
t g(t)g(1 – s)y(s) ds

g(1)
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= λ

∫ 1

0
G(t, s)y(s) ds, t ∈ [0, 1].

This completes the proof. �

Lemma 2.5 For 0 ≤ s ≤ t ≤ 1, we have gn–2(t)gn–2(1 – s) ≥ gn–2(t – s)gn–2(1).

Proof For t > 0, by (2.3) we have

g ′
n–2(t) =

+∞∑

k=0

[kα + α – (n – 1)]aktkα+α–n

�((k + 1)α)
> 0.

Therefore gn–2(t) is strictly increasing on [0, 1].
By calculation we have

g ′′
n–2(t) =

+∞∑

k=0

[kα + α – (n – 1)](kα + α – n)aktkα+α–n–1

�((k + 1)α)

= tα–n–1h
(
atα

)

< tα–n–1h
(
a∗) = 0.

Then g ′
n–2(t) is strictly decreasing on [0, 1], and

∂

∂s
[
gn–2(t)gn–2(1 – s) – gn–2(t – s)gn–2(1)

]

= g ′
n–2(t – s)gn–2(1) – gn–2(t)g ′

n–2(1 – s)

≥ g ′
n–2(1 – s)

[
gn–2(1) – gn–2(t)

] ≥ 0.

Therefore we get

gn–2(t)gn–2(1 – s) – gn–2(t – s)gn–2(1)

≥ gn–2(t)gn–2(1 – 0) – gn–2(t – 0)gn–2(1) = 0,

that is,

gn–2(t)gn–2(1 – s) ≥ gn–2(t – s)gn–2(1).

This completes the proof. �

Lemma 2.6 The Green’s function G(t, s) satisfies the following properties:
(1) G(t, s) > 0, t, s ∈ (0, 1);
(2) G(t, s) = G(1 – s, 1 – t), t, s ∈ [0, 1];
(3) G(t, s) ≥ M1s(1 – s)α–1(1 – t)tα–1, t, s ∈ [0, 1];
(4) G(t, s) ≤ M2s(1 – s)α–1 t, s ∈ [0, 1].

where

M1 =
1

g(1)[�(α)]2 ,
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M2 =
[g ′(1)]2

g(1)s∗ ,

and s∗ ∈ (0, 1) satisfies s∗ = (1 – s∗)α–2.

Proof Since (2) is obviously true, (1) can be deduced from (3), and the proof for (4) is the
same as that in [17], so that we just verify (3).

(3) For t ∈ [0, 1], by (2.3) we have

gn–2(t) =
+∞∑

k=0

aktkα+α–1–(n–2)

�((k + 1)α)
≥ tα–1–(n–2)

�(α)
.

For 0 ≤ t ≤ s ≤ 1, the proof is similar to that in [17], and we omit it here.
For 0 ≤ s ≤ t ≤ 1, in view of (2.2), (2.3), and Lemma 2.5, we have that

g(t) = tn–2gn–2(t), g(1) = gn–2(1),

and then

G(t, s) =
g(t)g(1 – s) – g(t – s)g(1)

g(1)

=
tn–2gn–2(t)(1 – s)n–2gn–2(1 – s) – (t – s)n–2gn–2(t – s)gn–2(1)

g(1)

≥ gn–2(t)gn–2(1 – s)[tn–2(1 – s)n–2 – (t – s)n–2]
g(1)

≥ tα–1–(n–2)(1 – s)α–1–(n–2)[tn–2(1 – s)n–2 – (t – s)n–2]
g(1)[�(α)]2

= M1tα–1(1 – s)α–(n–1)
[

(1 – s)n–2 –
(

1 –
s
t

)n–2]

≥ M1tα–1(1 – s)α–(n–1)s
(

1
t

– 1
)

(1 – s)n–3

= M1tα–1(1 – s)α–2s
(

1
t

– 1
)

= M1tα–2(1 – s)α–2s(1 – t)

> M1s(1 – s)α–1(1 – t)tα–1.

This completes the proof. �

Remark 2.7 G(t, s) ≤ M2(1 – t)tα–1, t, s ∈ [0, 1].

Lemma 2.8 ([7]) Let E be a Banach space, and let K ⊂ E be a cone. Let 	1 and 	2 be open
bounded subsets of E with θ ∈ 	1 such that 	1 ⊂ 	2, and let T : K ∩ (	2\	1) → K be a
completely continuous operator such that

(i) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂	1, and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂	2;
or

(ii) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂	1, and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂	2.
Then T has a fixed point in K ∩ (	2\	1).
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Lemma 2.9 ([5]) Let 	 be a relatively open subset of a convex set C in a Banach space E.
Let T : 	 → C be a compact map, and let p ∈ 	. Then either

(1) T has a fixed point in 	,
or

(2) there are x ∈ ∂	 and λ ∈ (0, 1) such that x = (1 – λ)p + λTx.

3 Main results
In this section, we discuss the existence and multiplicity of positive solutions for the
boundary value problem (1.1).

For convenience, we always suppose that the following two conditions hold:
(H2) There exists a nonnegative function ρ ∈ C(0, 1) ∩ L[0, 1] such that

∫ 1
0 ρ(s) ds > 0,

f (t, x) > –ρ(t),

and

ϕ2(t)h2(x) ≤ f (t, x) + ρ(t) ≤ ϕ1(t)
(
J(x) + h1(x)

)
, (t, x) ∈ (0, 1) × R+,

where ϕ1,ϕ2 ∈ L[0, 1] are nonnegative, h1, h2 ∈ C(R+
0 , R+) are nondecreasing, J ∈

C(R+, R+) is nonincreasing (R+
0 = [0, +∞));

(H3)

0 <
∫ τ

0
s(1 – s)α–1ϕ1(s)J

(
η(s – τ )

)
ds < +∞,

and there exists a constant b > 0 such that

∫ 1

τ

s(1 – s)α–1ϕ1(s)J
(

(s – τ )α–1[1 – (s – τ )
]3M1b

4M2

)

ds < +∞,

where M1 and M2 are as in Lemma 2.6.

Remark 3.1 Let A = max–τ≤t≤0 η(t); when s ∈ [0, τ ], we have –τ ≤ s – τ ≤ 0, and then
0 ≤ η(s – τ ) ≤ A.

Let X = {x|x ∈ C[–τ , 1]}. Then (X,‖ · ‖) is a Banach space with the maximum norm

‖x‖[–τ ,1] = max
–τ≤t≤1

∣
∣x(t)

∣
∣, x ∈ X.

Define the cone

K =
{

x ∈ X
∣
∣x(t) = 0, t ∈ [–τ , 0], x(t) ≥ M1

M2
(1 – t)tα–1‖x‖, t ∈ [0, 1]

}

,

and let

η̄(t) =

⎧
⎨

⎩

η(t), t ∈ [–τ , 0],

0, t ∈ (0, 1],
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ω(t) =

⎧
⎨

⎩

0, t ∈ [–τ , 0],

λ
∫ 1

0 G(t, s)ρ(s) ds, t ∈ (0, 1],
(3.1)

x∗(t) = max
{

x(t) – ω(t) + η̄(t), 0
}

=

⎧
⎨

⎩

η(t), t ∈ [–τ , 0],

max{x(t) – ω(t), 0}, t ∈ (0, 1].

The restriction ω|[0,1] of ω on [0, 1] is the solution of the following liner equation:

⎧
⎪⎪⎨

⎪⎪⎩

–Dα
0+x(t) + ax(t) = λρ(t),

x(0) = x′(0) = · · · = x(n–2)(0) = 0,

x(1) = 0.

Then ω(t) = λ
∫ 1

0 G(t, s)ρ(s) ds, and by Remark 2.7 we get

ω(t) ≤ λM2tα–1(1 – t)
∫ 1

0
ρ(s) ds = tα–1(1 – t)c, (3.2)

where c = λM2
∫ 1

0 ρ(s) ds.
It is easy to see that x is a solution of boundary value problem (1.1) if and only if it satisfies

x(t) =

⎧
⎨

⎩

λ
∫ 1

0 G(t, s)f (s, x(s – τ )) ds, t ∈ (0, 1),

η(t), t ∈ [–τ , 0].

Then we consider the following operator:

(Tx)(t) =

⎧
⎨

⎩

λ
∫ 1

0 G(t, s)(f (s, x∗(s – τ )) + ρ(s)) ds, t ∈ (0, 1),

0, t ∈ [–τ , 0].
(3.3)

Let

	ri =
{

x ∈ X : ‖x‖ < ri
}

, i = 1, 2, 3,

where r1, r2, r3 satisfies

r1 ≥ max

{
4cM2

M1
, b

}

, r2 > r1 + 1, r3 > r2 + 1.

Lemma 3.2 Suppose (H1)–(H3) hold. Then the operator T : K ∩ (	̄r3\	r1 ) → K is com-
pletely continuous.

Proof Step 1. We will show that T is well-defined on K ∩ (	̄r3\	r1 ).
For any x ∈ K ∩ (	̄r3\	r1 ), we have r1 ≤ ‖x‖ ≤ r3, and

x(t) ≥ M1

M2
(1 – t)tα–1‖x‖ ≥ M1

M2
(1 – t)tα–1r1,
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and by (3.2) we get

x(t) – ω(t) ≥ M1

M2
(1 – t)tα–1r1 – (1 – t)tα–1c

=
(

M1

M2
r1 – c

)

(1 – t)tα–1

≥ 3M1r1

4M2
(1 – t)tα–1

≥ 3M1b
4M2

(1 – t)tα–1 > 0.

(3.4)

Then by (H2), (H3), (3.4), Remark 3.1, and Lemma 2.6 we obtain

(Tx)(t)

= λ

∫ 1

0
G(t, s)

(
f
(
s, x∗(s – τ )

)
+ ρ(s)

)
ds

= λ

∫ τ

0
G(t, s)

(
f
(
s, x∗(s – τ )

)
+ ρ(s)

)
ds + λ

∫ 1

τ

G(t, s)
(
f
(
s, x∗(s – τ )

)
+ ρ(s)

)
ds

= λ

∫ τ

0
G(t, s)

(
f
(
s,η(s – τ )

)
+ ρ(s)

)
ds

+ λ

∫ 1

τ

G(t, s)
(
f
(
s, x(s – τ ) – ω(s – τ )

)
+ ρ(s)

)
ds

≤ λM2

∫ τ

0
s(1 – s)α–1ϕ1(s)

(
J
(
η(s – τ )

)
+ h1

(
η(s – τ )

))
ds

+ λM2

∫ 1

τ

s(1 – s)α–1ϕ1(s)
(
J
(
x(s – τ ) – ω(s – τ )

)
(3.5)

+ h1
(
x(s – τ ) – ω(s – τ )

))
ds

≤ λM2

∫ τ

0
s(1 – s)α–1ϕ1(s)

(
J
(
η(s – τ )

)
+ h1(A)

)
ds

+ λM2

∫ 1

τ

s(1 – s)α–1ϕ1(s)
(

J
(

(s – τ )α–1[1 – (s – τ )
]3M1r1

4M2

)

+ h1
(
x(s – τ )

)
)

ds

≤ λM2

∫ τ

0
s(1 – s)α–1ϕ1(s)

(
J
(
η(s – τ )

)
+ h1(A)

)
ds

+ λM2

∫ 1

τ

s(1 – s)α–1ϕ1(s)
(

J
(

(s – τ )α–1[1 – (s – τ )
]3M1b

4M2

)

+ h1(r3)
)

ds

< +∞.

Therefore T is well-defined on K ∩ (	̄r3 \ 	r1 ).
Step 2. We will show that T : K ∩ (	̄r3\	r1 ) → K .
For any x ∈ K ∩ (	̄r3\	r1 ) and t ∈ [–τ , 0], by (3.3) we know that Tx(t) = 0.
For any x ∈ K ∩ (	̄r3\	r1 ) and t ∈ [0, 1], we have

(Tx)(t) = λ

∫ 1

0
G(t, s)

(
f
(
s, x∗(s – τ )

)
+ ρ(s)

)
ds
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≤ λM2

∫ 1

0
s(1 – s)α–1(f

(
s, x∗(s – τ )

)
+ ρ(s)

)
ds,

that is,

‖Tx‖
λM2

≤
∫ 1

0
s(1 – s)α–1(f

(
s, x∗(s – τ )

)
+ ρ(s)

)
ds,

(Tx)(t) = λ

∫ 1

0
G(t, s)

(
f
(
s, x∗(s – τ )

)
+ ρ(s)

)
ds

≥ λM1tα–1(1 – t)
∫ 1

0
s(1 – s)α–1(f

(
s, x∗(s – τ )

)
+ ρ(s)

)
ds

≥ λM1tα–1(1 – t)‖Tx‖
λM2

=
M1

M2
tα–1(1 – t)‖Tx‖.

Hence T : K ∩ (	̄r3\	r1 ) → K .
Step 3. Now let us prove that T : K ∩ (	̄r3\	r1 ) → K is a continuous operator.
For all xn, x ∈ K ∩ (	̄r3\	r1 ), n = 1, 2, . . . with ‖xn – x‖[–τ ,1] → 0 as n → +∞, we have

r1 ≤ ‖xn‖ ≤ r3, r1 ≤ ‖x‖ ≤ r3,

and for any t ∈ [0, 1],

xn(t) – ω(t) ≥ 3M1r1

4M2
(1 – t)tα–1 ≥ 3M1b

4M2
(1 – t)tα–1 ≥ 0,

x(t) – ω(t) ≥ 3M1r1

4M2
(1 – t)tα–1 ≥ 3M1b

4M2
(1 – t)tα–1 ≥ 0.

By (H2) we get that

f
(
s, xn(s – τ ) – ω(s – τ )

)
+ ρ(s)

≤ ϕ1(s)
(
J
(
xn(s – τ ) – ω(s – τ )

)
+ h1

(
xn(s – τ ) – ω(s – τ )

))

≤ ϕ1(s)
(

J
(

(s – τ )α–1[1 – (s – τ )
]3M1r1

4M2

)

+ h1
(
xn(s – τ )

)
)

≤ ϕ1(s)
(

J
(

(s – τ )α–1[1 – (s – τ )
]3M1b

4M2

)

+ h1(r3)
)

ds

and, similarly,

f
(
s, x(s – τ ) – ω(s – τ )

)
+ ρ(s) ≤ ϕ1(s)

(

J
(

(s – τ )α–1[1 – (s – τ )
]3M1b

4M2

)

+ h1(r3)
)

ds.

Then

∣
∣f

(
s, xn(s – τ ) – ω(s – τ )

)
+ ρ(s) –

(
f
(
s, x(s – τ ) – ω(s – τ )

)
+ ρ(s)

)∣
∣

≤ 2ϕ1(s)
(

J
(

(s – τ )α–1[1 – (s – τ )
]3M1b

4M2

)

+ h1(r3)
)

ds,
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and

∣
∣(Txn)(t) – (Tx)(t)

∣
∣

=
∣
∣
∣
∣λ

∫ 1

0
G(t, s)

(
f
(
s, x∗

n(s – τ )
)

+ ρ(s)
)

ds – λ

∫ 1

0
G(t, s)

(
f
(
s, x∗(s – τ )

)
+ ρ(s)

)
ds

∣
∣
∣
∣

=
∣
∣
∣
∣λ

∫ 1

τ

G(t, s)
(
f
(
s, xn(s – τ ) – ω(s – τ )

)
+ ρ(s)

)
ds

– λ

∫ 1

τ

G(t, s)
(
f
(
s, x(s – τ ) – ω(s – τ )

)
+ ρ(s)

)
ds

∣
∣
∣
∣

≤ λ

∫ 1

τ

G(t, s)
∣
∣
(
f
(
s, xn(s – τ ) – ω(s – τ )

)
+ ρ(s)

)
ds

–
(
f
(
s, x(s – τ ) – ω(s – τ )

)
+ ρ(s)

)
ds

∣
∣

≤ 2λM2

∫ 1

τ

s(1 – s)α–1ϕ1(s)
(

J
(

(s – τ )α–1[1 – (s – τ )
]3M1b

4M2

)

+ h1(r3)
)

ds.

By the Lebesgue dominated convergence theorem it follows that

‖Txn – Tx‖
= max

t∈[0,1]

∣
∣(Txn)(t) – (Tx)(t)

∣
∣

= max
t∈[0,1]

∣
∣
∣
∣λ

∫ 1

τ

G(t, s)
(
f
(
s, xn(s – τ ) – ω(s – τ )

)
+ ρ(s)

)
ds

– λ

∫ 1

τ

G(t, s)
(
f
(
s, x(s – τ ) – ω(s – τ )

)
+ ρ(s)

)
ds

∣
∣
∣
∣

≤ max
t∈[0,1]

λ

∫ 1

τ

G(t, s)
∣
∣
(
f
(
s, xn(s – τ ) – ω(s – τ )

)
+ ρ(s)

)

–
(
f
(
s, x(s – τ ) – ω(s – τ )

)
+ ρ(s)

)∣
∣ds

≤ λM2

∫ 1

t
s(1 – s)α–1∣∣

(
f
(
s, xn(s – τ ) – ω(s – τ )

)
+ ρ(s)

)

–
(
f
(
s, x(s – τ ) – ω(s – τ )

)
+ ρ(s)

)∣
∣ds → 0,

which implies that ‖Txn – Tx‖[–τ ,1] → 0 as n → +∞. Hence T is a continuous operator.
Step 4. Finally, we will prove that T is a compact operator.
Let B ⊂ K ∩ (	̄r3\	r1 ) be any nonempty bounded set.
Firstly, we prove that T(B) is uniformly bounded.
For any x ∈ B, by (3.5) we can easily get that

(Tx)(t) ≤ λM2

∫ τ

0
s(1 – s)α–1ϕ1(s)

(
J
(
η(s – τ )

)
+ h1(A)

)
ds

+ λM2

∫ 1

τ

s(1 – s)α–1ϕ1(s)
(

J
(

(s – τ )α–1[1 – (s – τ )
]3M1b

4M2

)

+ h1(r3)
)

ds

< + ∞.

Therefore T(B) is uniformly bounded.
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Secondly, we prove that T(B) is equicontinuous.
Since G(t, s) is uniformly continuous for (t, s) ∈ [0, 1] × [0, 1], it follows that for any ε > 0,

there exists δ0 > 0 such that for t1, t2, s ∈ [0, 1], if |t1 – t2| < δ0, then

∣
∣G(t1, s) – G(t2, s)

∣
∣

< ε

(

λ

∫ τ

0
ϕ1(s)

(
J
(
η(s – τ )

)
+ h1(A)

)
ds

+ λ

∫ 1

τ

ϕ1(s)
(

J
(

(s – τ )α–1[1 – (s – τ )
]3M1b

4M2

)

+ h1(r3)
)

ds
)–1

.

Therefore by (H2) and Remark 3.1 we get that for any x ∈ B,

∣
∣(Tx)(t1) – (Tx)(t2)

∣
∣

≤
∣
∣
∣
∣λ

∫ 1

0

(
G(t1, s) – G(t2, s)

)(
f
(
s, x∗(s – τ )

)
+ ρ(s)

)
ds

∣
∣
∣
∣

≤ λ

∫ 1

0

∣
∣G(t1, s) – G(t2, s)

∣
∣
(
f
(
s, x∗(s – τ )

)
+ ρ(s)

)
ds

≤ λ

∫ τ

0

∣
∣G(t1, s) – G(t2, s)

∣
∣ϕ1(s)

(
J
(
η(s – τ )

)
+ h1(A)

)
ds

+ λ

∫ 1

τ

∣
∣G(t1, s) – G(t2, s)

∣
∣ϕ1(s)

(

J
(

(s – τ )α–1[1 – (s – τ )
]3M1b

4M2

)

+ h1(r3)
)

ds

< ε.

Thus T(B) is equicontinuous.
By the Ascoli–Arzelà theorem, T(B) is a sequentially compact set, and thus T is a com-

pletely continuous operator. This completes the proof. �

It is clear that if x̃ is a fixed point of operator T in (3.3), then by Lemma 2.4 we obtain
that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–Dα
0+ x̃(t) + ax̃(t) = λ(f (t, x̃∗(t – τ )) + ρ(t)), t ∈ (0, 1) \ {τ },

x̃(t) = 0, t ∈ [–τ , 0],

x̃(0) = x̃′(0) = x̃′′(0) = · · · = x̃(n–2)(0) = 0,

x̃(1) = 0.

(3.6)

If

x̃(t – τ ) – ω(t – τ ) + η̄(t – τ ) ≥ 0, t ∈ [0, 1], (3.7)

then

x̃∗(t – τ ) = x̃(t – τ ) – ω(t – τ ) + η̄(t – τ ).

Let

x(t) = x̃(t) – ω(t) + η̄(t). (3.8)
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Lemma 3.3 If x̃(t) = x(t) + ω(t) – η̄(t) is a positive solution of boundary value problem
(3.6) and the inequality x̃(t) – ω(t) + η̄(t) ≥ 0 holds for t ∈ (0, 1) \ {τ }, then x(t) is a positive
solution of boundary value problem (1.1).

Proof If x̃(t) is a positive solution of boundary value problem (3.6) and x̃(t)–ω(t)+ η̄(t) ≥ 0
for t ∈ (0, 1) \ {τ }, then for t ∈ [–τ , 0], we have

x(t) = x̃(t) – ω(t) + η̄(t)

= 0 + η(t) – 0 = η(t).

For t ∈ (0, 1) \ {τ }, by (3.6) and (3.8) we have

–Dα
0+ x(t) + ax(t) = –Dα

0+
(
x̃(t) – ω(t) + η̄(t)

)
+ a

(
x̃(t) – ω(t) + η̄(t)

)

= –Dα
0+

(
x̃(t) – ω(t) + 0

)
+ a

(
x̃(t) – ω(t) + 0

)

= –Dα
0+ x̃(t) + ax̃(t) –

(
–Dα

0+ω(t) + aω(t)
)

= λf
(
t, x̃∗(t – τ ) + ρ(t)

)
– λρ(t)

= λf
(
t, x̃∗(t – τ )

)

= λf
(
t, x(t – τ )

)
.

It is clear that x(t) is the solution of problem (1.1). This completes the proof. �

To prove the main results, we give the following two conditions.
(H4) There exists [d, e] ⊂ (τ , 1) such that

∫ e
d s(1 – s)α–1ϕ2(s) ds > 0.

(H5)

lim
x→+∞

h2(x)
x

= +∞.

In view of (H5), we know that there exists M > 0 such that h2(x) ≥ x for any x > M.
For convenience, we introduce the following notations:

ζ1 = min
t∈[d,e]

(t – τ )α–1(1 – t + τ ),

ζ2 = min
t∈[d,e]

tα–1(1 – t),

ξr = M2

∫ τ

0
s(1 – s)α–1ϕ1(s)

(
J
(
η(s – τ )

)
+ h1(A)

)
ds

+ M2

∫ 1

τ

s(1 – s)α–1ϕ1(s)
(

J
(

(s – τ )α–1[1 – (s – τ )
]3M1b

4M2

)

+ h1(r)
)

ds,

where r ∈ (0, +∞), and M1 and M2 are as in Lemma 2.6.
In the following proofs, we always choose r2 > max{M + 1, r1 + 1}.
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Theorem 3.4 Let (H1)–(H5) hold. Then the boundary value problem (1.1) has at least two
positive solutions, provided that

λ ∈
(

4M2

3M2
1ζ1ζ2

∫ e
d s(1 – s)α–1ϕ2(s) ds

,λ∗
)

,

where λ∗ = min{ξ–1
r1 r1, ξ–1

r3 r3}.

Proof For any x ∈ ∂	r1 and t ∈ (0, 1), we have ‖x‖ = r1 and

x(t) – ω(t) ≥ M1

M2
(1 – t)tα–1r1 – (1 – t)tα–1c

≥ 3M1r1

4M2
(1 – t)tα–1

≥ 3M1b
4M2

(1 – t)tα–1 > 0.

Then it follows from (3.5) that

(Tx)(t)

≤ λM2

∫ τ

0
s(1 – s)α–1ϕ1(s)

(
J
(
η(s – τ )

)
+ h1

(
η(s – τ )

))
ds

+ λM2

∫ 1

τ

s(1 – s)α–1ϕ1(s)
(
J
(
x(s – τ ) – ω(s – τ )

)

+ h1
(
x(s – τ ) – ω(s – τ )

))
ds

≤ λM2

∫ τ

0
s(1 – s)α–1ϕ1(s)

(
J
(
η(s – τ )

)
+ h1(A)

)
ds

+ λM2

∫ 1

τ

s(1 – s)α–1ϕ1(s)
(

J
(

(s – τ )α–1[1 – (s – τ )
]3M1r1

4M2

)

+ h1
(
x(s – τ )

)
)

ds

≤ λ∗M2

∫ τ

0
s(1 – s)α–1ϕ1(s)

(
J
(
η(s – τ )

)
+ h1(A)

)
ds

+ λ∗M2

∫ 1

τ

s(1 – s)α–1ϕ1(s)
(

J
(

(s – τ )α–1[1 – (s – τ )
]3M1b

4M2

)

+ h1(r1)
)

ds

≤ λ∗ξr1

< r1.

Therefore ‖Tx‖ < ‖x‖.
On the other hand, for any x ∈ ∂	r2 and t ∈ (0, 1), we have ‖x‖ = r2 and

x(t) – ω(t) ≥ M1

M2
(1 – t)tα–1r2 – (1 – t)tα–1c

≥ 3M1r2

4M2
(1 – t)tα–1 > 0.
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From (H2), (H4), and (H5) we obtain that

(Tx)(t)

≥ λ

∫ e

d
G(t, s)

(
f
(
s, x(s – τ ) – ω(s – τ )

)
+ ρ(s)

)
ds

≥ λ

∫ e

d
M1s(1 – s)α–1(1 – t)tα–1ϕ2(s)h2

(
x(s – τ ) – ω(s – τ )

)
ds

≥ λM1(1 – t)tα–1
∫ e

d
s(1 – s)α–1ϕ2(s)h2

(
3M1r2

4M2
(s – τ )α–1[1 – (s – τ )

]
)

ds

≥ λM1ζ2

∫ e

d
s(1 – s)α–1ϕ2(s)h2

(
3M1r2

4M2
ζ1

)

ds

≥ λM1ζ2
3M1r2

4M2
ζ1

∫ e

d
s(1 – s)α–1ϕ2(s) ds

=
3λM2

1ζ1ζ2r2

4M2

∫ e

d
s(1 – s)α–1ϕ2(s) ds

> r2.

Therefore ‖Tx‖ > ‖x‖.
Then for any x ∈ ∂	r3 and t ∈ (0, 1), we have ‖x‖ = r3 and

xn(t) – ω(t) ≥ M1

M2
tα–1(1 – t)r3 – tα–1(1 – t)c

≥ 3M1b
4M2

tα–1(1 – t) > 0.

Therefore

(Tx)(t)

= λ

∫ 1

0
G(t, s)

(
f
(
s, x∗(s – τ )

)
+ ρ(s)

)
ds

= λ

∫ τ

0
G(t, s)

(
f
(
s,η(s – τ )

)
+ ρ(s)

)
ds

+ λ

∫ 1

τ

G(t, s)
(
f
(
s, x(s – τ ) – ω(s – τ )

)
+ ρ(s)

)
ds

≤ λM2

∫ τ

0
s(1 – s)α–1ϕ1(s)

(
J
(
η(s – τ )

)
+ h1

(
η(s – τ )

))
ds

+ λM2

∫ 1

τ

s(1 – s)α–1ϕ1(s)
(
J
(
x(s – τ ) – ω(s – τ )

)

+ h1
(
x(s – τ ) – ω(s – τ )

))
ds

≤ λ∗M2

∫ τ

0
s(1 – s)α–1ϕ1(s)

(
J
(
η(s – τ )

)
+ h1(A)

)
ds

+ λ∗M2

∫ 1

τ

s(1 – s)α–1ϕ1(s)
(

J
(

(s – τ )α–1[1 – (s – τ )
]3M1b

4M2

)

+ h1(r3)
)

ds

≤ λ∗ξr3
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< r3.

Therefore ‖Tx‖ < ‖x‖.
Then it follows from Lemma 2.8 that T has at least two fixed points x̃1 ∈ K ∩ (	r2\	r1 )

and x̃2 ∈ K ∩ (	r3\	r2 ), that is, r1 < ‖x̃1‖ < r2 < ‖x̃2‖ < r3. Then we have

x̃1(t) – ω(t) + η̄(t) ≥ M1

M2
(1 – t)tα–1r1 – (1 – t)tα–1c + 0

≥ 3M1b
4M2

(1 – t)tα–1 > 0,

x̃2(t) – ω(t) + η̄(t) ≥ M1

M2
(1 – t)tα–1r2 – (1 – t)tα–1c + 0

≥ 3M1b
4M2

(1 – t)tα–1 > 0.

By Lemma 3.3 we know that x1(t) = x̃1(t) – ω(t) + η̄(t) and x2(t) = x̃2(t) – ω(t) + η̄(t) are two
positive solutions of equation (1.1). The proof is completed. �

Theorem 3.5 Let (H1)–(H4) hold. Then the boundary value problem (1.1) has at least one
nontrivial solution when λ < ξ–1

r r, where r > max{ 4cM2
M1

, b}.

Proof It is easy to show that exists r that satisfies

r > λξr . (3.9)

Then we can choose n0 ∈ {1, 2, . . . } such that

r > λξr +
1
n0

.

For n ≥ n0, we consider the family of integral equations

(Tnx)(t) =

⎧
⎨

⎩

λ
∫ 1

0 G(t, s)(fn(s, x∗(s – τ )) + ρ(s)) ds + 1
n , t ∈ (0, 1),

1
n , t ∈ [–τ , 0],

(3.10)

where

fn
(
s, x∗(s – τ )

)
=

⎧
⎨

⎩

f (s, x∗(s – τ )), x∗(s – τ ) ≥ 1
n ,

f (s, 1
n ), x∗(s – τ ) ≤ 1

n .

Let 	 = 	r = {x ∈ K ,‖x‖ < r}. Then by the extension theorem of a completely contin-
uous operator and the proof of Lemma 3.2 we get that Tn : K ∩ 	̄ → K is a completely
continuous operator.

We consider the following operator equation:

x = κTnx + (1 – κ)
1
n

,
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that is,

x(t) = κλ

∫ 1

0
G(t, s)

(
fn

(
s, x∗(s – τ )

)
+ ρ(s)

)
ds +

1
n

, (3.11)

where κ ∈ (0, 1).
Then we will show that if x(t) is a solution of (3.11) for κ ∈ (0, 1), then it satisfies ‖x‖ �= r.
Contrarily, if there exists κ ∈ (0, 1) such that ‖x‖ = r, then from (3.1) we have

x∗(s – τ ) = η(s – τ ), s – τ ∈ [–τ , 0],

x∗(s – τ ) = max
{

x(s – τ ) – ω(s – τ ), 0
}

, s – τ ∈ [0, 1],

and

‖x‖ ≤ κλM2

∫ 1

0
s(1 – s)α–1(fn

(
s, x∗(s – τ )

)
+ ρ(s)

)
ds +

1
n

,

x(t) ≥ κλM1tα–1(1 – t)
∫ 1

0
s(1 – s)α–1(fn

(
s, x∗(s – τ )

)
+ ρ(s)

)
ds +

1
n

≥ κλM1tα–1(1 – t)
‖x‖ – 1

n
κλM2

+
1
n

=
M1

M2
tα–1(1 – t)

(

‖x‖ –
1
n

)

+
1
n

=
M1

M2
tα–1(1 – t)

(

r –
1
n

)

+
1
n

.

(3.12)

By (3.2) we get

x(t) – ω(t) ≥ M1

M2
tα–1(1 – t)

(

r –
1
n

)

+
1
n

– tα–1(1 – t)c

= tα–1(1 – t)
(

M1

M2
r –

M1

M2

1
n

– c
)

+
1
n

≥ tα–1(1 – t)
(

3M1r
4M2

–
M1

M2

1
n

)

+
1
n

=
M1

M2
tα–1(1 – t)

(
3r
4

–
1
n

)

+
1
n

.

Therefore x∗(s – τ ) ≥ 1
n when n is sufficiently large.

Then by (3.12) we have

x(t) ≥ M1

M2
tα–1(1 – t)r +

[

1 –
M1

M2
tα–1(1 – t)

]
1
n

≥ M1

M2
tα–1(1 – t)r,

and, similarly to (3.4), we have

x(t) – ω(t) ≥ 3M1b
4M2

(1 – t)tα–1 > 0.
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Then

x(t)

= κλ

∫ 1

0
G(t, s)

(
fn

(
s, x∗(s – τ )

)
+ ρ(s)

)
ds +

1
n

≤ λM2

∫ 1

0
s(1 – s)α–1(f

(
s, x∗(s – τ )

)
+ ρ(s)

)
ds +

1
n

≤ λM2

∫ τ

0
s(1 – s)α–1(f

(
s,η(s – τ )

)
+ ρ(s)

)
ds

+ λM2

∫ 1

τ

s(1 – s)α–1(f
(
s, x(s – τ ) – ω(s – τ )

)
+ ρ(s)

)
ds +

1
n

≤ λM2

∫ τ

0
s(1 – s)α–1ϕ1(s)

(
J
(
η(s – τ )

)
+ h1(A)

)
ds

+ λM2

∫ 1

τ

s(1 – s)α–1ϕ1(s)
(

J
(

(s – τ )α–1[1 – (s – τ )
]3M1b

4M2

)

+ h1(r)
)

ds +
1
n

≤ λM2

∫ τ

0
s(1 – s)α–1ϕ1(s)

(
J
(
η(s – τ )

)
+ h1(A)

)
ds

+ λM2

∫ 1

τ

s(1 – s)α–1ϕ1(s)
(

J
(

(s – τ )α–1[1 – (s – τ )
]3M1b

4M2

)

+ h1(r)
)

ds +
1
n0

= λξr +
1
n0

< r.

This is a contradiction to ‖x‖ = r, and then equation x = κTnx + (1 – κ) 1
n has no solution

on x ∈ ∂(K ∩ 	).
Therefore by the Lemma 2.9 we get that Tn have fixed points xn in K ∩ 	̄, that is,

xn(t) = λ

∫ 1

0
G(t, s)

(
fn

(
s, x∗

n(s – τ )
)

+ ρ(s)
)

ds +
1
n

, t ∈ (0, 1),

and ‖xn‖ ≤ r. Thus {xn} is a uniformly bounded set on (0, 1).
By (H2), (H4), and Lemma 2.6 we have

xn(t) ≥ λ

∫ e

d
G(t, s)

(
fn

(
s, x∗

n(s – τ )
)

+ ρ(s)
)

ds +
1
n

≥ λM1tα–1(1 – t)
∫ e

d
s(1 – s)α–1(f

(
s, x∗

n(s – τ )
)

+ ρ(s)
)

ds +
1
n

≥ λM1tα–1(1 – t)
∫ e

d
s(1 – s)α–1ϕ2(s)h2

(
xn(s – τ ) – ω(s – τ )

)
ds +

1
n

≥ λM1tα–1(1 – t)
∫ e

d
s(1 – s)α–1ϕ2(s)h2(0) ds

≥ λM1ζ2h2(0)
∫ e

d
s(1 – s)α–1ϕ2(s) ds

> 0,

and so xn(t) has a lower bound.
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Next, we will prove {xn} is an equicontinuous set on (0, 1).
Since G is uniformly continuous for t ∈ [0, 1], for any ε > 0, there exists δ > 0 such that

for t1, t2, s ∈ [0, 1], if |t1 – t2| < δ, then

∣
∣G(t1, s) – G(t2, s)

∣
∣ <

εM2

λξr
,

and

∣
∣xn(t1) – xn(t2)

∣
∣

≤ λ

∫ 1

0

∣
∣G(t1, s) – G(t2, s)

∣
∣
(
fn

(
s, x∗(s – τ )

)
+ ρ(s)

)
ds

≤ λ

∫ τ

0

∣
∣G(t1, s) – G(t2, s)

∣
∣ϕ1(s)

(
J
(
η(s – τ )

)
+ h1(A)

)
ds

+ λ

∫ 1

τ

∣
∣G(t1, s) – G(t2, s)

∣
∣ϕ1(s)

(

J
(

(s – τ )α–1[1 – (s – τ )
]3M1b

4M2

)

+ h1(r)
)

ds

= λ
εM2

λξr

ξr

M2

= ε.

Therefore {xn} is an equicontinuous set on (0, 1), and then by the Arzelà–Ascoli theorem
we get that {xn} is a sequentially compact set and has a subsequence {xnk } (nk ≥ n) uni-
formly convergent to x̃ ∈ K ∩ 	̄, where

xnk (t) = λ

∫ 1

0
G(t, s)

(
fn

(
s, x∗

n(s – τ )
)

+ ρ(s)
)

ds +
1
nk

.

By the Lebesgue dominated convergence theorem we get

x̃(t) = λ

∫ 1

0
G(t, s)

(
f
(
s, x∗(s – τ )

)
+ ρ(s)

)
ds.

Therefore x̃ is a fixed point of T , and then x(t) = x̃(t) – ω(t) + η̄(t) is a nontrivial solution
of (1.1). The proof is completed. �

Remark 3.6 Inequality (3.9) can be derived from the following condition:
(H6)

lim
x→+∞

h1(x)
x

<
1

λM2
∫ 1
τ

s(1 – s)α–1ϕ1(s) ds
.

Corollary 3.7 Let (H1)–(H6) hold. Then the boundary value problem (1.1) has at least
three nontrivial solutions.

Proof Choose r = r1 in Theorem 3.5. Then it follows from Theorems 3.4 and 3.5 that the
boundary value problem (1.1) has at least three nontrivial solutions. The proof is com-
pleted. �
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