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Abstract
In this work, we study the existence of infinitely many solutions to the following
quasilinear Schrödinger equations with a parameter α and a concave-convex
nonlinearity:

–�pu + V(x)|u|p–2u –�p(|u|2α)|u|2α–2u = λh1(x)|u|m–2u + h2(x)|u|q–2u,
x ∈R

N , (0.1)

where �pu = div(|∇u|p–2∇u), 1 < p < N, λ ≥ 0, and
1 <m < p < 2αp < q < 2αp∗ = 2αpN

N–p . The functions V(x), h1(x), and h2(x) satisfy some
suitable conditions. Using variational methods and some special techniques, we
prove that there exists λ0 > 0 such that Eq. (0.1) admits infinitely many high energy
solutions inW1,p(RN) provided that λ ∈ [0,λ0].

Keywords: Quasilinear Schrödinger equations; Dual approach; High energy solution

1 Introduction and main result
In this paper, we are interested in the existence of infinitely many solutions to a class of
quasilinear Schrödinger equations with a parameter α and a concave-convex nonlinearity

–�pu + V (x)|u|p–2u – �p
(|u|2α

)|u|2α–2u = λh1(x)|u|m–2u + h2(x)|u|q–2u,

x ∈R
N , (1.1)

where �pu = div(|∇u|p–2∇u)(1 < p < N) and α > 1
2 is a parameter.

For the case p = 2, α = 1, solutions of (1.1) are standing waves of the following
Schrödinger equation:

izt = –�z + W (x)z – h1
(|z|2)z – �g

(|z|2)g ′(|z|2)z, x ∈R
N , (1.2)

where z : R×R
N →C and W : RN →R is a given potential, h1, g : R+ →R are real func-

tions.
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It is well known that the standing wave solutions of the form z(t, x) = exp(–iωt)u(x) sat-
isfy (1.2) with g(s) = s if and only if the function u(x) solves the equation of elliptic type

–�u + V (x)u – �
(
u2)u = h(u), x ∈R

N , (1.3)

where V (x) = W (x) – ω, ω ∈R and h(u) ≡ h1(|u|2)u.
Quasilinear Schrödinger equations of form (1.2) appear naturally in mathematical

physics and have been derived as models of several physical phenomena corresponding
to various types of nonlinear term g . The case g(s) = s was used for the superfluid film
equation in plasma physics by Kurihura in [11] (see also [12]). In the case g(s) = (1 + s)1/2,
Eq. (1.2) models the self-channeling of a high power ultra short laser in matter, see [7].
Equation (1.2) also appears in plasma physics and fluid mechanics [20], in mechanics [9],
and in condensed matter theory [18]. More information on this subject can be found in
[15] and the references therein.

For p = 2, several methods can be used to solve (1.1), e.g., the existence of positive
ground state solution was proved in [17, 19] by using a constrained minimization argu-
ment; Eq. (1.1) was transformed to a semilinear one in [4–6, 10, 15] by a change of variables
(dual approach); Nehari method was used to get the existence results of ground state solu-
tions in [16, 22]. Especially, in [13, 15–17, 25], the existence of the ground state solutions
for the following problem with a parameter α(> 1

2 ):

–�u + V (x)u – �
(|u|2α

)|u|2α–2u = g(x, u), x ∈R
N (1.4)

was studied with subcritical nonlinearities g(x, u).
For (1.4), we find in the literature several types of potentials V (x) to obtain a solution.

Wu in [25] studied Eq. (1.4) considering the subcritical case and a potential V (x), which
is unbounded in R

N and satisfies the following assumption:
(A1) The potential V (x) ∈ C(RN ) and 0 < V0 := infx∈RN V (x), and for each M > 0,

meas({x ∈R
N : V (x) ≤ M}) < ∞.

In [15–17], Liu et al. proved the existence of a positive solution to problem (1.4) with
V (x) ∈ C(RN ), infx∈RN V (x) > 0 and the following conditions:

(A2) lim|x|→∞ V (x) = +∞;
(A3) 0 < V0 := infx∈RN V (x) < lim|x|→∞ V (x) = V∞ = ‖V‖L∞(RN ) < ∞;
(A4) V is radially symmetric, i.e., V (x) = V (|x|);
(A5) V is periodic in each variable of x1, . . . , xN .
Similar assumptions also appeared in Severo [24], Ruiz and Siciliano [22], Fang and

Szulkin [8]. By the variational principle in a suitable Orlicz space, do Ó and Severo in
[3] established the existence of positive standing wave solutions for (1.4) with a concave-
convex nonlinearity and the following condition:

(A6) 0 < V0 ≤ V (x) in R
N and V –1(x) ∈ L1(RN ).

Recently, Aires and Souto [1] considered (1.4) with α = 1 and the vanishing potential
V (x) at infinity.

Clearly, it is well known that assumption (A1) or (A2) guarantees that the embedding
W 1,2(RN ) ↪→ Ls(RN ) is compact for each 2 ≤ s < 2N

N–2 . Similarly, the application of (A3) in
[2, 15, 24] shows that the solution is nontrivial.

It is worth pointing out that the aforementioned authors always assumed that the poten-
tial V (x) has some special characteristic. As far as we know, there are few papers that deal
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with a general bounded potential case for (1.1). Motivated by papers [1, 25], in the present
paper we consider problem (1.1) with positive and more general bounded potential V (x)
by a dual approach and establish the existence of infinitely many high energy solutions
under a concave-convex nonlinearity and different type weight functions h1(x), h2(x). It
is easy to verify that for a general continuous and bounded function V (x), assumptions
(A1) – (A6) fail to hold. We shall use mountain pass theorem under the Cerami condition
to study Eq. (1.1).

Throughout this paper, we always assume the potential V (x) ∈ C(RN ) and the weight
function h2(x) ≥ 0, �≡ 0 in R

N . Furthermore, we let C, C1, C2, . . . be positive generic con-
stants that can change from line to line.

The main result in this paper is as follows.

Theorem 1.1 Assume:
(H0) 1 < p < N , 1 < m < p < 2αp < q < 2αp∗ = 2αpN

N–p ;
(H1) There exist the constants V0, V1 > 0 such that V0 ≤ V (x) ≤ V1 for all x ∈R

N ;
(H2) h1 ∈ Lσ (RN ) with σ = 2αp

2αp–m ;
In addition, suppose that one of the following two hypotheses holds:

(H3) h2 ∈ Lγ (RN ) ∩ Cloc(RN \ {0}) with γ = 2αp∗
2αp∗–q ;

(H4) h2(x) ∈ Lγ

loc(RN ) ∩ Cloc(RN \ {0}) with γ = 2αp∗
2αp∗–q , and h2(x) → 0 as |x| → ∞;

Then there exists a constant λ0 > 0 such that for all λ ∈ [0,λ0], Eq. (1.1) admits infinitely
many high energy solutions in un ∈ W 1,p(RN ) such that J(vn) → ∞ as n → ∞, where vn =
f –1(un) and f (t) is defined by (2.5) later.

Remark 1.2 Assumptions (H3) – (H4) are independent. For example, let 0 < τ < N/γ and
k > N , then the unbounded function

h2(x) =

⎧
⎨

⎩
|x|–τ , 0 < |x| < 1,

exp(–|x|k| sin |πx||1/γ ), |x| ≥ 1,
(1.5)

satisfies (H3), but h2(x) �→ 0 as |x| → ∞. On the other hand, the unbounded function
h2(x) = |x|–τ , x ∈R

N \ {0} satisfies (H4), but fails to verify (H3).

Remark 1.3 When p = 2, α = 1, λ = 0, and h2 = μ > 0, problem (1.1) becomes

–�u + V (x)u – �
(|u|2)u = μ|u|q–2u, x ∈R

N , (1.6)

with 4 < q < 22∗. The authors [15] proved that for any μ > 0, Eq. (1.6) has a positive solu-
tion under assumptions (A2) – (A5). Fang and Szulkin [8] also established the existence of
infinitely many solutions to (1.6) provided that V (x) satisfies (A5). Clearly, if V (x) is con-
tinuous in R

N and verifies (A5), then V (x) satisfies (H1). Theorem 1.1 shows that there are
infinitely many solutions to (1.6) if (H1) is true.

This paper is organized as follows. In Sect. 2, with a convenient change of variable, we
set up the variational framework for (1.1). In Sect. 3, we verify that the energy functional
associated with (1.1) satisfies the Cerami condition. In Sect. 4, the geometric conditions
of the mountain pass theorem are verified, and the proof of Theorem 1.1 is given.
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2 Variational setting of the equation
Let E = W 1,p(RN ) be the Sobolev spaces with the norm

‖u‖E =
(∫

RN

(|∇u|p + V (x)|u|p)dx
)1/p

. (2.1)

By hypothesis (H1), it is equivalent to the standard norm in E. It is well known that there
is a constant S > 0 such that

S
(∫

RN
|v|p∗

dx
)p/p∗

≤
∫

RN
|∇v|p dx, ∀v ∈ C∞

0
(
R

N)
. (2.2)

From the approximation argument, we see that (2.2) holds on E.
We observe that the natural energy functional associated with Eq. (1.1) is given by

I(u) =
1
p

∫

RN

(
1 + (2α)p–1|u|(2α–1)p)|∇u|p dx +

1
p

∫

RN
V (x)|u|p dx

–
∫

RN
G(x, u) dx, (2.3)

where

G(x, u) =
∫ u

0
g(x, t) dt, g(x, t) = λh1(x)|t|m–2t + h2(x)|t|q–2t, ∀t ∈R. (2.4)

It should be pointed out that the functional I is not well defined in general in E. To
overcome this difficulty, we employ an argument developed by Colin and Jeanjean [6] for
the case p = 2 and Severo [24] for 1 < p ≤ N . We make the change of variables u = f (v) or
v = f –1(u), where f is defined by

f ′(t) =
1

h(t)
, h(t) =

(
1 + (2α)p–1∣∣f (t)

∣
∣p(2α–1))1/p, t ≥ 0, f (0) = 0 (2.5)

and by f (t) = –f (–t) on (–∞, 0]. Then we have the following.

Lemma 2.1 The function f (t) satisfies the following properties:
(f1) f is uniquely defined, odd, increasing, and invertible in R;
(f2) 0 < f ′(t) ≤ 1, ∀t ∈R;
(f3) |f (t)| ≤ |t|, ∀t ∈R;
(f4) f (t)

t → 1 as t → 0;
(f5) |f (t)| ≤ (2α)1/2αp|t|1/2α , ∀t ∈ R;
(f6) 1

2 f (t) ≤ αtf ′(t) ≤ αf (t), ∀t ∈ R
+ = [0,∞) and αf (t) ≤ αtf ′(t) ≤ 1

2 f (t), ∀t ∈ R
– =

(–∞, 0];
(f7) There exists a ∈ (0, (2α)1/2αp] such that f (t)

t1/2α → a as t → +∞;
(f8) There exists b0 > 0 such that

∣∣f (t)
∣∣ ≥

⎧
⎨

⎩
b0|t| if |t| ≤ 1,

b0|t|1/2α if |t| ≥ 1;
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(f9) For each τ > 0, there exist C(τ ) = n if τ = n and C(τ ) = n + 1 if τ ∈ (n, n + 1), n ∈ N

such that

∣∣f (τ t)
∣∣ ≤ C(τ )

∣∣f (t)
∣∣, ∀t ∈R. (2.6)

Proof The proof of properties (f1) – (f8) can be found in [24](for the case 1 < p ≤ N and
α = 1) and in [25] (for the case p = 2 and 1

2 < α ≤ 1). For the case 1 < p < N and α > 1
2 , the

proof of (f1) – (f8) is similar and omitted. Here we prove (f9). Note that

f (t) =
∫ t

0

ds
h(s)

, t ≥ 0. (2.7)

Then

f (2t) =
∫ 2t

0

ds
h(s)

=
∫ t

0

ds
h(s)

+
∫ 2t

t

ds
h(s)

. (2.8)

For the second integral in (2.8), we take s = t + ξ and h(s) ≥ (1 + (2α)p–1|f (ξ )|p(2α–1))1/p.
Thus,

f (2t) ≤
∫ t

0

ds
h(s)

+
∫ t

0

dξ

h(ξ )
= 2f (t), t ≥ 0. (2.9)

Similarly, we have f (nt) ≤ nf (t) for t ≥ 0 and n ∈ N. Since f (t) is odd and increasing in R,
we obtain (2.6). �

So, after the change of variables, we can write I(u) as

J(v) ≡ I
(
f (v)

)
=

1
p

∫

RN
|∇v|p dx +

1
p

∫

RN
V (x)

∣∣f (v)
∣∣p dx –

∫

RN
G

(
x, f (v)

)
dx, (2.10)

which is well defined on E under assumptions (H0) – (H4).
As in [24], we observe that if v ∈ W 1,p(RN ) ∩ L∞

loc(RN ) is a critical point of the functional
J , that is, J ′(v)ϕ = 0 for all ϕ ∈ W 1,p(RN ), where

J ′(v)ϕ =
∫

RN
|∇v|p–2∇v∇ϕ dx +

∫

RN
V (x)

∣∣f (v)
∣∣p–2f (v)f ′(v)ϕ dx

–
∫

RN
g
(
x, f (v)

)
f ′(v)ϕ dx, (2.11)

then v is a weak solution of the equation

–�pv = –V (x)
∣∣f (v)

∣∣p–2f (v)f ′(v) + g
(
x, f (v)

)
f ′(v), x ∈R

N , (2.12)

and u = f (v) is a weak solution of (1.1). By using Theorem 1 in [23], we can conclude that
v is locally bounded in R

N . So, we consider the existence of solutions to (2.12) in E.
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3 The boundedness of the Cerami sequences
To obtain the existence of solutions to problem (2.12), we need to prove that the functional
J defined by (2.10) satisfies the Cerami condition.

We first recall that a sequence {vn} in E is called a Cerami sequence of J if {J(vn)} is
bounded and

(
1 + ‖vn‖E

)∥∥J ′(vn)
∥∥

E∗ → 0 as n → ∞. (3.1)

The functional J satisfies the Cerami condition if any Cerami sequence possesses a con-
vergent subsequence in E

Lemma 3.1 Assume (H0) – (H2) and h2 ≥ 0 in R
N . If {vn} ⊂ E is a Cerami sequence, then

{vn} is bounded in E.

Proof Without loss of generality, we assume vn �= 0 for all n ∈N. Set ϕn(x) = f (vn(x))
f ′(vn(x)) . Then,

using (f2) and (f5) in Lemma 2.1, we have

∣∣ϕn(x)
∣∣ ≤ 2α

∣∣vn(x)
∣∣,

∣∣∇ϕn(x)
∣∣ ≤ 2

∣∣∇vn(x)
∣∣ in R

N and

‖ϕn‖E ≤ 2α‖vn‖E ∀n ∈N.
(3.2)

Since {vn} is a Cerami sequence in E, there is a constant C1 > 0 such that

C1 ≥ J(vn) –
1
q

J ′(vn)ϕn

≥
(

1
p

–
2α

q

)∫

RN
|∇vn|p dx +

(
1
p

–
1
q

)∫

RN
V

∣∣f (vn)
∣∣p dx

+ λ

(
1
q

–
1
m

)∫

RN
h1

∣∣f (vn)
∣∣m dx

≥
(

1
p

–
2α

q

)
‖∇vn‖p

p – λ

(
1
q

–
1
m

)
‖h1‖σ ‖∇vn‖m

p . (3.3)

This estimate and the assumption m ∈ (1, p) prove that {‖∇vn‖p} is bounded. Moreover,

C1 ≥ J(vn) –
1

2pα
J ′(vn)ϕn ≥ 2α – 1

2pα

∫

RN

(|∇vn|p
∣
∣f ′(vn)

∣
∣p + V

∣
∣f (vn)

∣
∣p)dx

+ λ

(
1

2pα
–

1
m

)∫

RN
h1

∣∣f (vn)
∣∣m dx +

(
1

2pα
–

1
q

)∫

RN
h2

∣∣f (vn)
∣∣q dx

≥ 2α – 1
2pα

‖un‖p
E – λ

(
1
m

–
1

2pα

)
‖h1‖σ ‖∇vn‖m

p , (3.4)

where un = f (vn). Then {∫
RN V |f (vn)|p dx} is bounded and so is {Ap

n}, where

Ap
n =

∫

RN

(|∇vn|p + V
∣
∣f (vn)

∣
∣p)dx, ∀n ∈N. (3.5)

In the following, we show that there exists a constant C0 > 0 such that
∫

RN

(|∇vn|p + V (x)
∣
∣f (vn)

∣
∣p)dx ≥ C0‖vn‖p

E , ∀n ∈N. (3.6)
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We argue by contradiction and assume that, up to a subsequence, vn ∈ E such that

Ap
n =

∫

RN

(|∇vn|p + V (x)
∣
∣f (vn)

∣
∣p)dx ≤ 1

n
‖vn‖p

E . (3.7)

Hence, Ap
n

‖vn‖p
E

→ 0 as n → ∞. Let ωn(x) = vn(x)
‖vn‖E

, fn(x) = |f (vn(x))|p
‖vn‖p

E
. Then

∫

RN
|∇ωn|p dx +

∫

RN
V (x)fn(x) dx → 0 as n → ∞, (3.8)

which shows
∫

RN
|∇ωn|p dx → 0 and

∫

RN
V (x)fn(x) dx → 0 as n → ∞. (3.9)

Moreover, since

∫

RN

(|∇ωn|p + V (x)
∣∣ωn(x)

∣∣p)dx = 1, (3.10)

we conclude
∫

RN
V (x)

∣∣ωn(x)
∣∣p dx → 1. (3.11)

Similar to the idea of [25], we assert that for each ε > 0 there exists αε ≥ 1 independent of
n such that |�n| < ε, where �n = {x ∈ R

N : |vn(x)| ≥ αε} and |�n| = meas(�n). Otherwise,
there are ε0 > 0 and subsequence {vnk } ⊂ {vn} such that |�nk | ≥ ε0, where

�nk =
{

x ∈R
N :

∣∣vnk (x)
∣∣ ≥ k

}
, ∀k ∈ N. (3.12)

By (f8), one sees

Ap
nk

≥
∫

RN
V (x)

∣∣f (vnk )
∣∣p dx ≥ V0b

p
2α
0

∫

�nk

|vnk |
p

2α dx

≥ Ck
p

2α |�nk | ≥ Cε0k
p

2α → ∞ (3.13)

as k → ∞. This is a contradiction. Hence the assertion is true. Denote �c
n = R

N \ �n. For
x ∈ �c

n, we have |vn(x)| ≤ αε . Using (f8) and (f9), we get

C2
∣∣vn(x)

∣∣p ≤ ∣∣f
(
α–1

ε vn(x)
)∣∣p ≤ ∣∣f

(
vn(x)

)∣∣p, x ∈ �c
n (3.14)

for some C2 > 0. Thus, as n → ∞,

∫

�c
n

V |ωn|p dx =
∫

�c
n

V (x)
|vn(x)|p
‖vn‖p

E
dx ≤ 1

C2

∫

�c
n

V
|f (vn)|p
‖vn‖p

E
dx

=
1

C2

∫

�c
n

Vfn dx → 0 (3.15)
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On the other hand, from the integral absolute continuity, it follows that there is δ > 0 such
that whenever � ⊂R

N and |�| < δ,
∫

�

V (x)
∣∣ωn(x)

∣∣p dx <
1
2

. (3.16)

For this δ > 0, we have
∫

RN
V (x)

∣
∣ωn(x)

∣
∣p dx =

∫

�n

V (x)
∣
∣ωn(x)

∣
∣p dx +

∫

�c
n

V (x)
∣
∣ωn(x)

∣
∣p dx

<
1
2

+
∫

�c
n

V (x)
∣
∣ωn(x)

∣
∣p dx (3.17)

Letting n → ∞, one sees from (3.11) and (3.17) that 1 ≤ 1
2 . It is impossible. So, (3.6) is true

and {vn} is bounded in E. �

Since the sequence {vn} given by Lemma 3.1 is a bounded sequence in E, there exist
a constant M > 0 and v ∈ E, and a subsequence of {vn}, still denoted by {vn}, such that
‖vn‖E ≤ M, ‖v‖E ≤ M and

vn ⇀ v weakly in E, vn → v in Ls
loc

(
R

N)
, ∀s ∈ [1, p∗),

vn(x) → v(x) a.e. in R
N .

(3.18)

Lemma 3.2 Assume (H0) – (H2). If the sequence {vn} satisfies (3.18), then

lim
n→∞

∫

RN
h1(x)

∣
∣f (vn)

∣
∣m dx =

∫

RN
h1(x)

∣
∣f (v)

∣
∣m dx (3.19)

and

lim
n→∞

∫

RN
h1(x)

∣∣f (vn)
∣∣m–2f (vn)f ′(vn)vn dx =

∫

RN
h1(x)

∣∣f (v)
∣∣m–2f (v)f ′(v)v dx. (3.20)

Proof From (3.18), we have f (vn(x)) → f (v(x)) a.e. in R
N . Then

∫

Br

h1
∣
∣f (vn)

∣
∣m dx →

∫

Br

h1
∣
∣f (v)

∣
∣m dx (3.21)

for any r > 0, where Br = {x ∈ R
N : |x| < r}, Bc

r = R
N \ Br . On the other hand, we see from

Hölder’s inequality and (2.2) that

∫

Bc
r

|h1|
∣∣f (vn)

∣∣m dx ≤
(∫

Bc
r

|h1|σ dx
)1/σ(∫

Bc
r

|vn|p∗
)m/2αp∗

≤ S– m
2αp ‖h1‖Lσ (Bc

r)‖∇vn‖
m
2α
p ≤ S– m

2αp M
m
2α ‖h1‖Lσ (Bc

r) → 0 (3.22)

as r → ∞. By Fatou’s lemma, we obtain
∫

Bc
r

|h1|
∣∣f (v)

∣∣m dx ≤ lim inf
n→∞

∫

Bc
r

|h1|
∣∣f (vn)

∣∣m dx

≤ S– m
2αp M

m
2α ‖h1‖Lσ (Bc

r) → 0 as r → ∞. (3.23)
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Then, the application of (3.21)–(3.23) gives that (3.19). Similarly, noticing that (f6) and

∣∣h1
∣∣f (vn)

∣∣m–2f (vn)f ′(vn)vn
∣∣ ≤ |h1|

∣∣f (vn)
∣∣m,

∣∣h1
∣∣f (v)

∣∣m–2f (v)f ′(v)v
∣∣ ≤ |h1|

∣∣f (v)
∣∣m in R

N ,

we can derive (3.20). �

Lemma 3.3 Assume (H0) – (H2) and one of hypotheses (H3) and (H4). If the sequence {vn}
satisfies (3.18), then

lim
n→∞

∫

RN
h2(x)

∣∣f (vn)
∣∣q dx =

∫

RN
h2(x)

∣∣f (v)
∣∣q dx (3.24)

and

lim
n→∞

∫

RN
h2(x)

∣
∣f (vn)

∣
∣q–2f (vn)f ′(vn)vn dx =

∫

RN
h2(x)

∣
∣f (v)

∣
∣q–2f (v)f ′(v)v dx. (3.25)

Proof If (H3) is satisfied, we use a similar argument in the proof of Lemma 3.2 to get limits
(3.24) and (3.25). We now assume (H4). Choose t ∈ (0, 1) such that q = 2α(pt + (1 – t)p∗).
Then

∫

Bc
r

h2
∣∣f (vn)

∣∣q dx ≤
∫

Bc
r

h2|vn| q
2α dx

≤
(∫

Bc
r

V |vn|p dx
)t(∫

Bc
r

|vn|p∗
h

1
1–t
2 V – t

1–t dx
)1–t

≤ CV –t
0 sup

x∈Bc
r

∣
∣h2(x)

∣
∣
(∫

Bc
r

V |vn|p dx
)t

‖∇vn‖(1–t)p∗
p

≤ C sup
x∈Bc

r

∣∣h2(x)
∣∣‖vn‖

q
2α
E

≤ CM
q

2α sup
x∈Bc

r

∣∣h2(x)
∣∣ → 0 as r → ∞ (3.26)

and

∫

Bc
r

h2
∣
∣f (v)

∣
∣q dx ≤ lim inf

n→∞

∫

Bc
r

h2
∣
∣f (vn)

∣
∣q dx

≤ CM
q

2α sup
x∈Bc

r

∣
∣h2(x)

∣
∣ → 0 as r → ∞. (3.27)

Moreover, it follows from (3.18) that for all r > 0,

∫

Br

h2
∣∣f (vn)

∣∣q dx →
∫

Br

h2
∣∣f (v)

∣∣q dx as n → ∞. (3.28)
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Then the application of (3.26)–(3.28) yields (3.24). Similarly, from (f6), it follows that

∫

Bc
r

∣
∣h2

∣
∣f (vn)

∣
∣q–2f (vn)f ′(vn)vn

∣
∣dx ≤

∫

Bc
r

h2
∣
∣f (vn)

∣
∣q dx

≤ CM
q

2α sup
x∈Bc

r

∣
∣h2(x)

∣
∣ → 0 as r → ∞ (3.29)

and
∫

Bc
r

∣
∣h2

∣
∣f (v)

∣
∣q–2f (v)f ′(v)v

∣
∣dx ≤

∫

Bc
r

h2
∣
∣f (v)

∣
∣q dx

≤ CM
q

2α sup
x∈Bc

r

∣
∣h2(x)

∣
∣ → 0 as r → ∞, (3.30)

lim
n→∞

∫

Br

h2
∣∣f (vn)

∣∣q–2f (vn)f ′(vn)vn dx =
∫

Br

h2
∣∣f (v)

∣∣q–2f (v)f ′(v)v dx. (3.31)

Then we get (3.25) from (3.29)–(3.31). Then the proof of Lemma 3.3 is completed. �

Lemma 3.4 Assume that all hypotheses in Theorem 1.1 hold. Let {vn} be a Cerami sequence
and satisfy (3.18). Then the following statements hold:

(i). For each ε > 0, there exists r0 ≥ 1 such that r ≥ r0,

lim sup
n→∞

∫

Bc
2r

(|∇vn|p + V (x)
∣
∣f (vn)

∣
∣p)dx < ε, (3.32)

lim sup
n→∞

∫

Bc
2r

(|∇vn|p + V (x)
∣∣f (vn)

∣∣p–2f (vn)f ′(vn)vn
)

dx < ε, (3.33)

and

lim
n→∞

∫

RN
V (x)

∣∣f (vn)
∣∣p dx =

∫

RN
V (x)

∣∣f (v)
∣∣p dx, (3.34)

lim
n→∞

∫

RN
V (x)

∣∣f (vn)
∣∣p–2f (vn)f ′(vn)vn dx =

∫

RN
V (x)

∣∣f (v)
∣∣p–2f (v)f ′(v)v dx. (3.35)

(ii). The weak limit v ∈ E is a critical point for functional J .

Proof (i). In fact, for r > 1, we choose the function η = η(|x|) ∈ C1(RN ) such that

η
(|x|) ≡ 1 x ∈ Bc

2r , η
(|x|) = 0 x ∈ Br and 0 ≤ η ≤ 1,

|∇η| ≤ 2
r

, in R
N .

(3.36)

Since the sequence {vn} is bounded in E, the sequence {ηϕn}, where ϕn = f (vn)
f ′(vn) , is also

bounded in E. Hence, we have J ′(vn)(ηϕn) = on(1), that is,

∫

RN
|∇vn|p

(
1 +

(2α – 1)(2α)p–1|f (vn)|p(2α–1)

1 + (2α)p–1|f (vn)|p(2α–1)

)
η dx +

∫

RN
V (x)

∣∣f (vn)
∣∣p

η dx

= –
∫

RN
|∇vn|p–2∇vn∇ηϕn dx +

∫

RN
g
(
x, f (vn)

)
f (vn)η dx + on(1). (3.37)
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For assumptions (H2) – (H4), we have from (3.22) and (3.26) that

∫

RN
g
(
x, f (vn)

)
f (vn)η dx = on(1) as n → ∞. (3.38)

Hence, limits (3.37) and (3.38) show that

∫

Bc
r

(|∇vn|p + V (x)
∣∣f (vn)

∣∣p)
η dx

≤ 2α

∫

Bc
r

|∇vn|p–1|vn||∇η|dx + on(1)

≤ 4α

r

∫

Bc
2r\Bc

r

|∇vn|p–1|vn|dx + on(1)

≤ 4α

r

(∫

Bc
2r\Bc

r

|∇vn|p dx
) p–1

p
(∫

Bc
2r\Bc

r

|vn|p dx
) 1

p
+ on(1)

≤ 4α

r
V

– 1
p

0 ‖vn‖p
E + on(1) ≤ 4αM

r
V

– 1
p

0 + on(1), as n → ∞. (3.39)

This estimate concludes (3.32). Moreover, limit (3.32) gives

lim sup
n→∞

∫

Bc
2r

V (x)
∣
∣f (vn)

∣
∣p) dx < ε, (3.40)

and consequently,

∫

Bc
2r

V (x)
∣
∣f (v)

∣
∣p) dx ≤ ε. (3.41)

Since vn → v in Lp(B2r), we get

lim
n→∞

∫

B2r

V (x)
∣
∣f (vn)

∣
∣p dx =

∫

B2r

V (x)
∣
∣f (v)

∣
∣p dx. (3.42)

Then, for all ε > 0, limits (3.40)–(3.42) yield

lim sup
n→∞

∣∣
∣∣

∫

RN
V (x)

(∣∣f (vn)
∣
∣p –

∣
∣f (v)

∣
∣p)dx

∣∣
∣∣ ≤ 3ε, (3.43)

and limit (3.34) holds.
In the following, we prove (3.35). We first note that (f6) and (3.38) show

∫

RN
g
(
x, f (vn)

)
f (vn)f ′(vn)vnη dx = on(1) as n → ∞. (3.44)
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Then the fact J ′(vn)(ηvn) = on(1) implies that
∫

RN

(|∇vn|p + V (x)
∣∣f (vn)

∣∣p–2f (vn)f ′(vn)vn
)
η dx = –

∫

RN
|∇vn|p–2∇vn∇ηvn dx

+
∫

RN
g
(
x, f (vn)

)
f ′(vn)vnη dx + on(1)

≤
∫

RN
|∇vn|p–1|∇η||vn|dx + on(1) ≤ 4αM

r
V

– 1
p

0 + on(1). (3.45)

This shows that there exists a constant r0 ≥ 1 such that

lim sup
n→∞

∫

Bc
2r

(|∇vn|p + V (x)
∣∣f (vn)

∣∣p–2f (vn)f ′(vn)vn
)

dx < ε (3.46)

for r > r0. So,

lim sup
n→∞

∫

Bc
2r

V (x)
∣∣f (vn)

∣∣p–2f (vn)f ′(vn)vn dx < ε, (3.47)

and consequently

∫

Bc
2r

V (x)
∣∣f (v)

∣∣p–2f (v)f ′(v)v dx ≤ ε. (3.48)

Since vn → v in Lp(B2r), we have

lim sup
n→∞

∫

B2r

V (x)
∣∣f (vn)

∣∣p–2f (vn)f ′(vn)vn dx =
∫

B2r

V (x)
∣∣f (v)

∣∣p–2f (v)f ′(v)v dx, (3.49)

and then

lim sup
n→∞

∣
∣∣
∣

∫

RN
V (x)

(∣∣f (vn)
∣∣p–2f (vn)f ′(vn)vn –

∣∣f (v)
∣∣p–2f (v)f ′(v)v

)
dx

∣
∣∣
∣ ≤ 3ε (3.50)

for every ε > 0. Therefore, limit (3.35) is true. The proof of part (i) is completed.
(ii). From (3.18), one sees that as n → ∞

∫

RN
|∇vn|p–2∇vn∇ϕ dx →

∫

RN
|∇v|p–2∇v∇ϕ dx ∀ϕ ∈ C∞

0
(
R

N)
. (3.51)

As in the proof of (i), we can derive as n → ∞
∫

RN
V (x)

(∣∣f (vn)
∣
∣p–2f (vn)f ′(vn) –

∣
∣f (v)

∣
∣p–2f (v)f ′(v)

)
ϕ dx → 0 (3.52)

and
∫

RN

(
g
(
x, f (vn)

)
f ′(vn) – g

(
x, f (v)

)
f ′(v)

)
ϕ dx → 0. (3.53)

Then, from (3.51), (3.52), and (3.53), it follows

0 = lim
n→∞ J ′(vn)ϕ = J ′(v)ϕ, ∀ϕ ∈ C∞

0
(
R

N)
. (3.54)
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By the dense C∞
0 (RN ) in E, we have J ′(v)ϕ = 0, ∀ϕ ∈ E. In particular, J ′(v)v = 0. Hence, v is

a critical point of J in E. This completes the proof of Lemma 3.4. �

Lemma 3.5 Assume that all hypotheses in Theorem 1.1 hold. Let {vn} be a Cerami sequence
and satisfy (3.18). Then vn → v in E, that is, the functional J satisfies the Cerami condition
in E.

Proof From J ′(vn)vn = on(1) as n → ∞, we obtain

∫

RN
|∇vn|p dx = –

∫

RN
V (x)

∣
∣f (vn)

∣
∣p–2f (vn)f ′(vn)vn dx

+
∫

RN
g
(
x, f (vn)

)
f (vn)f ′(vn)vn dx + on(1). (3.55)

Using limits (3.20), (3.25), and (3.35) together with J ′(v)v = 0, we obtain

lim
n→∞

∫

RN
|∇vn|p dx =

∫

RN
|∇v|p dx. (3.56)

The application of Brezis–Lieb lemma in [14] yields

lim
n→∞

∥
∥∇(vn – v)

∥
∥p

p = lim
n→∞

∫

RN

∣
∣∇(vn – v)

∣
∣p dx = 0. (3.57)

As in the proof of (3.6), we see that

∫

RN

(∣∣∇(vn – v)
∣∣p + V (x)

∣∣f (vn – v)
∣∣p)dx ≥ C0‖vn – v‖p

E , ∀n ∈N. (3.58)

Clearly, it follows from (3.57) and (3.58) that, to conclude vn → v in E, it remains to
prove

lim
n→∞

∫

RN
V (x)

∣
∣f (vn – v)

∣
∣p dx = 0. (3.59)

Indeed, by Fatou’s lemma, for any r > 0, we have

∫

B2r

V (x)
∣∣f (v)

∣∣p dx ≤ lim inf
n→∞

∫

B2r

V (x)
∣∣f (vn)

∣∣p dx,

∫

Bc
2r

V (x)
∣∣f (v)

∣∣p dx ≤ lim inf
n→∞

∫

Bc
2r

V (x)
∣∣f (vn)

∣∣p dx.
(3.60)

On the other hand, from (3.34), one sees

lim
n→∞

∫

B2r

V (x)
∣
∣f (vn)

∣
∣p dx =

∫

B2r

V (x)
∣
∣f (v)

∣
∣p dx,

lim
n→∞

∫

Bc
2r

V (x)
∣
∣f (vn)

∣
∣p dx =

∫

Bc
2r

V (x)
∣
∣f (v)

∣
∣p dx.

(3.61)

Noticing that the function φ′′(t) > p(p – 2α)|f (t)|p–2(f ′(t))2 > 0 in R \ {0}, we know that
φ(t) is convex and even in R, where φ(t) = |f (t)|p. Hence, by (f9), it follows from (3.40) and
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(3.41) that
∫

Bc
2r

V (x)
∣∣f (vn – v)

∣∣p dx ≤ 1
2

∫

Bc
2r

V (x)
(∣∣f (2vn)

∣∣p +
∣∣f (2v)

∣∣p)dx

≤
∫

Bc
2r

V (x)
(∣∣f (vn)

∣∣p +
∣∣f (v)

∣∣p)dx ≤ 2ε (3.62)

for large n. Since |f (vn – v)|p ≤ |vn – v|p and vn → v in Lp(B2r), we have
∫

B2r
V (x)|f (vn –

v)|p dx → 0 as n → ∞. Altogether, we get (3.59) and vn → v in E. This completes the
proof of Lemma 3.5. �

4 Proof of Theorem 1.1
We need the following mountain pass theorem to prove our result.

Lemma 4.1 ([21], Theorem 9.12). Let E be an infinite dimensional real Banach space, J ∈
C1(E,R) be even and satisfy the Cerami condition, and J(0) = 0. If E = Y ⊕ Z, Y is finite
dimensional and J satisfies

(J1) There exist constants ρ, τ > 0 such that J(u) ≥ τ on ∂Bρ ∩ Z;
(J2) For each finite dimensional subspace E0 ⊂ E, there is R0 = R0(E0) such that J(u) ≤ 0

on E0 \ BR0 , where Br = {v ∈ E : ‖v‖E < r}.
Then J possesses an unbounded sequence of critical values.

Proof of Theorem 1.1 Clearly, the functional J defined by (2.10) is even in E. By Lemmas
3.1–3.5 in Sect. 3, the functional J satisfies the Cerami condition. Next, we prove that J
satisfies (J1) and (J2).

From (f5) and Hölder’s inequality, we deduce that

∫

RN
|h1|

∣
∣f (v)

∣
∣m dx ≤ (2α)

m
2αp

∫

RN
|h1||v| m

2α dx ≤ (2α)
m

2αp ‖h1‖σ ‖v‖ m
2α

p∗

≤ C1‖v‖ m
2α
E , v ∈ E (4.1)

with some constant C1 > 0. Similarly, if (H3) is true, then one sees that

∫

RN
|h2|

∣
∣f (v)

∣
∣q dx ≤ (2α)

q
2αp ‖h2‖γ ‖v‖

q
2α
E ≤ C1‖v‖

q
2α
E , v ∈ E. (4.2)

If (H4) holds, one has
∫

B1

|h2|
∣∣f (v)

∣∣q dx ≤ (2α)
q

2αp ‖h2‖Lγ (B1)‖v‖
q

2α
E ≤ C1‖v‖

q
2α
E , v ∈ E. (4.3)

Moreover, it follows from (f3), (f5) and Hölder’s inequality that

∫

Bc
1

|h2|
∣
∣f (v)

∣
∣q dx ≤ h0

(∫

Bc
1

∣
∣f (v)

∣
∣p dx

)t(∫

Bc
1

∣
∣f (v)

∣
∣2αp∗

dx
)1–t

≤ (2α)
N

N–p h0

(∫

Bc
1

|v|p dx
)t(∫

Bc
1

|v|p∗
)1–t

≤ C2‖v‖q0
E , v ∈ E (4.4)
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with some C2 > 0 and h0 = ‖h2‖L∞(Bc
1), q0 = pt + p∗(1 – t), t = 2αp∗–q

2αp∗–p . Clearly, q0 > q
2α

. Then
(4.3) and (4.4) show that there is a constant C3 > 0 such that

∫

RN
|h2|

∣∣f (v)
∣∣q dx ≤ C3‖v‖

q
2α
E , ‖v‖E ≤ 1. (4.5)

As in the proof of (3.6), we can derive

∫

RN

(|∇v|p + V (x)
∣∣f (v)

∣∣p)dx ≥ C0‖v‖p
E , ∀ ‖v‖E ≤ 1. (4.6)

Then, from (4.1),(4.2), and (4.5), we conclude that

J(v) ≥ C0

p
‖v‖p

E – λβ1‖v‖ m
2α
E – β2‖v‖

q
2α
E , ∀ ‖v‖E ≤ 1, (4.7)

where β1 = C1, β2 = min{C1, C3}. Denote

h(z) = zp(
C0

p
– λβ1z

m
2α –p – β2z

q
2α –p, 0 < z ≤ 1. (4.8)

Choose z1 ∈ (0, 1) such that

C0

p
– β2z

q
2α –p ≥ C0

p
– β2z

q
2α –p
1 ≥ C0

2p
, 0 < z ≤ z1. (4.9)

This is possible since q
2α

> p. Moreover, let

0 ≤ λ ≤ λ0 =
C0

4pβ1
zp– m

2α
1 . (4.10)

Then

C0

2p
– λβ1z

m
2α –p
1 ≥ C0

4p
and h(z1) ≥ C0

4p
zp

1 ≡ τ > 0. (4.11)

So, it follows from (4.8), (4.10), and (4.11) that there exist λ0, τ ,ρ > 0 such that J(v) ≥ τ

with ρ = z1 = ‖v‖E and λ ∈ [0,λ0]. Thus condition (J1) is satisfied.
We now verify (J2). For any finite dimensional subspace E0 ⊂ E, we assert that there exists

a constant R0 > ρ such that J < 0 on E0 \BR0 . Otherwise, there is a sequence {vn} ⊂ E0 such
that ‖vn‖E → ∞ and J(vn) ≥ 0. Hence,

1
p

∫

RN

(|∇vn|p + V (x)
∣∣f (vn)

∣∣p)dx

≥
∫

RN
G

(
x, f (vn)

)
dx

=
λ

m

∫

RN
h1

∣∣f (vn)
∣∣m dx +

1
q

∫

RN
h2

∣∣f (vn)
∣∣q dx. (4.12)

Set ωn = vn
‖vn‖E

. Then up to a subsequence, we can assume ωn ⇀ ω in E, ωn(x) → ω(x)
a.e. in R

N . Denote � = {x ∈ R
N : ω(x) �= 0}. Assume |�| > 0. Clearly, vn(x) → ∞ in �. It
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follows from (4.1) that

‖vn‖–p
E

∫

�

|h1|
∣∣f (vn)

∣∣m dx ≤ C1‖vn‖
m
2α –p
E → 0 as n → ∞. (4.13)

On the other hand, from (f7), we derive

‖vn‖–p
E

∫

�

h2
∣∣f (vn)

∣∣q dx =
∫

�

h2
|f (vn)|q
|vn| q

2α

|vn| q
2α –pωp

n dx → ∞ as n → ∞ (4.14)

Therefore,

lim
n→∞‖vn‖–p

E

∫

�

G
(
x, f (vn)

)
dx = ∞. (4.15)

But it is easy to see that

∫

RN

(|∇vn|p + V (x)
∣∣f (vn)

∣∣p)dx ≤
∫

RN

(|∇vn|p + V (x)|vn|p
)

dx ≤ ‖vn‖p
E . (4.16)

We have a contradiction from (4.12), (4.15), and (4.16). So, |�| = 0 and ω(x) = 0 a.e. on R
N .

By the equivalency of all norms in E0, there exists a constant β > 0 such that

(∫

RN
|h2||v|q dx

)1/q

≥ β‖v‖E , ∀v ∈ E0, and
∫

RN
|h2||vn|q dx ≥ βq‖vn‖q

E , ∀n ∈ N.
(4.17)

Hence,

βq ≤ lim
n→∞

∫

RN
|h2||ωn|q dx = 0. (4.18)

It is impossible. This shows that there is a constant R0 > 0 such that J < 0 on E0 \ BR0 .
Therefore, the existence of infinitely many solutions {vn} for problem (2.12) follows from
Lemma 4.1, and so un = f (vn) is a solution of Problem (1.1) for n = 1, 2, . . . . We finish the
proof of Theorem 1.1. �
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