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Abstract
This paper investigates a delayed predator-prey model with discontinuous harvesting
and Beddington–DeAngelis functional response. Using the theory of differential
inclusion theory, the existence of positive solutions in the sense of Filippov is
discussed. Under reasonable assumptions and periodic disturbances, the existence of
positive periodic solutions of the model is studied based on the theory of Mawhin’s
coincidence degree. Finally, through numerical simulation, the correctness and
feasibility of the conclusions are verified.
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1 Introduction
In the past decades, mathematical ecology has made much progress, especially in popu-
lation dynamics. There are various different kinds of predator-prey models in the mathe-
matical ecology literature. One significant component of the predator-prey relationship is
the predator’s rate of feeding upon prey, i.e., the so-called predator’s functional response.
In general, the functional responses can be either prey-dependent or predator-dependent.
Prey-dependent implies that the functional response can be performed by a function with
one variable (prey’s density), such as classical Holling family ones and Monod–Haldane
type. In some cases, such as predators having to forage for food, many researchers in biol-
ogy show that the functional response should be predator-dependent, which is illustrated
by a function with two variable (prey and predator’s densities). Beddington–DeAngelis
functional response is one of the important predator-dependent types, independently
introduced by Beddington [2] and DeAngelis et al. [6]. Many authors have contributed
importantly to the predator-prey system with the Beddington–DeAngelis functional re-
sponse [7, 9, 14, 15, 19, 20, 25, 27, 28, 30].

In 1971, Hassell found that hosts or parasites encounter a tendency to leave each other
when they meet, which interferes with the host’s capture effect. It is well known that the
mutual interference will be stronger while the size of parasites becomes larger. To describe
this phenomenon, Hassell introduced the concept of mutual interference constant m (0 <
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m < 1) and studied the following Volterra model with mutual interference [12]:

x′(t) = xg(x) – ϕ(x)ym,

y′(t) = y
[
–d + kϕ(x)ym–1 – q(y)

]
,

where the functional response function can be of the Holling type and other types of func-
tions.

On the other hand, discontinuous or nonsmooth dynamical systems [8] appear widely
in many applications, such as mechanics with dry friction, systems with small inertial,
economy, biology, viability and control theories. Discontinuous biological systems have
received a great deal of attention in recent years. To keep the list short, we cite only some
recent related work, such as [5, 11, 17, 24, 29]. Because of the limited resources, in many
fields of renewable resource management, managers often use the threshold policy (TP);
that is, if abundance is below the threshold level, there is no harvest; above the threshold, a
constant harvest rate is applied. However, because of time delays and financial constraints,
it is difficult for managers to implement TP, so a more practical harvesting management
policy called discontinuous harvesting policy (DHP) was introduced in [3]; see [11, 18, 26,
29] for more details.

When environmental fluctuation is considered, predator-prey models must be nonau-
tonomous and, of course, more difficult to analyze. For example, one may assume the pa-
rameters in models are periodic for seasonal reasons. A very basic and important problem
in studying the predator-prey model with a periodic environment is the existence of a posi-
tive periodic solution; see [10, 21, 23] for more details. Motivated by the papers mentioned
above, it is more realistic to consider the case of combined effects: discontinuous harvest-
ing and periodic model with the Beddington–DeAngelis functional response. Namely, we
consider the following discontinuous harvesting policies on predator-prey system with
the Beddington–DeAngelis functional response:

x′(t) = x(t)
[
r1(t) – b1(t)x

(
t – τ1(t)

)]
–

a1(t)x(t)ym(t)
A + Bx(t) + Cy(t)

– ε1(t)h1
(
x(t), y(t)

)
x(t),

y′(t) = y(t)
[
–r2(t) – b2(t)y

(
t – τ2(t)

)]
+

a2(t)x(t)ym(t)
A + Bx(t) + Cy(t)

– ε2(t)h2
(
x(t), y(t)

)
y(t),

(1.1)

where 0 < m < 1 denotes the mutual interference constant; ai(t), bi(t), ri(t), εi(t) (i = 1, 2)
are continuous ω-periodic functions on R; τ1(t), τ2(t) are continuously differentiable posi-
tive ω-periodic functions on R, ε1(t), ε2(t) denote the harvesting effort on prey and preda-
tor, respectively; r1 > 0, a2 > 0, b1(t) > 0, b2(t) > 0, r2(t) > 0, a1(t) ≥ 0, ε1(t) ≥ 0, ε2(t) ≥ 0,
h1(x, y) and h2(x, y) represent the binary discontinuous harvesting function of prey and
predator, respectively. The model for the case when in (1.1) h1, h2 are a unary discontin-
uous harvesting function or all the parameters are constants was investigated in [9, 17].
However, for the periodic case with the DHP and Beddington–DeAngelis functional re-
sponse, i.e., (1.1), the existence of periodic solution is rare, and this is the main motivation
of this paper.
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Here, the predator consumes the prey according to the Beddington–DeAngelis func-
tional response function ϕ(x, y) = x

A+Bx+Cy , which was given in Beddington [2], DeAngelis et
al. [6] in the form of αx

1+αhx+βy , where α is the encounter rate with prey by a searching preda-
tor, h is the handling time of one prey item (during which other prey cannot be caught),
β is a measure of predator interference during foraging. Let A = 1/α, B = h, C = β/α, then
we get the expression of ϕ(x, y) in (1.1).

Considering the practical context of the model, we consider the following initial value
conditions:

x(θ ) = φ1(θ ), y(θ ) = φ2(θ ), θ ∈ [–τ , 0], (1.2)

where φi is a nonnegative bounded continuous function, φi(0) > 0, τ = max{maxt∈[0,ω] τi(t)},
(i = 1, 2).

The paper is organized as follows. In Sect. 2, we recall some fundamental results about
the notion of differential inclusions. Section 3 is devoted to the positivity, viability, and
existence of positive periodic solutions for the predator-prey model by Mawhin’s coinci-
dence theorem. In Sect. 4, an example is presented to illustrate the main findings.

2 Preliminaries and basic property
In this paper, X is a set, P(X) = {A ⊆ X, A �= ∅}, Pf (c)(X) = {A ⊂ X : A is a non-empty
closed (convex) subset}, Pk(c)(X) = {A ⊂ X : A is a non-empty compact (convex) subset},
Pcb,cl,cv(X) denotes the set of all bounded, closed, convex, and non-empty subsets of X. To
facilitate the discussion below, we further introduce the following notations:

• Cω(R,Rn): the space of all continuous ω-periodic functions from R to R
n.

• C = C([–r, 0],Rn): the Banach space of all continuous functions from [–r, 0] to R
n,

‖ · ‖C is defined as ‖φ‖C = sup{|φ(θ )| : –r ≤ θ ≤ 0}, zt ∈ C, zt(θ ) = z(t + θ ), –r ≤ θ ≤ 0,
0 ≤ t ≤ a.

• P(Rn): the collection of all non-empty compact subsets of Rn with the “Hausdorff
metric” defined by

ρ(A, B) = max
{
β(A, B),β(B, A)

}
, A, B ⊂P

(
R

n),

where

β(A, B) = sup
{
dist(x, B) : x ∈ A

}
, β(B, A) = sup

{
dist(y, A) : y ∈ B

}
.

It is well known that P(Rn) is a complete metric space with the Hausdorff metric ρ .
• L1([0,ω],R2): all Lebesgue integrable functions from [0,ω] to R

2.
• f = 1

ω

∫ ω

0 f (t) dt, f l = mint∈[0,ω] f (t), f u = maxt∈[0,ω] f (t), where f (t) is the ω-periodic
function.

First, we consider the following functional differential equation with discontinuous
right-hand sides:

dz(t)
dt

= f (t, zt), (2.1)

where f : R×C →R
n is discontinuous with respect to zt .
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Definition 2.1 [8, 13] A vector function z(t) on interval I ⊂R is called a solution of (2.1)
in the sense of Filippov if z(t) is absolutely continuous on any subinterval [t1, t2] of I, and
for almost all (a.a.) t ∈ I, z(t) satisfies the following functional differential inclusions:

dz(t)
dt

∈ F(t, zt),

where the set-valued map F : R×C→ R
n is defined as

F(t, u) =
⋂

δ>0

⋂

meas(N )=0

co
[
f
(
t,B(u, δ)\N )]

,

where co[E] is the closure of the convex hull of some set E;B(u, δ) = {v ∈ C: ‖v – u‖C ≤ δ},
and the intersection is taken over all sets N of measure zero and over all δ > 0; meas(N ) is
the Lebesgue measure of set N .

Consider that system (2.1) satisfies the following initial value condition: zσ = φ(θ ), θ ∈
[–r, 0]. The initial value problem (IVP) associated with (2.1) can be defined as follows.

Definition 2.2 For any given σ ∈ R and φ ∈ C, a vector function z(σ ,φ)(t) on the inter-
val [σ – r, b) is called a solution in the sense of Filippov, satisfying the initial condition
zσ = φ(θ ), θ ∈ [–r, 0], if z(σ ,φ)(t) is continuous on [σ – r, b) and absolutely continuous on
any compact interval of [σ , b), zσ (σ ,φ) = φ, and for a.a. t ∈ [σ , b), z(σ ,φ)(t) satisfies the
following functional differential inclusions:

dz(t)
dt

∈ F(t, zt)

In this paper, we consider the following general discontinuous harvesting policy (GDHP)
defined by binary discontinuous functions hi(x, y), (i = 1, 2), which satisfies the following
assumption (D):

(D1) hi is continuous at countable open domains Gk(k = 1, 2, . . .); here the domains Gk

are disjoint from each other, i.e. Gl ∩ Gk = ∅, l �= k.
(D2) hi is discontinuous at the boundary of open domains Gk(k = 1, 2, . . .); here the

boundary of each domain Gk is composed of countable smooth curves and such
that

⋃+∞
k=1(Gk ∪ ∂Gk) = R

2. Moreover, each discontinuous point is intersected by at
most finite smooth curves of the boundary of open domains.

(D3) The limitations

lim
(x,y)→(x0,y0)

hi(x, y) � hk
i (x0, y0)

exist, here (x, y) ∈ Gk and (x0, y0) ∈ ∂Gk .
(D4) hi is bounded in R

2. Moreover, ∀(s, v) ∈R
2, 0 ≤ hi(s, v) ≤ Hi.

Remark 2.1 From the economic and managerial point of view, the GDHP includes a
more realistic harvesting function than classical function. In many cases, such as open
(or closed) fishery seasons, grazing periods, the process of harvesting (exploitation) is not
specific to a single stock and can act on both species simultaneously. In such cases, a more
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practical harvesting management policy called weighted escapement policy (WEP) is usu-
ally considered. If the weighted sum of all populations exceeds a fixed value, the harvest
(exploitation) is allowed; if the weighted sum of all populations is below a certain fixed
value, the harvest (exploitation) is suspended. For example, for the case of two species,
WEP function can be be expressed as follows:

hi(x, y) =

⎧
⎨

⎩
1 if W (x, y) ≥ a,

0 if W (x, y) < a,

where W (x, y) is the weighted sum, a is the fixed value.

According to Definitions 2.1 and 2.2, we will give the definition of a solution and IVP to
(1.1).

Definition 2.3 A vector function z = (x, y)T : [–τ ,T ) → R
2,T ∈ (0, +∞], is called a solu-

tion of the system (1.1) in the sense of Filippov on [–τ ,T ) if:
(1) z is continuous on [–τ ,T ) and absolutely continuous on any compact interval of

[0,T )
(2) for a.a. t ∈ [0,T ), z(t) = (x(t), y(t))T satisfies the following differential inclusions:

dx(t)
dt

∈ x(t)
[
r1(t) – b1(t)x

(
t – τ1(t)

)]
–

a1(t)x(t)ym(t)
A + Bx(t) + Cy(t)

– ε1(t)co
[
h1

(
x(t), y(t)

)]
x(t),

dy(t)
dt

∈ y(t)
[
–r2(t) – b2(t)y

(
t – τ2(t)

)]
+

a2(t)x(t)ym(t)
A + Bx(t) + Cy(t)

– ε2(t)co
[
h2

(
x(t), y(t)

)]
y(t),

(2.2)

where co[hi(x, y)] = [h–
i (x, y), h+

i (x, y)], here h–
i (x, y) = mink∈I(x,y){hk

i (x, y)}, h+
i (x, y) =

maxk∈I(x,y){hk
i (x, y)}, I(x, y) = {k|(x, y) ∈ (Gk ∪ ∂Gk)} denotes the index sets.

Definition 2.4 For an IVP associated with (1.1) with the initial condition (1.2); that is, we
can find a function z = (x, y)T : [–τ ,T ) → R

2, such that z = (x, y)T is a solution of (1.1) in
the sense of Filippov on [–τ ,T ) for some T > 0 and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt ∈ x(t)[r1(t) – b1(t)x(t – τ1(t))] – a1(t)x(t)ym(t)

A+Bx(t)+Cy(t)

– ε1(t)co[h1(x(t), y(t))]x(t),
dy(t)

dt ∈ y(t)[–r2(t) – b2(t)y(t – τ2(t))] + a2(t)x(t)ym(t)
A+Bx(t)+Cy(t)

– ε2(t)co[h2(x(t), y(t))]y(t),

x(θ ) = φ1(θ ), y(θ ) = φ2(θ ), ∀θ ∈ [–τ , 0].

(2.3)

Furthermore, we introduce the definition, properties, and facts concerning set-valued
maps, which can be found in [1, 8, 13].

Definition 2.5 A set-valued map F with non-empty values is said to be upper semicontin-
uous (USC) at x0 ∈ E, if β(F(x),F(x0)) → 0 as x → x0. F(x) is said to have a closed (convex,
compact) image if for each x ∈ E,F(x) is closed (convex, compact).
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Lemma 2.1 If the multi-valued map F is completely continuous with non-empty compact
values, then F is USC if and only if F has a closed graph.

Definition 2.6 A set-valued map F : [0,ω] × X →P(X) is called Carathéodory if:
(1) t → F(t, u) is measurable with respect to t for every u ∈ X ;
(2) t → F(t, u) is USC with respect to u for a.a. t ∈ [0,ω].

Definition 2.7 A set-valued map F : [0,ω] × E → P(E) is called L1-Carathéodory if: for
each q > 0, there exists γq ∈ L1([0,ω], [0,∞)) such that ‖|F(t, u)‖‖ � sup{|v| : v ∈ F(t, u)} ≤
γq(t) for all ‖u‖ ≤ q and for a.a. t ∈ [0,ω].

Lemma 2.2 If dim(X) < ∞ and F : [0,ω] × X → P(X) is L1-Carathéodory, then the set
F (x) := {fx ∈ L1([0,ω], X) : fx(t) ∈ F(t, x) a.e. t ∈ [0,ω]} is non-empty for each fixed x ∈ X.

Lemma 2.3 Let J be a compact real interval, F is a Carathéodory multi-valued map, the
set F (x) is non-empty for each fixed x ∈ X, and let L : L1(J,Rn) → C(J,Rn) be a continuous
linear mapping, then the operator L ◦ F : C(J,Rn) → 2C(J,Rn) is a closed graph operator in
C(J,Rn) × C(J,Rn).

Definition 2.8 Let F : X → P(Y ) be a multi-valued map. A single-valued map f : X → Y
is said to be a selection of F, if f (x) ∈ F(x) for every x ∈ X.

Lemma 2.4 (Measurable selection theorem) Let X be a separable complete space, F : � →
Pf (X) is measurable, then F has a measurable selection.

Finally, we give an extension of Mawhin’s coincidence theorem in the form of set-valued
maps, which will be useful in studying the existence of periodic solutions of differential
inclusions.

Theorem 2.1 [16] Suppose that F : R × R
n → Pc(Rn) is USC and ω-periodic in t. If the

following conditions hold:
(1) there exists a bounded open set � ⊆ Cω , the set of all continuous ω-periodic functions:

R → R
n, such that for any λ ∈ (0, 1), each ω-periodic function u(t) of the inclusion

du
dt ∈ λF(t, u) satisfies u /∈ ∂� if it exists;

(2) each solution u ∈R
n of the inclusion 0 ∈ 1

ω

∫ ω

0 F(t, u) dt � F0(u) satisfies u /∈ ∂�∩R
n;

(3) deg(F0,� ∩R
n, 0) �= 0;

then the differential inclusion du
dt ∈ F(t, u) has at least one ω-periodic solution u(t) with

u ∈ �.

Lemma 2.5 [22] Suppose that f is a continuous ω-periodic function and a.a. is differen-
tiable on [0,ω], then

0 ≤ max
t∈[0,ω]

f (t) – min
t∈[0,ω]

f (t) ≤ 1
2

∫ ω

0

∣∣f ′(t)
∣∣dt.

3 Main results
In this section, we will study the existence of positive periodic solutions of (1.1) using
Mawhin’s coincidence degree theorem (Theorem 2.1).
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Theorem 3.1 (Positivity) Under the assumptions (D), there exists a solution z(t) =
(x(t), y(t))T of (1.1) in the sense of Filippov associated with the initial condition (1.2) on
[0,T ), where T ∈ (0, +∞]. Moreover, z(t) = (x(t), y(t))T > 0 for all t ∈ [0,T ).

Proof Consider the set-valued map:

(t, z) ↪→G(t, z) =
(
G1(t, z),G2(t, z)

)T ,

where

G1(t, z) = x(t)
[
r1(t) – b1(t)x

(
t – τ1(t)

)]
–

a1(t)x(t)ym(t)
A + Bx(t) + Cy(t)

– ε1(t)co
[
h1

(
x(t), y(t)

)]
x(t),

G2(t, z) = y(t)
[
–r2(t) – b2(t)y

(
t – τ2(t)

)]
+

a2(t)x(t)ym(t)
A + Bx(t) + Cy(t)

– ε2(t)co
[
h2

(
x(t), y(t)

)]
y(t).

By the assumptions (D), it is not difficult to see that the set-valued map (t, z) ↪→ G(t, z) is
USC with non-empty compact convex values, and the local existence of a solution z(t) =
(x(t), y(t))T of (1.1) can be guaranteed [8, 13]. That is to say, for any given initial value φ =
(φ1,φ2)T , the system (1.1) has at least one solution z(t) = (x(t), y(t))T � (x(t,φ1), y(t,φ2))T

on [0,T ) for some T ∈ (0, +∞]. Moreover, the derivative of z(t) = (x(t), y(t))T is a measur-
able selection from G(t, z), i.e., for a.a. t ∈ [0,T ):

dx(t)
dt

∈ x(t)
[
r1(t) – b1(t)x

(
t – τ1(t)

)]
–

a1(t)x(t)ym(t)
A + Bx(t) + Cy(t)

– ε1(t)co
[
h1

(
x(t), y(t)

)]
x(t),

dy(t)
dt

∈ y(t)
[
–r2(t) – b2(t)y

(
t – τ2(t)

)]
+

a2(t)x(t)ym(t)
A + Bx(t) + Cy(t)

– ε2(t)co
[
h2

(
x(t), y(t)

)]
y(t).

Since φ1(0) > 0, φ2(0) > 0, the solution z(t) = (x(t), y(t))T is continuous function, it fol-
lows that there exists a positive δ > 0 such that x(t) > 0, y(t) > 0, t ∈ [0, δ). Denote T0 =
sup{t|x(s) > 0, y(s) > 0, s ∈ [0, t)}. Obviously, we have δ ≤ T0 ≤ T . Next, we will show that
T0 = T . Otherwise, we have T0 < T , then

lim
t→T –

0
x(t) = 0 or lim

t→T –
0

y(t) = 0. (3.1)

Note that the set-valued map (t, z) ↪→G(t, z) = (G1(t, z),G2(t, z))T has non-empty compact
convex values and USC, so it is measurable. By the measurable selection theorem (see
Lemma 2.4), if z(t) is a solution of the system (1.1) in the sense of Filippov on t ∈ [0,T0),
then there exists a bounded measurable function η = (η1,η2)T : [0,T0) → R

2 such that
η1(t) ∈ co[h1(x(t), y(t))], and η2(t) ∈ co[h2(x(t), y(t))] for a.a. t ∈ [0,T0). For a.a. t ∈ [0,T0),
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we have:

dx(t)
dt

= x(t)
[
r1(t) – b1(t)x

(
t – τ1(t)

)]
–

a1(t)x(t)ym(t)
A + Bx(t) + Cy(t)

– ε1(t)η1(t)x(t),

dy(t)
dt

= y(t)
[
–r2(t) – b2(t)y

(
t – τ2(t)

)]
+

a2(t)x(t)ym(t)
A + Bx(t) + Cy(t)

– ε2(t)η2(t)y(t).
(3.2)

Hence, for a.a. t ∈ [0,T0), we have:

dx(t)
dt

≤ r1(t)x(t),

dy(t)
dt

≤ a2(t)x(t)ym(t)
A + Bx(t) + Cy(t)

≤ au
2

B
ym(t).

Thus, for a.e. t ∈ [0,T0), we obtain:

x(t) ≤ φ1(0)e
∫ t

0 r1(s) ds ≤ φ1(0)eru
1 T0 ,

y1–m(t) ≤ φ1–m
2 (0) +

∫ t

0

au
2

B
ds ≤ φ1–m

2 (0) +
au

2T0

B
.

(3.3)

For a.a. t ∈ [0,T0), it follows from (3.2) and (3.3) that:

dx(t)
dt

≥ x(t)
{

r1(t) – b1(t)
[
φ1(0)eru

1 T0 + ‖φ‖C
]

–
a1(t)

A

[
φ1–m

2 (0) +
au

2T0

B

] m
1–m

– ε1(t)H1

}
,

dy(t)
dt

≥ y(t)
{

–r2(t) – b2(t)
[
φ1–m

2 (0) +
au

2T0

B

] 1
1–m

+ ‖φ‖C] – ε2(t)H2

}
.

Thus, for a.a. t ∈ [0,T0), we obtain:

x(t) ≥ φ1(0)e
∫ t

0 {r1(s)–b1(s)[φ1(0)eru
1 T0 +‖φ‖C]– a1(s)

A [φ1–m
2 (0)+

au
2 T0
B ]

m
1–m –ε1(s)H1}ds

≥ φ1(0)e{rl
1–bu

1 [φ1(0)eru
1 T0 +‖φ‖c]–

au
1

A [φ1–m
2 (0)+

au
2T0
B ]

m
1–m –εu

1 H1}T0 ,

y(t) ≥ φ2(0)e
∫ t

0 {–r2(s)–b2(s)[φ1–m
2 (0)+

au
2T0
B ]

1
1–m +‖φ‖C–ε2(s)H2}ds

≥ φ2(0)e{–ru
2 –bu

2 [φ1–m
2 (0)+

au
2T0
B ]

1
1–m +‖φ‖C–εu

2 H2}T0 .

(3.4)

Evidently, (3.4) contradicts (3.1), which implies that T0 = T . That is, z(t) = (x(t), y(t))T > 0,
for t ∈ [0,T ). The proof of Theorem 3.1 is completed. �

Theorem 3.2 (Viability) Under the assumptions (D), any solution of (1.1) associated with
the initial condition (φ1,φ2)T > 0 is positive and exists for all t ∈ [0, +∞).

Proof Let z(t) = (x(t), y(t))T be a solution of (1.1) associated with the initial condition
(φ1,φ2)T > 0. Similar to the proof of Theorem 3.1, z(t) = (x(t), y(t))T > 0 for all t ∈ [0,T ),
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where T ∈ (0, +∞]. If T = +∞, the proof of Theorem 3.2 is completed. If T is finite, i.e.,
T < +∞. According to the continuation theorem, one has:

lim
t→T–

x(t) = 0 or lim
t→T–

x(t) = +∞. (3.5)

Note that the set-valued map (t, z) ↪→ G(t, z) = (G1(t, z),G2(t, z))T has non-empty com-
pact convex values and is USC [4]. Therefore, it is measurable. By the measurable se-
lection theorem, if z(t) is a solution of (1.1) in the sense of Filippov on t ∈ [0,T ), then
there exists a bounded measurable function γ = (γ1,γ2)T : [0,T ) → R

2, such that γ1(t) ∈
co[h1(x(t), y(t))], and γ2(t) ∈ co[h1(x(t), y(t))] for a.a. t ∈ [0,T ). For a.a. t ∈ [0,T ), we have:

dx(t)
dt

= x(t)
[
r1(t) – b1(t)x

(
t – τ1(t)

)]
–

a1(t)x(t)ym(t)
A + Bx(t) + Cy(t)

– ε1(t)γ1(t)x(t),

dy(t)
dt

= y(t)
[
–r2(t) – b2(t)y

(
t – τ2(t)

)]
+

a2(t)x(t)ym(t)
A + Bx(t) + Cy(t)

– ε2(t)γ2(t)y(t).

Similar as (3.3), for a.a. t ∈ [0,T ), one has:

x(t) ≤ φ1(0)eru
1 T ,

y(t) ≤
[
φ1–m

2 (0) +
au

2T
B

] 1
1–m

,

and

x(t) ≥ φ1(0)e{rl
1–bu

1 [φ1(0)eru
1 T +‖φ‖C]–

au
1

A [φ1–m
2 (0)+

au
2T
B ]

m
1–m –εu

1 H1}T ,

y(t) ≥ φ2(0)e{–rμ2 –bu
2 [φ1–m

2 (0)+
au

2T
B ]

1
1–m +‖φ‖C]–εu

2 H2}T .
(3.6)

Obviously, (3.6) contradict (3.5), which shows T = +∞. The proof of Theorem 3.2 is com-
pleted. �

Remark 3.1 Consider the change of variables x(t) = eu1(t), y(t) = eu2(t), then the functional
differential inclusions (2.2) can be transformed into the following functional differential
inclusions:

u′
1(t) ∈ r1(t) – b1(t)eu1(t–τ1(t)) –

a1(t)emu2(t)

A + Beu1(t) + Ceu2(t)

– ε1(t)co
[
h1

(
eu1(t), eu2(t))],

u′
2(t) ∈ –r2(t) – b2(t)eu2(t–τ2(t)) +

a2(t)eu1(t)e(m–1)u2(t)

A + Beu1(t) + Ceu2(t)

– ε2(t)co
[
h2

(
eu1(t), eu2(t))].

(3.7)

Obviously, z(t) = (x(t), y(t))T is a positive solution of functional differential inclusions
(2.2) if and only if u(t) = (u1(t), u2(t))T is a solution of functional differential inclusions
(3.7). Moreover, solution (u1(t), u2(t))T possesses the same properties as a positive so-
lution z(t) = (x(t), y(t))T . Hence, if (3.7) has one ω-periodic solution (u∗

1(t), u∗
2(t))T , then

(x∗(t), y∗(t))T = (eu∗
1(t), eu∗

2(t))T is a positive ω-periodic solution of (1.1).
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Theorem 3.3 Assume that (D) holds and satisfies the following condition:

(D5) H1 < r̄1– ā1
A emM2

ε̄1
,

(D6) H2 <
–r̄2+ ā2eM3 e(m–1)M2

A+BeM3 +CeM2
ε̄2

,
where M1 = ln r̄1

b̄1
+ 1

2ω(|r1| + r̄1), M2 = 1
m–1 ln Ar̄2

ā2eM1 + 1
2ω(|r2 + ε2H2| + r̄2 + ε̄2H2), M3 =

ln
r̄1–ε̄1H1–( a1

A )emM2

b̄1
– 1

2ω(|r1| + r̄1)
then (1.1) has at least one ω-periodic solution.

Proof Define the norm

‖u‖Cω = max
t∈[0,ω]

{∣∣u1(t)
∣∣ +

∣∣u2(t)
∣∣},

then Cω(R,R2) is a Banach space with ‖ · ‖Cω . For u(t) = (u1(t), u2(t))T ∈ Cω(R,R2), let
F(t, u) = (F1(t, u),F2(t, u))T , where

F1(t, u) = r1(t) – b1(t)eu1(t–τ1(t)) –
a1(t)emu2(t)

A + Beu1(t) + Ceu2(t)

– ε1(t)co
[
h1

(
eu1(t), eu2(t))],

F2(t, u) = –r2(t) – b2(t)eu2(t–τ2(t)) +
a2(t)eu1(t)e(m–1)u2(t)

A + Beu1(t) + Ceu2(t)

– ε2(t)co
[
h2

(
eu1(t), eu2(t))].

Note that G(t, z) = (G1(t, z),G2(t, z))T is a USC set-valued map with non-empty compact
convex values, then F(t, u) = (F1(t, u),F2(t, u))T is a USC set-valued map with non-empty
compact convex values under the change of variables x(t) = eu1(t), y(t) = eu2(t).

Next, we will show the existence of ω-periodic solution to (1.1) by Theorem 2.1 and
divide the proof into several steps.

(1) Existence of bounded open set � ⊆ Cω .
Corresponding to the differential inclusions du

dt ∈ λF(t, u),λ ∈ (0, 1), one has:

u′
1(t) ∈ λ

{
r1(t) – b1(t)eu1(t–τ1(t)) –

a1(t)emu2(t)

A + Beu1(t) + Ceu2(t)

– ε1(t)co
[
h1

(
eu1(t), eu2(t))]

}
,

u′
2(t) ∈ λ

{
–r2(t) – b2(t)eu2(t–τ2(t)) +

a2(t)eu1(t)e(m–1)u2(t)

A + Beu1(t) + Ceu2(t)

– ε2(t)co
[
h2

(
eu1(t), eu2(t))]

}
.

(3.8)

Assume that u(t) = (u1(t), u2(t))T ∈ Cω(R,R2) is a solution of (3.8) for a certain λ ∈ (0, 1).
It is easy to see that λF(t, u) = (λF1(t, z),λF2(t, z))T is a USC set-valued map with non-
empty compact convex values, then by the measurable selection theorem, there exists a
measurable function η = (η1,η2)T : [–τ , +∞) → R

2 such that η1 ∈ co[h1(eu1(t), eu2(t))], η2 ∈
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co[h2(eu1(t), eu2(t))] and

u′
1(t) = λ

{
r1(t) – b1(t)eu1(t–τ1(t)) –

a1(t)emu2(t)

A + Beu1(t) + Ceu2(t) – ε1(t)η1(t)
}

,

u′
2(t) = λ

{
–r2(t) – b2(t)eu2(t–τ2(t)) +

a2(t)eu1(t)e(m–1)u2(t)

A + Beu1(t) + Ceu2(t) – ε2(t)η2(t)
}

,
(3.9)

for a.a. t ∈ [0, +∞). Assume that u(t) = (u1(t), u2(t))T ∈ Cω(R,R2) is a solution of (3.9) for
a certain λ ∈ (0, 1), then

∫ ω

0

[
b1(t)eu1(t–τ1(t)) +

a1(t)emu2(t)

A + Beu1(t) + Ceu2(t) + ε1(t)η1(t)
]

dt = ωr̄1, (3.10)

∫ ω

0

[
a2(t)eu1(t)e(m–1)u2(t)

A + Beu1(t) + Ceu2(t) – b2(t)eu2(t–τ2(t))
]

dt = ωr̄2 +
∫ ω

0
ε2(t)η2(t) dt. (3.11)

By (3.10) and (3.11), we have

∫ ω

0

∣∣u′
1(t)

∣∣dt = λ

∫ ω

0

∣
∣∣∣r1(t) – b1(t)eu1(t–τ1(t))

–
a1(t)emu2(t)

A + Beu1(t) + Ceu2(t) – ε1(t)η1(t)
∣
∣∣∣dt

≤ ω
(|r1| + r̄1

)
,

(3.12)

∫ ω

0

∣
∣u′

2(t)
∣
∣dt = λ

∫ ω

0

∣∣
∣∣–r2(t) – b2(t)eu2(t–τ2(t))

+
a2(t)eu1(t)e(m–1)u2(t)

A + Beu1(t) + Ceu2(t) – ε2(t)η2(t)
∣∣
∣∣dt

≤ ω
(|r2 + ε2H2| + r̄2 + ε̄2H2

)
,

(3.13)

Note that u = (u1(t), u2(t))T ∈ Cω(R,R2), there exist t∗
i , t∗∗

i ∈ [0,ω] such that

ui
(
t∗
i
)

= max
t∈[0,ω]

ui(t), ui
(
t∗∗
i

)
= min

t∈[0,ω]
ui(t), i = 1, 2. (3.14)

It follows from (3.10) and (3.14) that ωr̄1 ≥ ∫ ω

0 b1(t)eu1(t–τ1(t)) dt ≥ ωb̄eu1(t∗∗
1 ), which implies

u1
(
t∗∗
1

) ≤ ln
r̄1

b̄1
. (3.15)

By (3.12), (3.15) and Lemma 2.5, for any t ∈ [0,ω],

u1(t) ≤ u1
(
t∗∗
1

)
+

1
2

∫ ω

0

∣
∣u′

1(t)
∣
∣dt ≤ ln

r̄1

b̄
+

1
2
ω

(|r1| + r̄1
)

= M1. (3.16)

Using (3.11), (3.14), and (3.16), one can obtain

ωā2eM1 e(m–1)u2(t∗∗
2 )

A
≥

∫ ω

0

a2(t)eu1(t)e(m–1)u2(t)

A + Beu1(t) + Ceu2(t) dt ≥ ωr̄2,
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that is

u2
(
t∗∗
2

) ≤ 1
m – 1

ln
Ar̄2

ā2eM1
,

which implies

u2(t) ≤ u2
(
t∗∗
2

)
+

1
2

∫ ω

0

∣∣u′
2(t)

∣∣dt

≤ 1
m – 1

ln
Ar̄2

ā2eM1
+

1
2
ω

(|r2 + ε2H2| + r̄2 + ε̄2H2
)

= M2.
(3.17)

In addition, from (3.10) and (3.17), one has

ωb̄1eu1(t∗1 ) ≥ ω(r̄1 – ε̄1H1) –
∫ ω

0

a1(t)emu2(t)

A + Beu1(t) + Ceu2(t) dt

≥ ω(r̄1 – ε̄1H1) – ω

(
a1

A

)
emM2 ,

that is

u1
(
t∗
1
) ≥ ln

r̄1 – ε̄1H1 – ( a1
A )emM2

b̄1
,

which together with (3.12) and Lemma 2.5 implies

u1(t) ≥ u1
(
t∗
1
)

–
1
2

∫ ω

0

∣∣u′
1(t)

∣∣dt

≥ ln
r̄1 – ε̄1H1 – ( a1

A )emM2

b̄1
–

1
2
ω

(|r1| + r̄1
)
� M3.

(3.18)

By (3.18), (3.14), and (3.11), we have

ωb̄2eu2(t∗2 ) ≥ ω(–r̄2 – ε̄2H2) +
∫ ω

0

a2(t)eu1(t)e(m–1)u2(t)

A + Beu1(t) + Ceu2(t) dt

≥ ω(–r̄2 – ε̄2H2) + ω
ā2(t)eM3 e(m–1)M2

A + BeM3 + CeM2
,

u2
(
t∗
2
) ≥ ln

–r̄2 – ε̄2H2 + ā2(t)eM3 e(m–1)M2

A+BeM3 +CeM2

b̄2
.

Therefore, (3.13) and Lemma 2.5 imply

u2(t) ≥ u2
(
t∗
2
)

–
1
2

∫ ω

0

∣∣u′
2(t)

∣∣dt

≥ ln
–r̄2 – ε̄2H2 + ā2(t)eM3 e(m–1)M2

A+BeM3 +CeM2

b̄2
–

1
2
ω

(|r2 + ε2H2| + r̄2 + ε̄2H2
)
� M4.

(3.19)

It follows from (3.16)–(3.19) that

‖u‖ < |M1| + |M2| + |M3| + |M4| � M0.
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It is not difficult to see that M0 is independent of λ. Denote

� =
{

u = (u1, u1)T ∈ Cω

(
R,R2) : ‖u‖ < M0

}
.

Obviously, � is an open bounded set of Cω(R,R2), and u /∈ ∂� for any λ ∈ (0, 1). This
shows that the condition (1) in Theorem 2.1 is satisfied.

(2) u /∈ ∂� ∩R
n, where u is the solution of 0 ∈ 1

ω

∫ ω

0 F(t, u) dt.
Now, we will show that condition (2) in Theorem 2.1 holds. Otherwise, suppose that

ρ = (ρ1,ρ2)T ∈ ∂� ∩ R
2 is a solution of 0 ∈ 1

ω

∫ ω

0 F(t,ρ) dt � F0(ρ), where ρ is a constant
vector on R

2 such that ‖ρ‖ = M0, that is, |ρ1| = M0 or |ρ2| = M0, so

0 ∈ 1
ω

∫ ω

0

{
r1(t) – b1(t)eρ1 –

a1(t)emρ2

A + Beρ1 + Ceρ2
– ε1(t)co

[
h1

(
eρ1 , eρ2

)]}
dt,

0 ∈ 1
ω

∫ ω

0

{
–r2(t) – b2(t)eρ2 +

a2(t)eρ1 e(m–1)ρ2

A + Beρ1 + Ceρ2
– ε2(t)co

[
h2

(
eρ1 , eρ2

)]}
dt.

Considering the set-valued map

(t, u) → 1
ω

∫ ω

0
F(t, u) dt =

(
1
ω

∫ ω

0
F1(t, u) dt,

1
ω

∫ ω

0
F2(t, u) dt

)T

,

we will show that 1
ω

∫ ω

0 F(t, u) dt has a closed graph. Define the set-valued operator

F
∗ =

(
F

∗
1,F∗

2
)T : Cω

(
R,R2) → L1([0,ω],R2)

by let

F
∗
i (u) =

{
vi ∈ L1([0,ω],R

)
: vi(t) ∈ Fi(t, u), a.e. t ∈ [0,ω]

}
.

It is easy to show that F(t, u) is an L1-Carathéodory map, then the set F∗(u) is non-empty
for each fixed u ∈ Cω(R,R2). Consider the linear continuous operator L : L1([0,ω],R2) →
C([0,ω],R2)

Lu(t) =
(

1
ω

∫ ω

0
F1(t, u) dt,

1
ω

∫ ω

0
F2(t, u) dt

)T

,

hence, it follows from Lemma 2.2 and Lemma 2.3 that ϕ = L◦F∗ is a closed graph operator.
Note that for set-valued map with non-empty compact values, USC is equivalent to the

condition of being a closed graph operator, that is ϕ is USC (Lemma 2.1). Therefore, it
is measurable. By the measurable selection theorem, there exists a constant vector η =
(η1,η2)T : η1 ∈ co[h1(eρ1 , eρ2 )], η2 ∈ co[h2(eρ1 , eρ2 )] such that

0 =
1
ω

∫ ω

0

[
r1(t) – b1(t)eρ1 –

a1(t)emρ2

A + Beρ1 + Ceρ2
– ε1(t)η1

]
dt,

0 =
1
ω

∫ ω

0

[
–r2(t) – b2(t)eρ2 +

a2(t)eρ1 e(m–1)ρ2

A + Beρ1 + Ceρ2
– ε2(t)η2

]
dt.
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Similar to the proof of (3.16)–(3.19), one has

ρ1 ≤ ln
r̄1

b̄1
≤ M1,

ρ2 ≤ 1
m – 1

ln
Ar̄2

ā2eM1
≤ M2,

ρ1 ≥ ln
r̄1 – ε̄1H1 – ā1

A emM2

b̄1
≥ M3,

ρ2 ≥ ln
–r̄2 – ε̄2H2 + ā2(t)eM3 e(m–1)M2

A+BeM3 +CeM2

b̄2
≥ M4,

hence

‖ρ‖ =
∥∥(ρ1,ρ2)T∥∥ = max

{|ρ1| + |ρ2|
}

< M0, (3.20)

which contradicts the fact that ‖ρ‖ = M0. Hence, condition (2) in Theorem 2.1 is satisfied.
(3) deg(F0,� ∩R

n, 0) �= 0.
To complete the proof, we will prove that condition (3) in Theorem 2.1 is satisfied. Define

the homotopic set-valued map ψ by

ψ(u1, u2,μ1,μ2) =

[
r̄1 – b̄1eu1 – ā1

A emM2 – ε̄1H1

–r̄2 – b̄2eu2 + ā2eM3 e(m–1)M2

A+BeM3 +CeM2 – ε̄2H2

]

+ μ1

[
ā1
A emM2 – 1

ω

∫ ω

0
a1(t)emu2

A+Beu1 +Ceu2 dt
1
ω

∫ ω

0
a2(t)eu1 e(m–1)u2

A+Beu1 +Ceu2 dt – ā2eM3 e(m–1)M2

A+BeM3 +CeM2

]

+ μ2

[
ε̄1H1 – ε̄1co[h1(eu1 , eu2 )]
ε̄2H2 – ε̄2co[h2(eu1 , eu2 )]

]

,

where μ1,μ2 ∈ [0, 1] are two parameters.
We will show that if u = (u1, u2)T ∈ ∂� ∩ R

2 and u = (u1, u2)T is a constant vec-
tor with ‖u‖ = max{|u1|, |u2|} = M0, then 0 /∈ ψ(u1, u2,μ1,μ2). Otherwise, suppose that
u = (u1, u2)T ∈R

2, ‖u‖ = M0 satisfying 0 ∈ ψ(u1, u2,μ1,μ2), that is

0 ∈ r̄1 – b̄1eu1 –
ā1

A
emM2 – ε̄1H1

+ μ1

[
ā1

A
emM2 –

1
ω

∫ ω

0

a1(t)emu2

A + Beu1 + Ceu2
dt

]

+ μ2
{
ε̄1H1 – ε̄1co

[
h1

(
eu1 , eu2

)]}
,

0 ∈ –r̄2 – b̄2eu2 +
ā2eM3 e(m–1)M2

A + BeM3 + CeM2
– ε̄2H2

+ μ1

[
1
ω

∫ ω

0

a2(t)eu1 e(m–1)u2

A + Beu1 + Ceu2
dt –

ā2eM3 e(m–1)M2

A + BeM3 + CeM2

]

+ μ2
{
ε̄2H2 – ε̄2co

[
h2

(
eu1 , eu2

)]}
.
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then there exists a constant vector η = (η1,η2)T : η1 ∈ co[h1(eu1 , eu2 )], η2 ∈ co[h2(eu1 , eu2 )],
such that

0 = r̄1 – b̄1eu1 –
ā1

A
emM2 – ε̄1H1

+ μ1

[
ā1

A
emM2 –

1
ω

∫ ω

0

a1(t)emu2

A + Beu1 + Ceu2
dt

]

+ μ2ε̄1(H1 – η1),

0 = –r̄2 – b̄2eu2 +
ā2eM3 e(m–1)M2

A + BeM3 + CeM2
– ε̄2H2

+ μ1

[
1
ω

∫ ω

0

a2(t)eu1 e(m–1)u2

A + Beu1 + Ceu2
dt –

ā2eM3 e(m–1)M2

A + BeM3 + CeM2

]

+ μ2ε̄2(H2 – η2).

Similar to (3.20), we have

‖u‖ = max
{|u1| + |u2|

}
< M0,

which is a contradiction. By the homotopic invariance and the properties of topological
degree, one has

deg
{
F0,� ∩R

2, 0
}

= deg
{
ψ(u1, u2, 1, 1),� ∩R

2, 0
}

= deg
{
ψ(u1, u2, 0, 0),� ∩R

2, 0
} �= 0.

According to Theorem 2.1, (3.7) has at least one ω-periodic solution. Correspondingly,
(1.1) has at least one ω-periodic solution with strictly positive components. The proof of
Theorem 3.3 is finished. �

Remark 3.2 Here, we have introduced a general harvesting management policy (DHP),
which is more realistic and complicated than TP. Based on the theory of topological de-
gree, some easily testable conditions ensure the existence of the positive periodic solution
for the model with DHP, which generalizes and improves the previous results on periodic
dynamical behavior in the literature.

4 Numerical examples
Example 4.1 In (1.1), let

r1(t) = 0.9 + 0.1 sin t, b1(t) = 0.8 + 0.2 cos t, a1(t) = 0.15 + 0.05 sin t,

ε1(t) = ε2(t) = 0.2 + 0.1 cos t

r2(t) = 0.1 + 0.03 sin t, b2(t) = 0.2 + 0.1 sin t, a2(t) = 0.5 + 0.05 sin t,

τ1(t) = τ2(t) = 1, m = 0.5, A = 0.5, B = 0.5, C = 0.6

(4.1)
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Figure 1 Dynamic behavior of x(t), y(t) of solution (x(t), y(t)) for (4.1), respectively

and

h1(x, y) = h2(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x + y ≤ 0.056,

0.5, 0.056 < x + y ≤ 0.066,

1, x + y > 0.066.

It is easy to check that the conditions in Theorem 3.3 hold, so (4.1) has at least one posi-
tive 2π-periodic solution. Take the initial value as x(θ ) ≡ 0.02, y(θ ) = 0.02. Figure 1 shows
the dynamic behaviors of the solution (x(t), y(t)), which is a positive periodic solution of
(4.1).

Example 4.2 In (1.1), let

r1(t) = 0.9 + 0.1 sin t, b1(t) = 0.8 + 0.2 cos t, a1(t) = 0.15 + 0.05 sin t,

ε1(t) = ε2(t) = 1 + 0.1 cos t,

r2(t) = 0.1 + 0.02 sin t, b2(t) = 0.2 + 0.1 cos t, a2(t) = 0.5 + 0.05 sin t,

τ1(t) = τ2(1) = 1, m = 0.5, A = 0.5, B = 0.5, C = 0.6.

(4.2)

Here, we consider two cases, that is continuous harvesting and discontinuous harvesting.
(ii) continuous harvesting policy: in this case, the harvesting policies are described by

the following continuous function:

h1(x, y) = h2(x, y) ≡ 1.

Take the initial value as x(θ ) ≡ 0.2, y(θ ) = 0.2. Figure 2 shows the dynamic behaviors
of the solution (x(t), y(t)), it is easy to see the extinction of the predator.
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Figure 2 Dynamic behavior of x(t), y(t) of solution (x(t), y(t)) for (4.2), respectively

Figure 3 Dynamic behavior of x(t), y(t) of solution (x(t), y(t)) for (4.2), respectively

(ii) discontinuous harvesting policy, in this case, the harvesting policies are described by
the following discontinuous function:

h1(x, y) = h2(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x + y ≤ 0.5,

0.5, 0.5 < x + y ≤ 2,

1, x + y > 2.

Take the initial value as x(θ ) ≡ 0.2, y(θ ) = 0.2. Figure 3 shows the dynamic behaviors
of the solution (x(t), y(t)), which is a positive π -periodic solution of (4.2).
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Note that in the case of continuous harvesting policies, excessive exploitation makes the
natural resources barren, but if discontinuous harvesting policies are considered, this is
conducive to the protection of natural resources and the ecological balance.
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