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Abstract
The purpose of this study is to establish fixed-point results for new interpolative
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1 Introduction
If a metric space (MS) fulfills the four essential requirements resulting from the works
of Foertsch [1] and Schroeder [2], it is named as a Busemann space (BS) and a hyper-
bolic space (HS) [3], indicating that the space is a complete geodesic space (GS). Her-
bert Busemann [4, 5] first used this style of space in 1942. The cone metric of a BS was
demonstrated by Pavel [6]. The conclusion of locally nonexpansive mappings in length
and geodesic spaces was demonstrated by Alghamdi et al. [7]. Observations on convex
combinations in GSs were made by Alghamdi and Kirk [8]. Taking a leading position in
the Busemann functions, boundary weights for the stationary process, the shape formula,
infinite geodesics, solvable variational formulae, and tools for demonstrating results on
fluctuation exponents are some examples of invariant measures for Markov chains.

The Laplace transform method (LTM) was used by Miller and Ross [9] to solve the
Cauchy problem (CP) in this specific differential equation (DE) scenario. The CP for the
fractional DEs with the Caputo fractional derivative (CFD) was proved by Luchko et al.
[10] using the operational technique. By applying LTMs, Podlubny [11] demonstrated
fractional DEs. Numerous mathematical fields, including digital data processing, image
processing, acoustics, electrical signal processing, probability theory, and physics use the
CFDs; see [12]. We direct the readers to [13–18] for extensive literature on fractional DEs.

By bridging the gap left by Banach [19] after more than three decades, Kannan [20] de-
veloped a discontinuity of contraction mappings that can have a fixed point (FP) on a com-
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plete MS in 1968. By merging the ideas of Banach and Kanann on the complete MS, Reich
[21] established the FP theorem involving three metric points. Ćirić [22] extended the
ideas of Banach [19] to demonstrate the FP theorem using six metrics. Kannan’s, Ćirić’s,
and Reich’s FP theorems have recently been researched and expanded in many ways.

Later, in order to accelerate the convergence of an operator to a unique FP, Karapinar
[21] transformed the basic Kannan [20, 23] contraction phenomenon into an interpola-
tive one. However, Karapinar et al. [24] identified a flaw in the study by [22] regarding the
assumption that the FP is unique and developed a revised version by fusing the ideas of
Reich [21, 25], Ćirić [22], and Rus [26]. They did this by providing a counter-example. To
disprove the notion that the FP must be unique, they offered a counter-example. Since
then, different interpolative mapping variations for single and multivalued cases in dif-
ferent metric spaces have been demonstrated. Through the Branciari distance, Aydi et al.
[27] demonstrated an interpolative Ćirić–Reich–Rus (CRR) type contractions. FP findings
on extended interpolative CCR-type F-contractions were presented by Mohammadi et al.
[28] along with an application. In quasi-partial b-metric space, Mishra et al. [29] demon-
strated the FP theorem for interpolative CRR and Hardy–Rogers contractions along with
associated FP results.

Further, to demonstrate the reality of the coincidence point, Errai et al. [30] presented
some fresh interpolative Hardy–Rogers and CCR-type contractions in a metric space set-
ting. The investigation here is unusual because it combines ideas from Busemann [4, 5],
Ćirić [31], Karapinar [22], and Alghamdi et al. [7] to demonstrate the outcomes of in-
terpolative hybrid contractions (IHC for short) mappings in convex hull combinations of
a BS.

2 Preliminaries
We introduce a few definitions and theorems in the stage that follows, which will aid in
the development of our key findings.

Definition 2.1 [32] Assume that � is an MS, a path

ϒ : [c1, c2] → �

is called a geodesic path in �.

Definition 2.2 [32] Assume that � is a vector space if for all θ ,ϑ ∈ � such that the affine
segment

[θ ,ϑ] =
{

(1 – σ )θ + σϑ : 0 ≤ σ ≤ 1
}

is contained in �, then a subset � ⊂ � is called affinely convex.

Definition 2.3 [33] Let � be a geodesic MS. If for any two affinely re-parametrized
geodesics � : [c1, c2] → � and �∗ : [c′

1, c′
2] → � such that the mapping

��,�∗ : [c1, c2] × [
c′

1, c′
2
] →R

is convex, then the MS � is called a BS.
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It should be noted that, for all θ ,ϑ in a uniquely GS (�, d), a point θ∗ ∈ [θ ,ϑ] iff there
is σ ∈ [0, 1] such that d(θ∗, θ ) = σd(θ ,ϑ) and d(θ∗,ϑ) = (1 – σ )d(θ ,ϑ). For ease of use, we
shall write

θ∗ = (1 – σ )θ ⊕ σϑ .

Further, the metric d on � is convex, provided that � is a BS. This implies that, for every
ρ ∈ �,

d
(
ρ, (1 – σ )θ ⊕ σϑ

) ≤ (1 – σ )d(ρ, θ ) ⊕ σd(ρ,ϑ), (2.1)

for all σ ∈ [0, 1]. The following requirements, which are both required and sufficient for a
geodesic MS � to be a BS, are taken from [32]:

• Assume � and �
′ are respective midpoints of two geodesic segments [θ ,ϑ] and [θ ,ϑ ′]

in � that share the beginning point θ . Then

d
(
�,�′) ≤ 1

2
(
d(θ ,ϑ) + d

(
θ ,ϑ ′)).

• Assume � and �
′ are the respective midpoints of two geodesic segments [θ ,ϑ] and

[θ ′,ϑ ′] in � that share the beginning point θ . Then

d
(
�,�′) ≤ 1

2
(
d(θ ,ϑ) + d

(
θ ′,ϑ ′)).

Definition 2.4 [2] Assume that (�, d, U) is a HS if (�, d) is a MS and U : � × � →R is a
function fulfilling

(B1) for all θ ,ϑ ,ρ ∈ � and all σ ∈ [0, 1],

d(ρ, U(θ ,ϑ ,σ ) ≤ (1 – σ )d(ρ, θ ) + σd(ρ,ϑ),

(B2) for all θ ,ϑ ,ρ ∈ � and all σ1,σ2 ∈ [0, 1],

d(U(θ ,ϑ ,σ1), U(θ ,ϑ ,σ2) ≤ |σ1 – σ2|d(ρ, θ ),

(B3) for all θ ,ϑ ∈ � and all σ ∈ [0, 1],

U(θ ,ϑ ,σ ) = U(θ ,ϑ , 1 – σ ),

(B4) for all θ ,ϑ ,ρ1,ρ2 ∈ � and all σ ∈ [0, 1],

d(U(θ ,ρ1,σ ), U(ϑ ,ρ2,σ ) ≤ (1 – σ )d(θ ,ϑ) + σd(ρ1,ρ2).

Then (�, d, U) is called a BS.

It is remarkable that if only the axiom (B1) holds, then (�, d, U) is a convex MS [34]. A
BS is uniquely geodesic only when it is strictly convex [1]. The space is known as the HS
if requirements (B1)–(B3) are met [35].
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On a Hadamard space, where any two points are connected by a singular geodesic seg-
ment, we provide an example of Busemann functions. The function 	 = 	τ is convex, that
is, it is convex on the segment [θ ,ϑ]. If ρ(σ ) is a point, which divides [θ ,ϑ] according to
σ : 1 – σ ratio, then

	(
ρ(σ )

) ≤ σ	θ + (1 – σ )	ϑ ,

for θ ,ϑ ∈ �.

Proposition 2.5 [7] A GS has a path metric when it is a connected and open subset.

Proposition 2.6 [36] Let � be a linear space and Q be a subset of �. Q is called a convex
if for any finite set {θ1, θ2, . . . , θm} ⊆ Q and any scalar σj ≥ 0, i = 1, 2, . . . , m with σ1 + σ2 +
· · · + σm = 1, we have

σ1θ1 + σ2θ2 + · · · + σmθm ∈ Q.

Definition 2.7 [36] Let � be a linear space and Q (not necessarily convex) be a subset of
�. Then the intersection of all convex subsets of � containing Q is called a convex hull
(CH) of Q in � and is denoted by Q0(Q) such that

Q0(Q) = ∩{V ⊆ �; Q ⊆ V , V is convex}.

As a result, Q0(Q) is the unique smallest convex set that contains Q.

Q0(Q) =

{

σ1θ1 + σ2θ2 + · · · + σmθm : θm ∈ Q, σm ≥ 0,
m∑

j=1

σj = 1

}

,

corresponds to the set of all Q’s convex combinations.

Definition 2.8 [36] Q0(Q) is a closure CH of Q, where

Q0(Q) =

{

σ1θ1 + σ2θ2 + · · · + σmθm : θm ∈ Q, σm ≥ 0,
m∑

j=1

σj = 1

}

.

The intersection of all closed convex subsets of � that contain Q is known as the closed
CH of Q in �. It is denoted by Q0(Q) such that

Q0(Q) = ∩{V ⊆ �; Q ⊆ V , V is convex and closed}.

Clearly, Q0(Q) = Q0(Q) and [θ ,ϑ] = Q0({θ ,ϑ}) is a CH of θ and ϑ for all θ , ϑ in a linear
space �.

Now, assume that conv(Q) refers to the closure of the set Q such that

conv(Q) =
∞⋃

m=0

Qm,
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where Q0 = Q and the set Qm is made up of all points in the space that are located on
geodesics that have endpoints in Qm–1 for m ≥ 1.

We will now present some initial findings.
Let � refer to the closure of a complete BS � and � be a closure to the set � ∈ �. Tal-

enti [37] provided a remark on the Busemann equation by taking into account the elliptic
equation below:

(
v2
ϑ – 1

)
vθθ – 2vϑvθ vθϑ +

(
v2
θ – 1

)
vϑϑ = 0, (2.2)

where vϑ = ∂v
∂ϑ

, vϑϑ = ∂2v
∂ϑ2 , v is a real-valued function of θ and ϑ and θ ,ϑ are independent

variables.
The mixed elliptic-hyperbolic nature of equation (2.2) is evident. As a result of the co-

efficient matrix
∣∣∣∣∣
v2
ϑ – 1 –vϑvθ

–vϑvθ v2
θ – 1

∣∣∣∣∣

makes the eigenvalues equal –1 and 1 + v2
ϑ + v2

θ . A solution v to (2.2) is elliptic in any area
with

v2
ϑ + v2

θ < 1,

and is hyperbolic with

v2
ϑ + v2

θ > 1.

As an illustration, the formulas

v(θ ,ϑ) = log
(√

θ2 + ϑ2 +
√

1 + θ2 + ϑ2
)
,

and

v(θ ,ϑ) = arcsin
√

θ2 + ϑ2,

represent, in turn, the always hyperbolic and everywhere elliptic solutions to (2.2) (Fig. 1).
The form

v(θ ,ϑ) = log

(
cosh θ

coshϑ

)
,

provides a solution to (2.2) with obeying streamlines

sinh |θ | sinh |ϑ | = constant,

and whose kind fluctuates-elliptic near the region

sinh |θ | sinh |ϑ | > 1.
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Figure 1 An elliptic solution to the equation (2.2)

The zero mean curvature equation is also known as Equation (2.2). Since the vector
(	θ ,	ϑ , 1) determines normal direction of the graph τ = 	(θ ,ϑ), the immersion at point
� is Minkowski space if and only if 1 – v2

θ + v2
ϑ is positive, negative, or zero at �. The partial

Eq. (2.2) must be elliptic, hyperbolic, or parabolic in order for these criteria to apply. The
elliptic solution to (2.2) obeys both

v2
θ + v2

ϑ < 1,

and

∂

∂θ

[
vθ

1 – v2
θ – v2

ϑ

]
+

∂

∂ϑ

[
vθ

1 – v2
θ – v2

ϑ

]
= 0.

Remember the metric described as

d = (∂θ )2 + (∂ϑ)2 – (∂v)2,

area of the space-like graph

v =
∫ ∫ (

1 – v2
θ – v2

ϑ

)
∂θ∂ϑ ,

holds in the Minkowski space in three dimensions. The following BS example was pro-
vided by Megginson [38]:

Example 2.9 In R
m, for q ∈ (1,∞), describe ‖.‖q as

‖.‖q =

( m∑

j=1

|θj|q
) 1

q

,

where θ = (θ1, θ2, . . . , θm) ∈R
m. Then (Rm,‖.‖) is strictly convex and hence a BS.
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Lemma 2.10 Assume that (�, d) is a BS and {θ1
m}, {θ2

m}, . . . , {θM
m } ⊆ � be M-sequence such

that

lim
m→∞ d

(
θ1

m, θ1
m+1

)
= 0, for all m = 1, 2, . . . , M.

The following theorem was established in 1971 by Ćirić [31] as a generalization of the
Banach contraction principle:

Theorem 2.11 Let (�, d) be a complete MS and 	 : � → � be a given mapping. We say
that 	 is a generalized contraction if there are β1,β2,β3,β4 ≥ 0 with β1 + β2 + β3 + 2β4 < 1
such that the inequality

d(	θ ,	ϑ) ≤ β1d(θ ,ϑ) + β2d(θ ,	θ ) + β3d(ϑ ,	ϑ) + β4
[
d(θ ,	ϑ) + d(ϑ ,	θ )

]

holds for every θ ,ϑ ∈ �. Then 	 owns a unique FP in �.

The theorem below was established by Kannan [20]:

Theorem 2.12 Let 	 be a self-mapping defined on a complete MS (�, d). If 	 fulfills

d(	θ ,	ϑ) ≤ β
[
d(θ ,	θ ) + d(ϑ ,	ϑ)

]
, for every θ ,ϑ ∈ � and β ∈

[
0,

1
2

]
.

Then 	 possesses a unique FP in �.

In [22], the results for interpolative Kannan contraction (IKC) were demonstrated as
follows:

Definition 2.13 On a MS (�, d), a mapping 	 : � → � is called IKC, if inequality

d(	θ ,	ϑ) ≤ β
[
d(θ ,	θ )

]η.
[
d(ϑ ,	ϑ)

]1–η,

is true for all θ ,ϑ ∈ � with θ �= 	θ , where β ∈ [0, 1) and η ∈ (0, 1).

Theorem 2.14 Assume that (�, d) is a MS. Then the mapping 	 : � → � owns a unique
FP, provided that it is an IKC mapping.

By using interpolation contraction mapping in partial MSs, Karapinar [39] proved the
following interpolative Reich–Rus–Ćirić type non-unique FP theorem:

Theorem 2.15 Suppose that (�, p) is a complete partially MS and 	 : � → � is a mapping
such that

p(	θ ,	ϑ) ≤ β
[
p(θ , θ )

]η1 .
[
p(θ ,	θ )

]η2 .
[
p(ϑ ,	ϑ)

]1–η1–η2 , for all θ ,ϑ ∈ �

for all β ∈ [0, 1), η1,η2 ∈ (0, 1) and θ ,ϑ ∈ �\fix(	), where fix(	) = {θ ∈ � : θ = 	θ}. Then
	 has a FP in �.

Alghamdi et al. [7] also took into account the following theorem:
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Theorem 2.16 Assume that (�, d) is a complete GS, � ∈ � is a connected open set and
	 : � → � is a local radial contraction. Consider extending 	 to a continuous mapping
	 : � → �. Then 	 possesses a FP in � and moreover {	mθ} converges to θ∗ for each θ ∈ �.

3 Main consequences
We start this part with the theorem below.

Theorem 3.1 Assume that (�, d) is a complete GS, � ∈ � is a connected open set and
	 : � → � is a local radial IHC mapping. Consider extending 	 to a continuous mapping
	 : � → �. If there are η1,η2,η3,η4 ∈ [0, 1) with η1 + η2 + η3 + η4 < 1 and β ≤ 1 such that

d(	θ ,	ϑ) ≤ βGB(θ ,ϑ), (3.1)

where

GB(θ ,ϑ) =
[
d(θ ,ϑ)

]η1 .
[
d(θ ,	θ )

]η2 .
[
d(ϑ ,	ϑ)

]η3 .
[

d(θ ,	ϑ)
2

]η4

×
[

d(θ ,	θ ) + d(ϑ ,	ϑ) + d(θ ,	ϑ) + d(ϑ ,	θ )
4

]1–η1–η2–η3–η4

,

for each θ ,ϑ ∈ � and � ∈ �. Then 	 owns a FP in � and moreover {	mθ} converges to θ∗

for each θ ∈ �.

Proof For θ1, θ2 ∈ � and a1, a2 ∈ [0, 1] fulfilling a1 + a2 = 1, let a1θ1 ⊕ a2θ2 stand for the
unique point of �. From (2.1), one has

d(θ1, a1θ1 ⊕ a2θ2) ≤ a1d(θ1, θ1) + a2d(θ1, θ2)

= a2d(θ1, θ2),

and

d(θ2, a1θ1 ⊕ a2θ2) ≤ a1d(θ1, θ2) + a2d(θ2, θ2)

= a1d(θ1, θ2).

It is specified that the ordered sum is

a1θ1 ⊕ a2θ2 ⊕ a3θ3 ⊕ · · · ⊕ am–1θm–1.

For (θ1, θ2, . . . , θm–1) ∈ ∏m–1
j=1 �, {aj}m–1

j=1 ⊂ [0, 1] and
∑m–1

j=1 aj = 1, for m > 1. Again, for
a1, a2, a3 = 1, and an ordered triple (θ1, θ2, θ3) ∈ ∏3

j=1 �, define

a1θ1 ⊕ a2θ2 ⊕ a3θ3 = θ3,

provided that a3 = 1. Hence, the set

a1θ1 ⊕ a2θ2 ⊕ a3θ3 ⊕ · · · ⊕ amθm = θm,
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provided that am = 1. Otherwise, we have

a1θ1 ⊕ a2θ2 ⊕ a3θ3 = a3θ3 ⊕ (1 – a3)
(

a2

1 – a3
θ2 ⊕ (1 – a3)

a2

1 – a3
θ1

)
.

Since d is convex, for each θ ∈ �,

a1θ1 ⊕ a2θ2 ⊕ a3θ3 = d
(

θ , a3θ3 ⊕ (1 – a3)
(

a2

1 – a3
θ2 ⊕ (1 – a3)

a2

1 – a3
θ1

))
.

Similarly, we have

a1θ1 ⊕ a2θ2 ⊕ a3θ3 ⊕ · · · ⊕ amθm = amθm ⊕ (1 – am)
[

am–1

1 – am
θ1

⊕ am–1

1 – am
θ2 ⊕ · · · ⊕ am–1

1 – am
θm–1

]
.

Now, we use the notation

a1θ1 ⊕ a2θ2 ⊕ a3θ3 ⊕ · · · ⊕ amθm =
m–1∑

j=1

ajθj.

The convexity of d implies that

d

(

θ ,
m–1∑

j=1

ajθj

)

=
m–1∑

j=1

ajd(θ , θj), for all θ ∈ �. (3.2)

Together, the completeness of �, let u > 1 and a1θ1 ⊕a2θ2 ⊕a3θ3 ⊕· · ·⊕au–1θu–1 have been
defined regardless of order, for all sets of u – 1 points of � and all {a1, a2, . . . , au–1} ⊂ [0, 1],
fulfilling

∑m–1
j=1 aj = 1. We might further assert via inductive reasoning that {a1, a2, . . . ,

au} ⊂ [0, 1]. Put

θ1
1 = a1θ1 ⊕ (1 – a1)

(
a2

1 – a1
θ2 ⊕ a3

1 – a1
θ3 ⊕ · · · ⊕ au

1 – a1
θu

)
,

θ1
2 = a2θ2 ⊕ (1 – a2)

(
a1

1 – a2
θ1 ⊕ a3

1 – a2
θ3 ⊕ · · · ⊕ au

1 – a2
θu

)
,

θ1
3 = a3θ3 ⊕ (1 – a3)

(
a1

1 – a3
θ1 ⊕ a2

1 – a3
θ2 ⊕ · · · ⊕ au

1 – a3
θu

)
,

...

θ1
u = auθu ⊕ (1 – au)

(
a1

1 – au
θ1 ⊕ a2

1 – au
θ2 ⊕ · · · ⊕ au

1 – au
θu

)
.

In general, assume that

θm
1 = a1θ

m–1
1 ⊕ (1 – a1)

(
a2

1 – a1
θm–1

2 ⊕ a3

1 – a1
θm–1

3 ⊕ · · · ⊕ au

1 – a1
θm–1

u

)
,

θm
2 = a2θ

m–1
2 ⊕ (1 – a2)

(
a1

1 – a2
θm–1

1 ⊕ a3

1 – a2
θm–1

3 ⊕ · · · ⊕ au

1 – a2
θm–1

u

)
,
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θm
3 = a3θ

m–1
3 ⊕ (1 – a3)

(
a1

1 – a3
θm–1

1 ⊕ a2

1 – a3
θm–1

2 ⊕ · · · ⊕ au

1 – a3
θm–1

u

)
,

...

θm
u = auθ

m–1
u ⊕ (1 – au)

(
a1

1 – au
θm–1

1 ⊕ a2

1 – au
θm–1

2 ⊕ · · · ⊕ au

1 – au
θm–1

u

)
.

Now, we estimate d(θm
j , θm

h ), j < h. Utilizing j and the ideas from (3.2), we obtain

d
(
θm

j , θm
h

) ≤
u∑

j=1

ajd
(
θm

j , θm
h

)

≤
u∑

j=1

aj

u∑

h=1

ahd
(
θm–1

j , θm–1
h

)

≤
u∑

j,h=1

ajahd
(
θm–1

j , θm–1
h

)

≤ 2

[ u∑

j,h=1(j<h)

ajah

]

diam
({

θm–1
1 , θm–1

2 , . . . , θm–1
u

})
. (3.3)

Setting β = 2(
∑u

j,h=1(j<h) ajah) in (3.3), we get

d
(
θm

j , θm
h

) ≤ diam
({

θm
1 , θm

2 , . . . , θm
u

}) ≤ β diam
({

θm–1
1 , θm–1

2 , . . . , θm–1
u

})
.

From Definition 2.8 and Definition 2.13, the set {θm
1 , θm

2 , . . . , θm
u } lies in the CH {θm–1

1 , θm–1
2 ,

. . . , θm–1
u }. It yields,

conv
{
θm

1 , θm
2 , . . . , θm

u
} ⊂ conv

{
θm–1

1 , θm–1
2 , . . . , θm–1

u
}

.

Consequently, we can write

diam
(
conv

{
θm

1 , θm
2 , . . . , θm

u
}) ≤ βm diam

(
conv

{
θm–1

1 , θm–1
2 , . . . , θm–1

u
})

.

We claim that for each j ≤ h ≤ u, the sequence {θm
h }∞h=1 is a Cauchy sequence and all

these sequences reach the same limit, which is denoted by a1θ1 ⊕ a2θ2 ⊕· · ·⊕ auθu. Using
Lemma 2.10, we have

lim
m→∞ d

(
θm

j , θm
h

)
= 0.

Next, assume that 	 is a continuous IGCTC mapping of a compact BS on (�, d). Suppose
that d is a path metric on � ∈ �. Hence, the sequence {	mθ} is Cauchy in (�, d). So, {	mθ}
converges to some point θ∗ ∈ �. We shall show that 	 has a FP. For this, let the point θ0 be
an arbitrary and fixed. Describe the sequence {θm}m∈N ∈ � as θm = 	θm–1 and θm+1 = 	θm.
If θm = θm+1 then, there is no proof. So, assume that θm �= θm+1, which yields d(θm, θm+1) > 0.

Now, in (3.1), put θ = θm–1, ϑ = θm and 	 = 	, one has

d(	θm–1,	θm) ≤ β max
{

GB(θm–1, θm), HB(θm–1, θm)
}

, (3.4)
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where

GB(θm–1, θm)

=
[
d(θm–1, θm)

]η1 .
[
d(θm–1,	θm–1)

]η2 .
[
d(θm,	θm)

]η3 .
[

d(θm–1,	θm)
2

]η4

×
[

d(θm–1,	θm–1) + d(θm,	θm–1) + d(θm–1,	θm) + d(θm,	θm–1)
4

]1–η1–η2–η3–η4

=
[
d(θm–1, θm)

]η1 .
[
d(θm–1, θm)

]η2 .
[
d(θm, θm+1)

]η3 .
[

d(θm–1, θm+1)
2

]η4

×
[

d(θm–1, θm) + d(θm, θm+1) + d(θm–1, θm+1) + d(θm, θm)
4

]1–η1–η2–η3–η4

=
[
d(θm–1, θm)

]η1+η2 .
[
d(θm, θm+1)

]η3 .
[

d(θm–1, θm+1)
2

]η4

×
[

d(θm–1, θm) + d(θm, θm+1) + d(θm–1, θm+1)
4

]1–η1–η2–η3–η4

. (3.5)

Suppose that d(θm–1, θm) ≤ d(θm, θm+1) and d(θm–1, θm+1) ≤ d(θm–1, θm) + d(θm, θm+1) for
some m ≥ 1, then we have

d(θm–1, θm+1)
2

≤ d(θm–1, θm) + d(θm, θm+1)
2

≤ d(θm, θm+1). (3.6)

Applying (3.6) in (3.5), we have

GB(θm–1, θm) ≤ [
d(θm–1, θm)

]η1+η2 .
[
d(θm, θm+1)

]1–η1–η2 .

It follows from (3.4) that

d(θm, θm+1) ≤ β
[
d(θm–1, θm)

]η1+η2 .
[
d(θm, θm+1)

]1–η1–η2 .

Or,

d(θm, θm+1)η1+η2 ≤ β
[
d(θm–1, θm)

]η1+η2 ,

which implies that

d(θm, θm+1) ≤ βd(θm–1, θm). (3.7)

Due to mathematical induction and (3.7), one can write

d(θm, θm+1) ≤ βmd(θ0, θ1).

Since β ∈ (0, 1), then

d(θm, θm+1) → 0, as m → ∞.
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Since � is complete, there is θ∗ ∈ � such that the segment [θ ,	θ ] lies in �, then
limm→∞ θm = θ∗. The continuity of 	 implies that

d
(
θ∗,	θ∗) = lim

m→∞ d(θm,	θm) = lim
m→∞ d(θm, θm+1) = 0.

Hence, θ∗ is a FP of 	. Ultimately, Put θ = θm, ϑ = θ∗ in (3.1) and using θ∗ = 	θ∗, we get

d
(
θ∗,	θ∗) < d

(	θm,	θ∗) ≤ βGB
(
θm, θ∗), (3.8)

where

GB
(
θm, θ∗)

=
[
d
(
θm, θ∗)]η1 .

[
d(θm,	θm)

]η2 .
[
d
(
θ∗,	θ∗)]η3 .

[
d(θm,	θ∗)

2

]η4

×
[

d(θm,	θm) + d(θ∗,	θ∗) + d(θm,	θ∗) + d(θ∗,	θm)
4

]1–η1–η2–η3–η4

≤ [
d
(
θ∗, θ∗)]η1 .

[
d
(
θ∗,	θ∗)]η2 .

[
d
(
θ∗,	θ∗)]η3 .

[
d(θ∗,	θ∗)

2

]η4

×
[

d(θ∗,	θ∗) + d(θ∗,	θ∗) + d(θ∗,	θ∗) + d(θ∗,	θ∗)
4

]1–η1–η2–η3–η4

≤ d
(
θ∗,	θ∗).

It follows from (3.8) that

d
(
θ∗,	θ∗) < d

(	θm,	θ∗) ≤ βd
(
θ∗,	θ∗),

yields

d
(
θ∗,	θ∗) ≤ 0,

which is a contradiction. Hence, θ∗ is a FP of 	. This ends the proof. �

Corollary 3.2 Assume that (�, d) is a complete GS, � ∈ � is a connected open set and
	 : � → � is a local radial IHC mapping. Consider extending 	 to a continuous mapping
	 : � → �. If there are η1,η2,η3,η4 ∈ [0, 1) with η1 + η2 + η3 + η4 < 1 and β ≤ 1 such that

[
d(	θ ,	ϑ)

]η1 .
[
d(θ ,	θ )

]η2 .
[
d(ϑ ,	ϑ)

]η3 .
[

d(θ ,	ϑ)
2

]η4

×
[

d(θ ,	θ ) + d(ϑ ,	ϑ) + d(θ ,	ϑ) + d(ϑ ,	θ )
4

]1–η1–η2–η3–η4

≤ βd(θ ,ϑ),

for each θ ,ϑ ∈ � and � ∈ �. Then 	 owns a FP in � and moreover {	mθ} converges to θ∗

for each θ ∈ �.
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Proof The proof follows immediately from Theorem 3.1. �

The example below supports Theorem 3.1.

Example 3.3 Consider � = [0, 1] with the standard path metric d(θ ,ϑ) = ‖θ –ϑ‖. Describe
the mapping 	 : � → � as

Sθ = Sθ =

⎧
⎨

⎩
θq, θ ≥ 0,

∞, θ < 0.

Our current job is to confirm the inequality (3.1). For this, let β = 1, η1 = 1
3 , η2 = 1

4 , η3 = 1
6

and η4 = 1
15 . If 	θ = 	ϑ , then d(	θ ,	ϑ) = 0. Hence, (3.1) is true directly. Otherwise, we

compute the subsequent path metrics. For θ ,ϑ ∈ � with θ = 1
2 , ϑ = 1

3 and q = 2, one has

d(	θ ,	ϑ) = d
(
θq,ϑq) =

∣∣θq – ϑq∣∣ =
∣∣∣∣

(
1
2

)2

–
(

1
3

)2∣∣∣∣ =
5

36
,

d(θ ,ϑ) = |θ – ϑ | =
1
6

,

d(θ ,	θ ) =
∣∣θ – θq∣∣ =

1
4

,

d(ϑ ,	ϑ) =
∣∣ϑ – ϑq∣∣ =

2
9

,

d(θ ,	ϑ) =
∣∣θ – ϑq∣∣ =

7
18

,

d(ϑ ,	θ ) =
∣∣ϑ – θq∣∣ =

1
12

.

Using the equality in (3.1), one may infer that

∣∣θq – ϑq∣∣ ≤ βGB(θ ,ϑ), (3.9)

where

GB(θ ,ϑ) =
[
d(θ ,ϑ)

]η1 .
[
d(θ ,	θ )

]η2 .
[
d(ϑ ,	ϑ)

]η3 .
[

d(θ ,	ϑ)
2

]η4

×
[

d(θ ,	θ ) + d(ϑ ,	ϑ) + d(θ ,	ϑ) + d(ϑ ,	θ )
4

]1–η1–η2–η3–η4

=
[|θ – ϑ |]η1 .

[∣∣θ – θq∣∣]η2 .
[∣∣ϑ – ϑq∣∣]η3 .

[ |θ – ϑq|
2

]η4

×
[ |θ – ϑ | + |θ – θq| + |θ – ϑq| + |ϑ – θq|

4

]1–η1–η2–η3–η4

=
[

1
6

] 1
3

.
[

1
4

] 1
4

.
[

2
9

] 1
6

.
[

7
36

] 1
15

.
[ 1

4 + 7
18 + 7

36 + 1
12

4

] 11
60

=
[

1
6

] 1
3

.
[

1
4

] 1
4

.
[

2
9

] 1
6

.
[

7
36

] 1
15

.
[

11
48

] 11
60 ≈ 0.20726. (3.10)



Hammad et al. Boundary Value Problems        (2023) 2023:116 Page 14 of 20

Applying (3.10) in (3.9) with β = 1 and |θq – ϑq| = 5
36 , we find that

∣∣θq – ϑq∣∣ =
5

36
≈ 0.13889 < 0.20726 = βGB(θ ,ϑ).

Therefore, all requirements of Theorem (3.1) are fulfilled. Hence, 	 has FPs 0 and 1 in �.

4 Solving the time-fractional Navier–Stokes equations
This part is considered as one of the main pillars of our paper, where theoretical results
are involved to study the existence of a solution to a nonlinear partial fractional DE in the
context of a BS.

The Navier–Stokes equations (NSEs) explain the conservation of mass and momentum
while describing the motion of incompressible Newtonian fluid flows, which can include
everything from the lubrication of ball bearings to large-scale atmospheric dynamics.

In this part, we study the time-fractional NSEs in an open set � ⊂R
m, m ≥ 3.

The time-fractional NSEs that are presented below were motivated by Zhou et al. [40]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂η
τ θ – s�θ + (θ .∇)θ = –∇q + ξ , τ ≥ 0,

∇ .θ = 0,

θ |� = 0,

θ (0, v) = �,

(4.1)

where ∂η
τ refers to the CFD of order η ∈ (0, 1),

θ =
(
θ1(τ , v), θ2(τ , v), θ3(τ , v), . . . , θm(τ , v)

)

refers to the velocity fields at a point v ∈ � and time τ > 0, q = q(τ , θ ) stands for the pres-
sure, s is the velocity, ξ (τ , v) is the external force and � = �(v) is the initial velocity. Further,
� is considered here to have a smooth boundary.

Helmholtz projector P in [41] can be used to write equation (4.1) as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂η
τ θ – sP�θ + P(θ .∇)θ = Pξ , τ ≥ 0,

∇ .θ = 0,

θ |� = 0,

θ (0, v) = �.

(4.2)

In the divergence-free function space, Stokes operator Z is the operator –sP� with Dirich-
let type boundary conditions. Consequently, (4.2) can be expressed as follows:

⎧
⎨

⎩

C
0 Dη

τ θ = –Zθ + R(θ , θ ) + Pξ , τ > 0,

θ (0) = �,
(4.3)

where R(θ ,ϑ) = –P(θ .∇)ϑ . The solution of Eq. (4.3) is also a solution of Eq. (4.1), provided
that one makes sense of the Stokes operator Z and the Helmholtz projector P.
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Assume that � = C([0, 1]) is the space of all continuous functions on [0, 1]. Clearly,
(�,‖.‖) is a Banach space under the usual norm. Consider J = [0, S], S > 0, and let C(J ,�)
be a Banach space of all continuous functions from I into � with the path metric

d(θ ,ϑ) = sup
τ∈J

∣∣θ (τ ) – ϑ(τ )
∣∣, for all θ ,ϑ ∈ �.

It is clear that (�, d) is a complete BS.
It is possible to write the time-fractional NSE (4.3) as

θ (τ ) = �(τ ) +
1

�(η)

∫ τ

0
(τ – r)η–1(Zθ (r) + R

(
θ (r), θ (r)

)
+ Pξ (r)

)
dr, τ ≥ 0.

To present the main theorem of this part, we need the following hypotheses:
(H1) For all θ ,ϑ ∈ � and all τ ∈ [0, 1], there is a continuous function � : [0, 1] ×R

m →R

such that

∣∣�
(
τ , θ (r)

)
– �

(
τ ,ϑ(r)

)∣∣ ≤ �
∣∣θ (r) – ϑ(r)

∣∣,

where � > 0 and �(τ , θ (r)) = Zθ (r) + R(θ (r), θ (r)) + Pξ (r),
(H2) For θ ,ϑ ∈ � and � ∈R

n there are η1,η2,η3,η4 ∈ [0, 1) with η1 + η2 + η3 + η4 < 1 and
β ≤ 1, such that

d(	θ ,	ϑ) ≤ βGB(θ ,ϑ),

where

GB(θ ,ϑ) =
[
d(θ ,ϑ)

]η1 .
[
d(θ ,	θ )

]η2 .
[
d(ϑ ,	ϑ)

]η3 .
[

d(θ ,	ϑ)
2

]η4

×
[

d(θ ,	θ ) + d(ϑ ,	ϑ) + d(θ ,	ϑ) + d(ϑ ,	θ )
4

]1–η1–η2–η3–η4

,

(H3) The parameter β takes the form

β =
�τη

�(η + 1)
≤ 1.

Theorem 4.1 Under Hypotheses (H1)–(H3), Problem (4.3) has a solution in C(J ,�).

Proof Define the mapping 	 : C(J) → C(J) by

	θ (τ ) = �(τ ) +
1

�(η)

∫ τ

0
(τ – r)η–1(Zθ (r) + R

(
θ (r), θ (r)

)
+ Pξ (r)

)
dr, (4.4)

for τ ∈ [0, 1]. Clearly, finding a solution to the time-fractional NSE (4.3) is equivalent to
find a FP for the mapping 	. We demonstrate that 	 is an IHC mapping in order to demon-
strate the existence of a FP of 	.

From the assumptions (H1) and (H3), one has

|	θ – 	ϑ | =
∣∣∣∣�(r) +

1
�(η)

∫ τ

0
(τ – r)η–1(Zθ (r) + R

(
θ (r), θ (r)

)
+ Pξ (r)

)
dr
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–
(

�(r) +
1

�(η)

∫ τ

0
(τ – r)η–1(Zϑ(r) + R

(
ϑ(r),ϑ(r)

)
+ Pξ (r)

)
dr

)∣∣∣∣

≤ 1
�(η)

∫ τ

0
(τ – r)η–1

× ∣∣(Zθ (r) + R
(
θ (r), θ (r)

)
+ Pξ (r)

)
–

(
Zϑ(r) + R

(
ϑ(r),ϑ(r)

)
+ Pξ (r)

)∣∣dr

=
1

�(η)

∫ τ

0
(τ – r)η–1∣∣�

(
τ , θ (r)

)
– �

(
τ ,ϑ(r)

)∣∣dr

≤ �τη

�(η + 1)
∣∣θ (r) – ϑ(r)

∣∣

= β
∣∣θ (r) – ϑ(r)

∣∣.

Applying Hypothesis (H2), we can write

d(	θ ,	ϑ) = |	θ – 	ϑ |
≤ β

∣∣θ (r) – ϑ(r)
∣∣ = βd(θ ,ϑ)

≤ βGB(θ ,ϑ)

= β

([
d(θ ,ϑ)

]η1 .
[
d(θ ,	θ )

]η2 .
[
d(ϑ ,	ϑ)

]η3 .
[

d(θ ,	ϑ)
2

]η4

×
[

d(θ ,	θ ) + d(ϑ ,	ϑ) + d(θ ,	ϑ) + d(ϑ ,	θ )
4

]1–η1–η2–η3–η4)
,

which proves that 	 is an IHC. Thanks to Theorem 3.1, the mapping 	 has a FP, which is
a solution to the time-fractional NSE (4.3). �

5 Solving a functional-fractional differential equation
This part is considered the second pillar of our paper, where Theorem 3.1 is applied to
solve a functional-fractional DE in the setting of a BS. Functional DEs are known to accu-
rately explain a wide range of complicated phenomena in nature and industry. It is utilized,
for instance, in the fields of neural networks, epidemiology, automatic control, bionomic
and electronics.

Here, we take into account the initial value problems (IVPs) of fractional neuronal func-
tional DEs with a constrained delay of the type, which is inspired by Zhou et al. [40]:

⎧
⎨

⎩

C
τ0 Dη

τ (θ (τ ) – S(τ , θτ )) = G(τ , θτ ), τ ∈ (τ0, τ0 + c), c > 0,

θτ0 = φ,
(5.1)

where C
τ0 Dη

τ is the CFD of order η ∈ (0, 1), S, G : I × C →R
m are continuous functions and

φ ∈ �. Let � = C(I0,Rm) be the space of all continuous functions on I0 and for any φ ∈ �,
define the norm

‖φ‖� = sup
τ∈I0

∣∣φ(τ )
∣∣.

Consider I0 = [–c, 0], c > 0 and I = [τ0, τ0 – [0] + ρ], ρ > 0 are two bounded and closed
intervals in R

m. Set ℵ = [τ0 – c, τ0 + ρ].
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Assume that the space � = ℵ of the continuous functions on I0 and C(ℵ,�) is a Banach
space of all continuous functions from I into � with the path metric

d(θ ,ϑ) = sup
τ∈I0

∣∣θ (τ ) – ϑ(τ )
∣∣, for all θ ,ϑ ∈ �.

It is clear that (�, d) is a complete BS.
The following equation represents the solution to the fractional IVP (5.1):

θ (τ ) = φ(0) – S(τ0, θτ0 ) + S(τ , θτ ) +
1

�(η)

∫ τ

τ0

(τ – r)η–1G(r, θr) dr, τ ∈ I0,

where θτ0 = φ. Also, we need Holder’s inequality [42] below:
If p ≥ 1, q > 1 with 1

p + 1
q = 1 and θj,ϑj > 0, we have

m∑

j=1

θjϑj ≤
( m∑

j=1

θ
p
j

) 1
p
( m∑

j=1

ϑ
q
j

) 1
q

.

To present our main theorem here, we strongly need the following assumptions:
(A1) There are continuous functions S, G : [0, 1] × C →R

m such that

∣∣S
(
τ , θ (r)

)
– S

(
τ ,ϑ(r)

)∣∣ ≤ �1
∣∣θ (r) – ϑ(r)

∣∣,

and

∣∣G
(
τ , θ (r)

)
– G

(
τ ,ϑ(r)

)∣∣ ≤ �(r)
∣∣θ (r) – ϑ(r)

∣∣,

for all τ , r ∈ [0, 1] and all θ ,ϑ ∈ �, where �1 > 0 and � : [0, 1] →R
m is a given func-

tion.
(A2) The condition (H2) holds.
(A3) The parameter β takes the form

β = �1 +
�ρη(1–κ)

(1 – κ)�(η + 1)
, for κ > 1.

Theorem 5.1 In the light of assumptions (A1)–(A3), Problem (5.1) has a solution in
C(ℵ,�).

Proof Describe the mapping 	 : C(J) → C(J) by

	θ (τ ) = φ(0) – S(τ0, θτ0 ) + S(τ , θτ ) +
1

�(η)

∫ τ

τ0

(τ – r)η–1G(r, θr) dr, τ ∈ I0, (5.2)

where θτ0 = φ. Clearly, finding a solution to Problem (5.2) is equivalent to find a FP for the
mapping 	. We demonstrate that 	 is an IHC mapping to prove the existence of a FP of
	. �
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From the assertions (A1), (A3) and Holder’s inequality, we get

|	θ – 	ϑ | =
∣∣∣∣φ(0) – S(τ0, θτ0 ) + S(τ , θτ ) +

1
�(η)

∫ τ

τ0

(τ – r)η–1G(r, θr) dr

–
(

φ(0) – S(τ0,ϑτ0 ) + S(τ ,ϑτ ) +
1

�(η)

∫ τ

τ0

(τ – r)η–1G(r,ϑr) dr
)∣∣∣∣

≤ ∣∣S(τ , θτ ) – S(τ ,ϑτ )
∣∣ +

1
�(η)

∫ τ

0
(τ – r)η–1∣∣G(r, θr) – G(r,ϑr)

∣∣dr

≤ �1|θτ – ϑτ | +
1

�(η)

∫ τ

0
(τ – r)η–1�(r)|θr – ϑr|dr

≤ �1‖θ – ϑ‖ +
1

�(η)

(∫ τ

0
(τ – r)

η–1
1–κ

)1–κ(‖�‖ 1
κ

)‖θ – ϑ‖dr

≤
(

�1 +
�ρη(1–κ)

(1 – κ)�(η + 1)

)
‖θ – ϑ‖

= β‖θ – ϑ‖.

Using Assumption (H2), we conclude that

d(	θ ,	ϑ) = |	θ – 	ϑ |
≤ β

∣∣θ (r) – ϑ(r)
∣∣ = βd(θ ,ϑ)

≤ βGB(θ ,ϑ)

= β

([
d(θ ,ϑ)

]η1 .
[
d(θ ,	θ )

]η2 .
[
d(ϑ ,	ϑ)

]η3 .
[

d(θ ,	ϑ)
2

]η4

×
[

d(θ ,	θ ) + d(ϑ ,	ϑ) + d(θ ,	ϑ) + d(ϑ ,	θ )
4

]1–η1–η2–η3–η4)
.

Hence, 	 is an IHC. From Theorem 3.1, the mapping 	 has a FP as θ∗C(ℵ,�), which is a
solution to the fractional IVP (5.1).

6 Conclusion
The FP result presented in Theorem 3.1 is our main contribution to FP theory. The FP
requirements for a large class of interpolative self-maps based on the output of IHC map-
pings in the CH combination of a BS, which is a complete GS, are provided by this theorem.
This study generalizes and unifies a number of previous findings in the same direction.
To support the findings, an example is derived. Finally, applications to the existence of a
solution for nonlinear fractional-functional DEs and nonlinear partial fractional DEs are
discussed.
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contraction. J. Math. 2021, 1–12 (2021)
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