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Abstract
In this paper, we consider the Cauchy problem of a compressible Navier–Stokes
system of Eills-type non-Newtonian fluids. We investigate the time decay properties
of classical solutions for the compressible non-Newtonian fluid equations. More
specifically, we construct a new linearized system in terms of a combination of the
solutions, and then we investigate the long-time behavior of the Cauchy problem for
the three-dimensional isentropic compressible Eills-type non-Newtonian fluids with
an initial perturbation.
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1 Introduction
Motivated by the well-posedness result of non-Newtonian fluids in [1] and the long-time
behavior result of the Navier–Stokes system in [2], we investigate the time decay proper-
ties of solutions for compressible non-Newtonian fluid equations. More specifically, we
investigate the optimal decay rate of the highest-order derivative of solutions to the equa-
tions of compressible non-Newtonian fluids, which defined in a bounded domain � ⊂R

3

is governed by the following equations [3]:

⎧
⎨

⎩

ρt + div(ρv) = 0,

(ρv)t + div(ρv ⊗ v) + ∇p(ρ) = divS,
(1.1)

where the unknowns ρ := ρ(x, t), v := v(x, t) denote the density and the velocity of the non-
Newtonian fluids, respectively, p := p(ρ) is the fluid pressure, which is a smooth function
depending on ρ , and S represents the viscous stress tensor, which depends on the rate of
strain Dij(∇v), where Dij(∇v) is given as Dij(∇v) = ∂vi

∂xj
+ ∂vj

∂xi
. We mention that (1.1)1 is the

continuity equation and (1.1)2 describes the balance law of momentum.
If the relation between the stress and the rate of strain is linear, i.e., Sij = μ( ∂vi

∂xj
+ ∂vj

∂xi
), then

the fluid is called Newtonian. The coefficient μ is called the viscosity coefficient, which
depends on temperature, density, and pressure. For example, water, alcohols, and simple
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hydrocarbon compounds turn out to be Newtonian fluids. The governing equations of
motion can be written by the Navier–Stokes equations.

If the relation between the stress and the rate of strain is nonlinear, the fluid is called
non-Newtonian. Examples of non-Newtonian fluids include molten plastics, greases, pa-
per pulp, and biological fluids like blood. The simplest stress–strain relation in non-
Newtonian fluids is given by Sij = μ( ∂vi

∂xj
+ ∂vj

∂xi
)q for 0 < q < 1 [4].

Recently, the following stress–strain relation has been widely investigated [3]:

Sij =
(
μ0 + μ1

∣
∣D(∇v)

∣
∣p–2)Dij(∇v),

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Newtonian, for μ0 > 0,μ1 = 0;

Rabinowitsch, for μ0,μ1 > 0, p = 4;

Eills, for μ0,μ1 > 0, p > 2;

Ostwald–de Waele, for μ0 = 0,μ1 > 0, p > 1;

Bingham, for μ0,μ1 > 0, p = 1.

The above five types of stress–strain relation can be found in non-Newtonian fluids. For
example, for μ0 = 0, it is a pseudo-plastic fluid in the case of p < 2 and it is a dilatant fluid in
the case of p > 2. From a physical point of view, the stress–strain relation describes a shear
thickening fluid if p > 2 and a shear thinning fluid if 1 < p < 2. The values of the parameters
p and μ1 of the pseudo-plastic Ostwald–de Waele models are presented in [3].

On account of the physical importance of non-Newtonian fluids, they have attracted
attention from many engineers, mathematicians, physicists, and so on. However, both
the problems of well-posedness and dynamical behaviors of motion equations of non-
Newtonian fluids are very difficult to investigate because of the singularity.

Even so, important progress has been made in the theoretical analysis of non-Newtonian
fluid systems: Bothe–Pruss studied a class of non-Newtonian fluids based on Lp-theory
[5]; Feireisl–Kwon studied the long-time behavior of dissipative solutions to models of
non-Newtonian compressible fluids [6]; Moscariello–Porzio investigated the behavior in
time of solutions to motion of Non-Newtonian fluids [7]. More results of non-Newtonian
fluids can be found in [1, 3, 8–11] and the references cited therein.

In this paper, we investigate the corresponding Eills-type non-Newtonian fluids, i.e.,

S =
(
μ0 + μ1

∣
∣D(∇v)

∣
∣p–2)D(∇v),

divS = μ0(�v + ∇ div v) + μ1 div
(∣
∣D(∇v)

∣
∣p–2D(∇v)

)
.

Thus, equation (1.1) reduces to

⎧
⎨

⎩

ρt + div(ρv) = 0,

ρvt + div(ρv ⊗ v) + ∇p(ρ) – μ0(�v + ∇ div v) = μ1 div(|D(∇v)|p–2D(∇v)).
(1.2)
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We can reformulate the system (1.2). Without loss of generality, we take P′(1) = 1 and
thus derive the following equations from (1.2) by applying the formulas above:

⎧
⎪⎪⎨

⎪⎪⎩

ρt + div(ρv) = 0,

vt + v · ∇v + p′(ρ)∇ρ/ρ – μ0(�v + ∇ div v)/ρ

= μ1 div(|D(∇v)|p–2D(∇v))/ρ.

(1.3)

Much important progress has been made in the investigation of long-time behaviors of
global smooth solutions to compressible Navier–Stokes systems. For instance, the global
existence of strong solutions to compressible Navier–Stokes equations in multidimen-
sional whole space was obtained first by Matsumura–Nishida [12, 13], who also showed
that the global solution tends to its equilibrium state in large time. The optimal Lp(p ≥ 2)
decay rates were established later by Ponce [14]. To conclude, the optimal L2 time decay
rate for isentropic compressible Navier–Stokes equations in three dimensions is

∥
∥(ρ – ρ̄, v)(t)

∥
∥

L2(R3) ≤ C(1 + t)– 3
4 ,

where (ρ̄, 0) is the constant state.
Then Liu–Wang [15] investigated the properties of the Green’s function for isentropic

Navier–Stokes systems and showed an interesting pointwise convergence of global solu-
tions to the diffusive waves with the optimal time decay rate in odd dimension where the
important phenomenon of the weaker Huygen principle is also justified due to the dis-
persion effects of compressible viscous fluids in multidimensional odd space. This was
generalized to the full system later in [16], where the wave motions of other types are also
introduced. Therein, the optimal L∞ time decay rate in three dimensions is

∥
∥(ρ – ρ̄, v)(t)

∥
∥

L∞(R3) ≤ C(1 + t)– 3
2 .

The same decay property also appears in the exterior domain problem [17] and an infinite
layer [18]. Li–Matsumura–Zhang [19] obtained the optimal time decay of the Navier–
Stokes–Poisson system, which is different from the pure Navier–Stokes equations.

Next, Li–Zhang investigated the long-time behavior and optimal decay rates of global
strong solutions to three-dimensional isentropic compressible Navier–Stokes systems;
when the regular initial data also belong to some Sobolev space Hl(R3) ∩ Ḃ–s

1,∞(R3) with
l ≥ 4 and s ∈ [0, 1], they show that the global solution to this system converges to the equi-
librium state at a faster decay rate in time.

Later, Tan–Wang derived the optimal time decay rates for the higher-order spa-
tial derivatives of solutions to magnetohydrodynamic equations [20]. Besides, Gao–
Chen–Yao [21] further deduced higher time decay rates for the higher-order spatial
derivatives of solutions, which improve the result of Tan–Wang [20]. Recently, exploit-
ing the technique of decomposition of solutions into low and high frequencies in [22],
Huang–Lin–Wang proved that this result also holds for k = N [23]. At present, the above
isentropic results have been further extended to non-isentropic cases; see [21, 24] for
examples.

There are many other important results on time decay estimation. Abdallah–Jiang–Tan
studied the decay estimates for isentropic compressible magnetohydrodynamic equa-
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tions in a bounded domain [25], Fan–Jiang studied the long-time behavior of liquid crys-
tal flows with a trigonometric condition in two dimensions [26], Guo–Tan studied the
long-time behavior of solutions to a class of non-Newtonian compressible fluids [27],
Chen–Tan–Wu have given the time decay rates for the equations of compressible heat-
conductive flow through porous media [28], and Tan–Wu studied the long-time behavior
of solutions for compressible Euler equations with damping in R

3 [29]. Zhang studied the
decay of the three-dimensional inviscid liquid–gas two-phase flow model [30] and the
decay of the three-dimensional viscous liquid–gas two-phase flow model with damping
[31]. Zhang–Wu studied the global well-posedness and long-time behavior of the viscous
liquid–gas two-phase flow model [32] and the global existence and asymptotic behav-
ior for the three-dimensional compressible non-isentropic Euler equations with damp-
ing [33]. Zhang–Tan studied the existence [34] and asymptotic behavior of global smooth
solutions for p-systems with damping and boundary effects and the asymptotic behav-
ior of solutions to the Navier–Stokes equations of a two-dimensional compressible flow
[35]. Zhang–Tan–Ming studied the global existence and asymptotic behavior of smooth
solutions to a coupled hyperbolic-parabolic system [36]. Jiang–Zhang studied the exis-
tence and asymptotic behavior of global smooth solutions for p-systems with nonlinear
damping and fixed boundary effects [37]. Qiu–Zhang studied the decay of the three-
dimensional quasilinear hyperbolic equations with nonlinear damping [38]. Then Hu–
Qiu–Wang–Yang studied the incompressible limit for compressible viscoelastic flows with
large velocity [39], Zhao–Li–Yan studied the global Sobolev regular solution for Boussi-
nesq systems [40], and Panasenko–Pileckas studied the non-stationary Poiseuille flow of
a non-Newtonian fluid with the shear rate-dependent viscosity [41].

In this paper, we are further interested in non-Newtonian fluids. The well-posedness
problem of non-Newtonian fluids has been widely investigated; see [42] for the existence
results. Motivated by the optimal time decay rates of solutions of Newtonian fluids and the
result of the long-time behavior of solutions to non-Newtonian compressible fluids, using
the methods in [43], we further investigate the global well-posedness and optimal time
decay rates of the solutions for the system (1.2). To this purpose, we provide the following
initial condition for the system (1.2):

(ρ, v)|t=0 =
(
ρ0, v0). (1.4)

We will consider the existence problem and the optimal time decay rates of small pertur-
bation solutions around the rest state (ρ̄, 0) of the system (1.2), where ρ̄ is always taken to
be equal to one for the sake of simplicity.

By taking the new change of variables

� = ρ – 1, u = v – 0,

we can further rewrite the system (1.3)–(1.4) into the perturbation forms:

⎧
⎪⎪⎨

⎪⎪⎩

�t + div u = – div(�u),

ut – μ0(�u + ∇ div u) + ∇� = N ,

(�, u)|t=0 = (�0, u0) = (ρ0 – 1, u0),

(1.5)
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where the nonlinear terms N are defined by

N = –u · ∇u – h3(�)∇� – h2(�)(�u + ∇ div u)

+ h1(�) div
(∣
∣D(∇u)

∣
∣p–2D(∇u)

)
,

where the nonlinear functions are defined as follows:

h1(�) =
μ1

� + 1
, h2(�) =

μ0�

� + 1
, h3(�) =

p′(� + 1)
� + 1

– 1.

Before presenting our main result, we introduce the following notations, which are used
frequently throughout the paper.

1.1 Notations
(1) Basic notations:

The notation 〈·, ·〉 stands for the inner product in L2(R3); a � b means that a ≤ Cb for
some constant C > 0. For simplicity, we also denote a ≈ b if a � b and a � b. The symbol
∇ l with an integer l ≥ 1 represents as usual any spatial derivatives of order l; Ci > 0 repre-
sents a generic constant that may vary from line to line for i ∈ Z

+; and the integral symbol
∫

:=
∫

R3 .
(2) Notations of function spaces:
We employ Lr(R3) to denote the usual Lr spaces and Hs(R3) to denote the Sobolev spaces

with norm ‖ · ‖Lr and ‖ · ‖Hs , respectively, where 1 ≤ r ≤ ∞, s ∈R.
In addition, � is a pseudo-differential operator, which is defined by

�sf = F–1(|ξ |sf̂ ) for s ∈R,

where f̂ and F–1(f ) denote the Fourier transform and the inverse Fourier transform, re-
spectively.

Let ϕ(ξ ) be a smooth cut-off function, which satisfies 0 ≤ ϕ(ξ ) ≤ 1(ξ ∈ R
3) and ϕ(ξ ) =

1, |ξ | ≤ 1, ϕ(ξ ) = 0, |ξ | > 1. Then we can define a frequency decomposition for the function
f (x) ∈ L2(R3) as follows:

f L(x) = ϕ(Dx)f (x), f H (x) =
(
I – ϕ(Dx)

)
f (x),

where Dx := 1√
–1 (∂x1 , ∂x2 , ∂x3 ) and ϕ(Dx) is a pseudo-differential operator with respect to

ϕ(ξ ). Moreover, f (x) can be expressed as

f (x) = f L(x) + f H (x). (1.6)

1.2 Main result
Now, we are in a position to present our main result.

Theorem 1.1 Suppose (ρ0 – 1, u0) ∈ H3(R3) and

∥
∥
(
ρ0 – 1, u0)(t)

∥
∥

H3(R3) ≤ ε,
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where ε is a sufficiently small constant. Then the Cauchy problem (1.5) admits a unique
global solution (ρ, u) satisfying

ρ – 1 ∈ C0([0,∞); H3(
R

3)) ∩ C1([0,∞); H2(
R

3)),

u ∈ C0([0,∞); H3(
R

3)) ∩ C1([0,∞); H1(
R

3)).

Moreover, if the initial data (ρ0 – 1, u0) are bounded in L1(R3) space, then, for any t ≥ 0,
the classical solution (ρ, u) enjoys

∥
∥∇k(ρ – 1, u)(t)

∥
∥

H3(R3) ≤ C(1 + t)– 3
4 – k

2 , k = 0, 1, 2, 3.

The first step involves constructing a new linearized system by combining the solutions.
Subsequently, our focus is on establishing the global existence and uniqueness of the so-
lution for the Cauchy problem (1.5). The a priori estimates will be provided in Proposi-
tion 3.1, where our main focus lies on estimating the nonlinear terms of a specific class
of compressible Eills-type non-Newtonian fluids with S = (μ0 + μ1|D(∇u)|p–2)D(∇u). We
employ an energy estimation method to address the challenges posed by nonlinear struc-
tures, thereby enabling us to obtain the energy estimation under the H3 norm. Subse-
quently, we present a technique for eliminating the low frequency component and provide
a decay estimate for this particular part. Finally, we establish decay rates for the nonlinear
system.

The rest of this paper is organized as follows. First, in Sect. 2, we list some well-known
mathematical results, which will be used in Sects. 3 and 4. In Sect. 3, we establish a priori
estimates of solutions and then prove the existence of the global-in-time solution based
on the local existence of unique solutions. In Sect. 4, we will obtain the optimal time de-
cay rates of the non-homogeneous system by constructing some decay estimates of the
linearized system based on the technique of decomposition of solutions into low and high
frequencies [22].

2 Basic analysis tools
This section is devoted to providing some important mathematical results, which will be
used in the next sections.

Lemma 2.1 ([22]). For any given integers i, j, k, we have

∥
∥∇ jf L∥∥

L2 ≤ rj–i
0

∥
∥∇ if L∥∥

L2 ,
∥
∥∇ jf H∥

∥
L2 ≤ 1

Rk–i
0

∥
∥∇kf L∥∥

L2 ,

∥
∥∇ jf L∥∥

L2 ≤ ∥
∥∇kf

∥
∥

L2 and
∥
∥∇ jf H∥

∥
L2 ≤ ∥

∥∇kf
∥
∥

L2 ,

where f ∈ Hn(R3) and i ≤ j ≤ k ≤ n. Moreover, we have

rj
0
∥
∥f n∥∥

L2 ≤ ∥
∥∇ jf n∥∥

L2 ≤ Rj
0
∥
∥f n∥∥

L2 ,

for some constant r0 > 0 and R0 > 0.
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Lemma 2.2 ([44]). Let f ∈ H2(R3). Then we can have

‖f ‖Lp ≤ ‖f ‖H1 for 2 ≤ p ≤ 6,

‖f ‖L∞ ≤ ‖∇f ‖ 1
2
L2‖∇f ‖ 1

2
H1 ≤ ‖∇f ‖H1 ,

‖f ‖L6 ≤ ‖∇f ‖L2 .

Lemma 2.3 ([45]). We have

∥
∥∇ l(fg)

∥
∥

Lp ≤ ‖f ‖Lq1
∥
∥∇ lg

∥
∥

Lq2 +
∥
∥∇ lf

∥
∥

Lq3 ‖g‖Lq4 ,

where l ≥ 1, 1 ≤ qi ≤ +∞, and

1
q

=
1
q1

+
1
q2

=
1
q3

+
1
q4

.

Lemma 2.4 (Gagliardo–Nirenberg inequality). Suppose 0 ≤ i, j ≤ k. Then we have

∥
∥∇ ig

∥
∥

Lp ≤ ∥
∥∇ jg

∥
∥1–σ

Lp1

∥
∥∇kg

∥
∥σ

Lp2 ,

where 0 ≤ σ ≤ 1 and

i
3

–
1
p

=
(

j
3

–
1
p1

)

(1 – σ ) +
(

k
3

+
1
p2

)

σ .

In particular, if p = ∞, then 0 < σ < 1 is required.

Lemma 2.5 ([46]). Let ψ(ω) be a smooth function of ω with bounded derivatives of any
order. If ‖ω‖L∞(R3) ≤ 1, then for any integer i ≥ 1, we have

∥
∥∇ iψ(ω)

∥
∥

Lp(R3) ≤ ∥
∥∇ iω

∥
∥

Lp(R3),

for 1 ≤ p ≤ ∞.

For the decay estimates of solutions, we further introduce the following basic inequali-
ties.

Lemma 2.6 ([47]). Suppose c1, c2, c3 ∈R
3 and 0 ≤ c1 ≤ c2, c3 > 0. We have, for t ∈R+,

∫ t

0
(1 + t – τ )–c1 (1 + τ )–c2 dτ ≤ C(c1, c2)(1 + t)–c1

and

∫ t

0
(1 + τ )–c1 e–c3(t–τ ) dτ ≤ C(c1, c3)(1 + t)–c1 ,

where constants C(c1, c2) > 0, C(c1, c3) > 0 only depend on c1, c2, c3.
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3 Global existence and uniqueness for the nonlinear system
This section is devoted to establishing the global existence and uniqueness of the solution
for the Cauchy problem (1.5). More precisely, with the help of a priori estimates, we extend
the local classical solution to the global one by the standard continuity method.

3.1 Global existence of solutions
First, we provide the relevant space for the system (1.5) by

�(0, T) =
{

(�, u)|� ∈ C0(0, T ; H3(
R

3)) ∩ C1(0, T ; H2(
R

3)),

u ∈ C0(0, T ; H3(
R

3)) ∩ C1(0, T ; H1(
R

3)),

∇� ∈ L2(0, T ; H2(
R

3));∇u ∈ L2(0, T ; H3(
R

3))}

for any 0 ≤ T ≤ ∞.
By a method similar to the one in [13, 48], we can get the local existence of unique

solutions to (1.5).

Proposition 3.1 (Local existence). Suppose (�0, u0) ∈ H3(R3) and inf{�0 + 1} > 0. Then
there exists a constant T0 > 0 depending on ‖�0, u0)‖H3(R3) such that the system (1.5) has a
unique solution (�, u) ∈ �(0, T0), which satisfies

inf
x∈R3,0≤t≤T0

{� + 1} > 0

and

∥
∥(�, u)(t)

∥
∥

H3 +
(∫ t

0

∥
∥∇(�, u)

∥
∥2

H3 dτ

) 1
2 ≤ √

C1
∥
∥
(
�0, u0)∥∥

H3 ,

where C1 > 0 is a constant.

Proof With the iteration technique and the fixed point theorem in hand, the conclusion
is obvious; please refer to [13, 48] for the details. �

Proposition 3.2 (A priori estimates). Assume that the Cauchy problem (1.5) has a solution
(�, u) ∈ �(0, T) with a constant T > 0. Then there exists a sufficiently small constant ε0 > 0
such that if

sup
0≤t≤T

∥
∥(�, u)(t)

∥
∥

H3 ≤ ε0, (3.1)

then for any t ∈ [0, T] we have

∥
∥(�, u)(t)

∥
∥2

H3 +
∫ t

0

(∥
∥∇�(τ )

∥
∥2

H2 +
∥
∥∇u(τ )

∥
∥2

H3
)

dτ ≤ C2
∥
∥
(
�0, u0)∥∥2

H3 , (3.2)

where the constant C2 > 0 is independent of T .

The details of the proof of Proposition 3.2 will be given in Sect. 3.2.
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Theorem 3.1 (Global existence). Suppose (�0, u0) ∈ H3(R3). Then there exists a constant
ε > 0 such that when

C0 < min

{
ε√
C1

,
ε√

C1C2

}

< ∞,

the Cauchy problem of (1.5) admits a unique solution (�, u), which satisfies for any t > 0

∥
∥(�, u)(t)

∥
∥2

H3 +
∫ t

0

(∥
∥∇�(τ )

∥
∥2

H2 +
∥
∥∇u(τ )

∥
∥2

H3
)

dτ ≤ C2C2
0 ,

where C0 := ‖(�0, u0)‖H3 and C1, C2 > 0 are constants.

Proof With Propositions 3.1 and 3.2 in hand, we can easily derive Theorem 3.1 by a clas-
sical method. We omit it here due to space constraints; please refer to [13, 48] for the
details. �

Remark 3.1 With the Sobolev imbedding inequality in hand, it is easy to get 1
2 ≤ ρ + 1 ≤ 3

2 .
Then under the assumptions in Proposition 3.2, we can have

∣
∣h1(�)

∣
∣ ≤ C3,

∣
∣(h2, h3)(�)

∣
∣ ≤ C3|�|, ∣

∣
(
h(l)

1 , h(l)
2 , h(l)

3
)
(�)

∣
∣ ≤ C3 for l ≥ 1,

where C3 > 0 is a constant.

3.2 Proof of Proposition 3.2
In this subsection, we aim to complete the proof of Proposition 3.2. The key step in the
proof is to derive the energy estimates of the solution (�, u) for the transformed Cauchy
problem (1.5) by the energy method.

Lemma 3.1 We have

d
dt

F1 +
γ1

4
‖∇�‖2

L2 +
μ0

2
‖∇u‖2

H1 +
μ0

2
‖div u‖2

H1 ≤ 0,

where

F1 =
1
2
(‖�‖2

H1 + ‖u‖2
H1

)
+ γ1

∫

∇� · u dx,

where 0 < γ1 < { 1
4 , 1

8μ0
} is a given constant.

Proof Multiplying ∇k(1.5)1, ∇k(1.5)2 by ∇k�, ∇ku, respectively, and integrating over R3

by parts, we have

1
2

d
dt

(∥
∥∇k�

∥
∥2

L2 +
∥
∥∇ku

∥
∥2

L2
)

+ μ0
∥
∥∇k∇u

∥
∥2

L2 + μ0
∥
∥∇k div u

∥
∥2

L2

=
〈∇k�, –∇k div(�u)

〉
+

〈∇ku,∇kN
〉
. (3.3)
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By 〈∇(1.5)1, u〉 + 〈(1.5)2,∇�〉, we find that

d
dt

∫

∇� · u dx + ‖∇�‖2
L2

= ‖div u‖2
L2 + μ0

∫

∇� · �u dx + μ0

∫

∇� · ∇ div u dx

–
∫

∇ div(�u) · u dx +
∫

N · ∇� dx. (3.4)

Then using Young’s inequality, we can estimate that for some fixed constant γ1,

γ1μ0

∫

∇� · �u dx ≤ γ1

4
‖∇�‖2

L2 + γ1μ
2
0‖�u‖2

L2 ,

γ1μ0

∫

∇� · ∇ div u dx ≤ γ1

4
‖∇�‖2

L2 + γ1μ
2
0‖∇ div u‖2

L2 . (3.5)

Adding up the two identities γ1 · (3.4) and
∑

0≤k≤1 (3.3), then using (3.5), we have

1
2

d
dt

(

‖�‖2
H1 + ‖u‖2

H1 + 2γ1

∫

∇� · u dx
)

+
γ1

2
‖∇�‖2

L2 + μ0‖∇u‖2
H1 + μ0‖div u‖2

H1

≤ ‖div u‖2
L2 + γ1μ

2
0‖�u‖2

L2 + γ1μ
2
0‖∇ div u‖2

L2 –
∫

� div(�u) dx

–
∫

∇� · ∇ div(�u) dx +
∫

u ·N dx +
∫

∇u · ∇N dx

– γ1

∫

u · ∇ div(�u) dx + γ1

∫

∇� ·N dx. (3.6)

The nonlinear terms on the right-hand side of (3.6) can be bounded as follows. With
Young’s inequality and Hölder’s inequality in hand, integrating by parts and using Lem-
mas 2.2 and 2.3 and (3.1), we obtain

–
∫

� div(�u) dx ≤ Cε0
∥
∥∇(�, u)

∥
∥2

L2 , (3.7)

–
∫

∇� · ∇ div(�u) dx ≤ Cε0
(∥
∥∇2�

∥
∥2

L2 +
∥
∥∇(�, u)

∥
∥2

L2
)
, (3.8)

–
∫

u · ∇ div(�u) dx =
∫

div u div(�u) dx ≤ Cε0
∥
∥∇(�, u)

∥
∥2

L2 (3.9)

and

∫

u ·N dx

=
∫

u · (–u · ∇u – h3(�)∇� – h2(�)(�u + ∇ div u)
)

dx

+
∫

u · h1(�) div
(∣
∣D(∇u)

∣
∣p–2D(∇u)

)
dx
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≤ C‖u‖L6
(‖u‖L3‖∇u‖L2 +

∥
∥h3(�)

∥
∥

L3‖∇�‖L2
)

+ C‖u‖L6
∥
∥h2(�)

∥
∥

L3

∥
∥∇2u

∥
∥

L2

+ C‖u‖L6
∥
∥h1(�)

∥
∥

L∞
∥
∥div

∣
∣D(∇u)

∣
∣p–2∥∥

L2

∥
∥D(∇u)

∥
∥

L3

+ C‖u‖L6
∥
∥h1(�)

∥
∥

L∞‖|D(∇u)|p–2‖L3
∥
∥div D(∇u)

∥
∥

L2

≤ Cε0
(∥
∥∇2u

∥
∥2

L2 +
∥
∥∇(�, u)

∥
∥2

L2 + ‖∇u‖2
H2

)
, (3.10)

∫

∇u · ∇N dx =
∫

∇u · ∇(
–u · ∇u – h3(�)∇�

)
dx

–
∫

∇u · ∇(
h2(�)(�u + ∇ div u)

)
dx

+
∫

∇u · ∇(
h1(�) div

(∣
∣D(∇u)

∣
∣p–2D(∇u)

))
dx

≤ C
∥
∥∇2u

∥
∥

L2
(‖∇u‖L2‖u‖L∞ +

∥
∥h3(�)

∥
∥

L∞‖∇�‖L2
)

+ C
∥
∥∇2u

∥
∥2

L2

∥
∥h2(�)

∥
∥

L∞

+ C
∥
∥∇2u

∥
∥

L2

∥
∥h1(�)

∥
∥

L∞
∥
∥div

∣
∣D(∇u)

∣
∣p–2∥∥

L2

∥
∥D(∇u)

∥
∥

L∞

+ C
∥
∥∇2u

∥
∥

L2

∥
∥h1(�)

∥
∥

L∞‖|D(∇u)|p–2‖L∞
∥
∥div D(∇u)

∥
∥

L2

≤ Cε0
(∥
∥∇2u

∥
∥2

L2 +
∥
∥∇(�, u)

∥
∥2

L2 + ‖∇u‖2
H2

)
, (3.11)

γ1

∫

∇� ·N dx = γ1‖∇�‖L2‖N ‖L2

≤ Cγ1‖∇�‖L2
(‖∇u‖L2‖u‖L∞ +

∥
∥h3(�)

∥
∥

L∞‖∇�‖L2
)

+ C‖∇�‖L2
∥
∥h2(�)

∥
∥

L∞
∥
∥∇2u

∥
∥

L2

+ C‖∇�‖L2
∥
∥h1(�)

∥
∥

L∞
∥
∥div

∣
∣D(∇u)

∣
∣p–2∥∥

L2

∥
∥D(∇u)

∥
∥

L∞

+ C‖∇�‖L2
∥
∥h1(�)

∥
∥

L∞‖|D(∇u)|p–2‖L∞
∥
∥div D(∇u)

∥
∥

L2

≤ Cε0
(∥
∥∇2u

∥
∥2

L2 +
∥
∥∇(�, u)

∥
∥2

L2 + ‖∇u‖2
H2

)
. (3.12)

Putting the estimates (3.7)–(3.12) into (3.6), we have

1
2

d
dt

(

‖�‖2
H1 + ‖u‖2

H1 + 2γ1

∫

∇� · u dx
)

+
γ1

4
‖∇�‖2

L2 +
μ0

2
‖∇u‖2

H1 +
μ0

2
‖div u‖2

H1

≤ C(1 + γ1)ε0
(∥
∥∇2(�, u)

∥
∥2

L2 +
∥
∥∇(�, u)

∥
∥2

L2 + ‖∇u‖2
H2

)
, (3.13)

where 0 < γ1 < { 1
4 , 1

8μ0
} is a fixed constant. Then the desired estimate follows from (3.13).

Thus, the proof of Lemma 3.1 is complete. �

Now we establish the energy estimate on the highest-order derivatives of the solution
(�, u) for the Cauchy problem (1.5).
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Lemma 3.2 We have

d
dt

F2 +
γ2

4
∥
∥∇2�

∥
∥2

L2 +
μ0

2
∥
∥∇2 div u

∥
∥2

L2 +
μ0

2
∥
∥∇3u

∥
∥2

L2

≤ 1
4
‖∇ div u‖2

L2 + Cε0
(∥
∥∇2u

∥
∥2

L2 + ‖∇u‖2
H2

)
, (3.14)

where

F2 =
1
2
(∥
∥∇2�

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2
)

+ γ2

∫

∇2� · ∇u dx,

where 0 < γ2 < { 1
4 , 1

8μ0
} is a given constant.

Proof Multiplying ∇2(1.5)1, ∇2(1.5)2 by ∇2�, ∇2u, respectively, and integrating over R
3

by parts, we have

1
2

d
dt

(∥
∥∇2�

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2
)

+ μ0
∥
∥∇2∇u

∥
∥2

L2 + μ0
∥
∥∇2 div u

∥
∥2

L2

=
〈∇2�, –∇2 div(�u)

〉
+

〈∇2u,∇2N
〉
. (3.15)

Multiplying ∇2(1.5)1 by ∇u and then exploiting ∇(1.5)2 · ∇2� and Young’s inequality, we
can estimate that

d
dt

∫

∇2� · ∇u dx +
∫

∣
∣∇2�

∣
∣2 dx

= ‖∇ div u‖2
L2 + μ0

∫

∇2� · ∇�u dx + μ0

∫

∇2� · ∇2 div u dx

–
∫

∇2 div(�u) · ∇u dx +
∫

∇N · ∇2� dx

≤ 1
2
∥
∥∇2�

∥
∥2

L2 + μ2
0‖∇�u‖2

L2 + μ2
0
∥
∥∇2 div u

∥
∥2

L2 + ‖∇ div u‖2
L2

–
∫

∇2 div(�u) · ∇u dx +
∫

∇N · ∇2� dx. (3.16)

Thus, summing up (3.15) and γ2 · (3.16), we have

1
2

d
dt

(
∥
∥∇2�

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2 + 2γ2

∫

∇2� · ∇u dx
)

+
γ2

2
∥
∥∇2�

∥
∥2

L2 + μ0
∥
∥∇2∇u

∥
∥2

L2 + μ0
∥
∥∇2 div u

∥
∥2

L2

≤ γ2μ
2
0‖∇�u‖2

L2 + γ2μ
2
0
∥
∥∇2 div u

∥
∥2

L2 + γ2‖∇ div u‖2
L2

–
∫

R3
∇2� · ∇2 div(�u) dx +

∫

∇2u · ∇2N dx

– γ2

∫

∇u · ∇2 div(�u) dx + γ2

∫

∇2� · ∇N dx. (3.17)

Next we estimate for the nonlinear terms on the right-hand side of (3.17). Thanks to
Lemmas 2.2–2.4, Hölder’s inequality, and Young’s inequality, after integrating by parts,
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we can have

–
∫

∇2� · ∇2 div(�u) dx ≤ Cε0
(∥
∥∇3u

∥
∥2

L2 +
∥
∥∇2(�, u)

∥
∥2

L2
)
, (3.18)

–
∫

∇u · ∇2 div(�u) dx ≤ Cε0
∥
∥∇2(�, u)

∥
∥2

L2 (3.19)

and
∫

∇2u · ∇2N dx

=
∫

∇2u · ∇2(–u · ∇u – h3(�)∇� – h2(�)(�u + ∇ div u)
)

dx

+
∫

∇2u · ∇2(h1(�) div
(∣
∣D(∇u)

∣
∣p–2D(∇u)

))
dx

≤ C
(∣
∣
〈∇3u,∇(u · ∇u)

〉∣
∣ +

∣
∣
〈∇3u,∇(

h3(�)∇�
)〉∣
∣
)

+ C
(∣
∣
〈∇3u,∇(

h2(�)�u
)〉∣
∣ +

∣
∣
〈∇3u,∇(

h2(�)∇ div u
)〉∣
∣
)

+ C
(∣
∣
〈∇3u,∇(

h1(�) div
(∣
∣D(∇u)

∣
∣p–2D(∇u)

))〉∣
∣
)

≤ C
∥
∥∇3u

∥
∥

L2
(‖∇u‖L6‖∇u‖L3 + ‖u‖L∞

∥
∥∇2u

∥
∥

L2
)

+ C
∥
∥∇3u

∥
∥

L2
(∥
∥∇h3(�)

∥
∥

L∞‖∇�‖L2 +
∥
∥h3(�)

∥
∥

L∞
∥
∥∇2�

∥
∥

L2
)

+ C
∥
∥∇3u

∥
∥

L2
(∥
∥∇h2(�)

∥
∥

L∞
∥
∥∇2u

∥
∥

L2 +
∥
∥h2(�)

∥
∥

L∞
∥
∥∇3u

∥
∥

L2
)

+ C
∥
∥∇3u

∥
∥

L2
(∥
∥h1(�)

∥
∥

L∞ +
∥
∥∇h1(�)

∥
∥

L∞
)‖u‖p–1

H2

≤ Cε0
(‖∇u‖2

H2 +
∥
∥∇2(�, u)

∥
∥2

L2
)
, (3.20)

∫

∇2� · ∇N dx

=
∫

∇2� · ∇(
–u · ∇u – h3(�)∇� – h2(�)(�u + ∇ div u)

)
dx

+
∫

∇2� · ∇(
h1(�) div

(∣
∣D(∇u)

∣
∣p–2D(∇u)

))
dx

≤ Cγ2
∥
∥∇2�

∥
∥

L2
(‖∇u‖L6‖∇u‖L3 + ‖u‖L∞

∥
∥∇2u

∥
∥

L2
)

+ C
∥
∥∇2�

∥
∥

L2
(∥
∥∇h3(�)

∥
∥

L∞‖∇�‖L2 +
∥
∥h3(�)

∥
∥

L∞
∥
∥∇2�

∥
∥

L3
)

+ C
∥
∥∇2�

∥
∥

L2
(∥
∥∇h2(�)

∥
∥

L∞
∥
∥∇2u

∥
∥

L2 +
∥
∥h2(�)

∥
∥

L∞
∥
∥∇3u

∥
∥

L2
)

+ C
∥
∥∇2�

∥
∥

L2
(∥
∥h1(�)

∥
∥

L∞ +
∥
∥∇h1(�)

∥
∥

L∞
)‖u‖p–1

H3

≤ Cε0
(‖∇u‖2

H2 +
∥
∥∇2(�, u)

∥
∥2

L2
)
. (3.21)

Plugging (3.18)–(3.21) into (3.17), we can deduce that

1
2

d
dt

(
∥
∥∇2�

∥
∥2

L2 +
∥
∥∇2u

∥
∥2

L2 + 2γ2

∫

∇2� · ∇u dx
)

+
γ2

4
∥
∥∇2�

∥
∥2

L2 +
μ0

2
∥
∥∇2∇u

∥
∥2

L2 +
μ0

2
∥
∥∇2 div u

∥
∥2

L2

≤ 1
4
‖∇ div u‖2

L2 + Cε0
(∥
∥∇2(�, u)

∥
∥2

L2 + ‖∇u‖2
H2

)
,
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where 0 < γ2 < { 1
4 , 1

8μ0
} is a fixed constant. Consequently, we complete the proof

of (3.14). �

Lemma 3.3 We have

d
dt

F3 +
γ3

4
∥
∥∇3�

∥
∥2

L2 +
μ0

2
∥
∥∇3 div u

∥
∥2

L2 +
μ0

2
∥
∥∇4u

∥
∥2

L2

≤ 1
4
∥
∥∇2 div u

∥
∥2

L2 + Cε0
(‖∇u‖2

H3 +
∥
∥∇3u

∥
∥2

L2
)
, (3.22)

where

F3 =
1
2
(∥
∥∇3�

∥
∥2

L2 +
∥
∥∇3u

∥
∥2

L2
)

+ γ3

∫

∇3� · ∇2u dx,

where 0 < γ3 < { 1
4 , 1

8μ0
} is a given constant.

Proof Multiplying ∇3(1.5)1, ∇3(1.5)2 by ∇3�, ∇3u, respectively, and integrating over R
3

by parts, we have

1
2

d
dt

(∥
∥∇3�

∥
∥2

L2 +
∥
∥∇3u

∥
∥2

L2
)

+ μ0
∥
∥∇3∇u

∥
∥2

L2 + μ0
∥
∥∇3 div u

∥
∥2

L2

=
〈∇3�, –∇3 div(�u)

〉
+

〈∇3u,∇3N
〉
. (3.23)

Multiplying ∇3(1.5)1 by ∇2u and then exploiting ∇2(1.5)2 ·∇3� and Young’s inequality, we
can estimate that

d
dt

∫

∇3� · ∇2u dx +
∫

∣
∣∇3�

∣
∣2 dx

=
∥
∥∇2 div u

∥
∥2

L2 + μ0

∫

∇3� · ∇2�u dx + μ0

∫

∇3� · ∇3 div u dx

–
∫

∇3 div(�u) · ∇2u dx +
∫

∇2N · ∇3� dx

≤ 1
2
∥
∥∇3�

∥
∥2

L2 + μ2
0
∥
∥∇2�u

∥
∥2

L2 + μ2
0
∥
∥∇3 div u

∥
∥2

L2 +
∥
∥∇2 div u

∥
∥2

L2

–
∫

∇3 div(�u) · ∇2u dx +
∫

∇2N · ∇3� dx. (3.24)

Summing up (3.23) and γ3 · (3.24), we have

1
2

d
dt

(
∥
∥∇3�

∥
∥2

L2 +
∥
∥∇3u

∥
∥2

L2 + 2γ3

∫

∇3� · ∇2u dx
)

+
γ3

2
∥
∥∇3�

∥
∥2

L2 +
∥
∥∇3∇u

∥
∥2

L2 +
∥
∥∇3 div u

∥
∥2

L2

≤ γ3μ
2
0
∥
∥∇2�u

∥
∥2

L2 + γ3μ
2
0
∥
∥∇3 div u

∥
∥2

L2 + γ3
∥
∥∇2 div u

∥
∥2

L2

–
∫

∇3� · ∇3 div(�u) dx +
∫

∇3u · ∇3N dx

– γ3

∫

∇2u · ∇3 div(�u) dx + γ3

∫

∇3� · ∇2N dx. (3.25)
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Next we estimate for the nonlinear terms on the right-hand side of (3.25). With Lem-
mas 2.2–2.4, Hölder’s inequality, and Young’s inequality in hand, after integrating by parts,
we get

–
∫

∇3� · ∇3 div(�u) dx ≤ Cε0
(∥
∥∇3(�, u)

∥
∥2

L2 +
∥
∥∇4u

∥
∥2

L2
)
, (3.26)

–
∫

∇2u · ∇3 div(�u) dx ≤ Cε0
∥
∥∇3(�, u)

∥
∥2

L2 (3.27)

and
∫

∇3u · ∇3N dx

=
∫

∇3u · ∇3(–u · ∇u – h3(�)∇� – h2(�)(�u + ∇ div u)
)

dx

+
∫

∇3u · ∇3(h1(�) div
(∣
∣D(∇u)

∣
∣p–2D(∇u)

))
dx

≤ C
(∣
∣
〈∇4u,∇2(u · ∇u)

〉∣
∣ +

∣
∣
〈∇4u,∇2(h3(�)∇�

)〉∣
∣
)

+ C
(∣
∣
〈∇4u,∇2(h2(�)�u

)〉∣
∣ +

∣
∣
〈∇4u,∇2(h2(�)∇ div u

)〉∣
∣
)

+ C(
∣
∣
〈∇4u,∇2(h1(�) div

(∣
∣D(∇u)

∣
∣p–2D(∇u)

))〉∣
∣

≤ C
∥
∥∇4u

∥
∥

L2
(‖∇u‖L6

∥
∥∇2u

∥
∥

L3 + ‖u‖L∞
∥
∥∇3u

∥
∥

L2
)

+ C
∥
∥∇4u

∥
∥

L2
(∥
∥∇2h3(�)

∥
∥

L∞‖∇�‖L2 +
∥
∥∇h3(�)

∥
∥

L∞
∥
∥∇2�

∥
∥

L2
)

+ C
∥
∥∇4u

∥
∥

L2

∥
∥h3(�)

∥
∥

L∞
∥
∥∇3�

∥
∥

L2

+ C
∥
∥∇4u

∥
∥

L2
(∥
∥∇2h2(�)

∥
∥

L∞
∥
∥∇2u

∥
∥

L2 +
∥
∥∇h2(�)

∥
∥

L∞
∥
∥∇3u

∥
∥

L2
)

+ C
∥
∥∇4u

∥
∥

L2

∥
∥h2(�)

∥
∥

L∞
∥
∥∇4u

∥
∥

L2

+ C
∥
∥∇4u

∥
∥

L2
(∥
∥h1(�)

∥
∥

L∞ +
∥
∥∇h1(�)

∥
∥

L∞ +
∥
∥∇2h1(�)

∥
∥

L∞
)‖u‖p–2

H3 ‖u‖H4

≤ Cε0
(‖∇u‖2

H3 +
∥
∥∇3(�, u)

∥
∥2

L2
)
, (3.28)

∫

∇3� · ∇2N dx

=
∫

∇3� · ∇2(–u · ∇u – h3(�)∇� – h2(�)(�u + ∇ div u)
)

dx

+
∫

∇3� · ∇2(h1(�) div
(∣
∣D(∇u)

∣
∣p–2D(∇u)

))
dx

≤ C
∥
∥∇3�

∥
∥

L2
(‖∇u‖L6

∥
∥∇2u

∥
∥

L3 + ‖u‖L∞
∥
∥∇3u

∥
∥

L2
)

+ C
∥
∥∇3�

∥
∥

L2
(∥
∥∇2h3(�)

∥
∥

L∞‖∇�‖L2 +
∥
∥∇h3(�)

∥
∥

L∞
∥
∥∇2�

∥
∥

L2
)

+ C
∥
∥∇3�

∥
∥

L2

∥
∥h3(�)

∥
∥

L∞
∥
∥∇3�

∥
∥

L2

+ C
∥
∥∇3�

∥
∥

L2
(∥
∥∇2h2(�)

∥
∥

L∞
∥
∥∇2u

∥
∥

L2 +
∥
∥∇h2(�)

∥
∥

L∞
∥
∥∇3u

∥
∥

L2
)

+ C
∥
∥∇3�

∥
∥

L2

∥
∥h2(�)

∥
∥

L∞
∥
∥∇4u

∥
∥

L2

+ C
∥
∥∇3�

∥
∥

L2
(∥
∥h1(�)

∥
∥

L∞ +
∥
∥∇h1(�)

∥
∥

L∞ +
∥
∥∇2h1(�)

∥
∥

L∞
)‖u‖p–2

H3 ‖u‖H4

≤ Cε0
(‖∇u‖2

H3 +
∥
∥∇3(�, u)

∥
∥2

L2
)
. (3.29)
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Plugging (3.26)–(3.29) into (3.25), we can deduce that

1
2

d
dt

(
∥
∥∇3�

∥
∥2

L2 +
∥
∥∇3u

∥
∥2

L2 + 2γ3

∫

∇3� · ∇2u dx
)

+
γ3

4
∥
∥∇3�

∥
∥2

L2 +
μ0

2
∥
∥∇3∇u

∥
∥2

L2 +
μ0

2
∥
∥∇3 div u

∥
∥2

L2

≤ 1
4
∥
∥∇2 div u

∥
∥2

L2 + Cε0
(‖∇u‖2

H3 +
∥
∥∇3(�, u)

∥
∥2

L2
)
,

where 0 < γ3 < { 1
4 , 1

8μ0
} is a fixed constant. Consequently, we completed the proof

of (3.22). �

With Lemmas 3.1–3.2 in hand, we easily further obtain Proposition 3.2. In fact, keeping
in mind the Young’s inequality and the definitions of F1, F2, F3, we have

1
C4

∥
∥(�, u)

∥
∥2

H3 ≤F1 + F2 + F3 ≤ C4
∥
∥(�, u)

∥
∥2

H3 ,

where C4 > 0 is a constant, which yields

F1 + F2 + F3 ≈ ∥
∥(�, u)

∥
∥2

H3 .

Thanks to the three lemmas above, integrating the resulting inequality over (0, t), (3.2)
holds for the small enough ε0. This completes the proof of Proposition 3.2.

4 Time decay rates of the solution
In this section we shall show the time decay rates of the Cauchy problem (1.5). The proof
will be broken up into two subsections.

4.1 Cancellation of the low frequency part
Inspired by the observation of canceling the low frequency part of the solution, we draw
the following conclusion.

Lemma 4.1 We have

∥
∥∇3(�, u)

∥
∥2

L2 ≤ CeC5t∥∥∇3(�0, u0)∥∥2
L2 + C

∫ t

0
eC5(t–τ )∥∥∇3(�L, uL)(τ )

∥
∥2

L2 dτ , (4.1)

where C, C5 > 0 are constants.

Proof Multiplying ∇3(1.5)1 by ∇2u, exploiting ∇2(1.5)2 · ∇3�L in L2, and integrating by
parts, we can estimate that

d
dt

∫

∇3�L · ∇2u dx = μ0

∫

∇3�L · ∇2�u dx + μ0

∫

∇3�L · ∇3 div u dx

+
∫

∇2 div u · ∇2 div uL dx –
∫

∇3�L · ∇3� dx

+
∫

∇2N · ∇3�L dx +
∫

∇2 div(�u)L · ∇2 div u dx.
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Similarly to (3.5), using the Young’s inequality, we have

–
d
dt

∫

∇3�L · ∇2u dx

≤ μ0

2
∥
∥∇2�u

∥
∥2

L2 +
μ0

2
∥
∥∇3 div u

∥
∥2

L2 +
∥
∥∇2 div u

∥
∥2

L2

+
1
2
∥
∥∇2 div uL∥∥2

L2 +
5 + 2μ0

2
∥
∥∇3�L∥∥2

L2 +
1
8
∥
∥∇3�

∥
∥2

L2

+
1
2
∥
∥∇2 div(�u)L∥∥2

L2 +
1
2
∥
∥∇2N

∥
∥2

L2 . (4.2)

By virtue of the Plancherel theorem and Lemma 3.3, we estimate that

1
2
∥
∥∇2 div(�u)L∥∥2

L2 +
1
2
∥
∥∇2N

∥
∥2

L2

≤ Cε0
(∥
∥∇4u

∥
∥2

L2 +
∥
∥∇3(�, u)

∥
∥2

L2
)
. (4.3)

Adding up (4.1) and γ2 · (4.2) with some positive constants, we obtain

d
dt

(

F3 – γ3

∫

∇3�L · ∇2u dx
)

+
γ3

8
∥
∥∇3�

∥
∥2

L2 +
μ0

4
∥
∥∇3uH∥

∥2
L2 +

μ0

4
∥
∥∇4u

∥
∥2

L2 +
μ0

2
∥
∥∇3 div u

∥
∥2

L2

≤
(

1
4

+ γ3

)
∥
∥∇2 div u

∥
∥2

L2 +
γ3μ0

2
∥
∥∇2�u

∥
∥2

L2 +
γ3μ0

2
∥
∥∇3 div u

∥
∥2

L2

+ Cγ3
(∥
∥∇3�L∥∥2

L2 +
∥
∥∇2 div uL∥∥2

L2
)

+ Cε0(1 + γ3)
∥
∥∇3(�, u)

∥
∥2

L2 + Cε0
∥
∥∇4u

∥
∥

L2

∥
∥∇3u

∥
∥p–2

L2 .

In addition, by the frequency decomposition (1.6), we further put μ0
4 ‖∇2uL‖2

L2 on both
sides of (4.1) to get

d
dt

(

F3 – γ3

∫

∇3�L · ∇2u dx
)

+
γ3

8
∥
∥∇3�

∥
∥2

L2 +
μ0

8
∥
∥∇3u

∥
∥2

L2 +
μ0

4
∥
∥∇4u

∥
∥2

L2 +
μ0

2
∥
∥∇3 div u

∥
∥2

L2

≤
(

1
4

+ γ3

)
∥
∥∇2 div u

∥
∥2

L2 +
γ3μ0

2
∥
∥∇2�u

∥
∥2

L2 +
γ3μ0

2
∥
∥∇3 div u

∥
∥2

L2

+ Cγ3
∥
∥∇3�L∥∥2

L2 +
(

1
4

+ Cγ3

)
∥
∥∇3uL∥∥2

L2

+ Cε0(1 + γ3)
∥
∥∇3(�, u)

∥
∥2

L2 + Cε0
∥
∥∇4u

∥
∥

L2

∥
∥∇3u

∥
∥p–2

L2 .

Furthermore, noting the smallness of ε0, we obviously have

d
dt

(

F3 – γ3

∫

∇3�L · ∇2u dx
)

+
γ3

16
∥
∥∇3�

∥
∥2

L2 +
μ0

16
∥
∥∇3u

∥
∥2

L2 +
μ0

8
∥
∥∇4u

∥
∥2

L2 +
μ0

8
∥
∥∇3 div u

∥
∥2

L2

≤ C
∥
∥∇3(�L, uL)∥∥2

L2 . (4.4)
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In view of the frequency decomposition (1.6), we get

F3 – γ3

∫

∇3�L · ∇2u dx

=
1
2
(∥
∥∇3�

∥
∥2

L2 +
∥
∥∇3u

∥
∥2

L2
)

+ γ3

∫

∇3�H · ∇2u dx

≤ 1
2
(∥
∥∇3�

∥
∥2

L2 +
∥
∥∇3u

∥
∥2

L2
)

+
γ3

2
∥
∥∇2�

∥
∥2

L2 +
γ3

2
∥
∥∇3u

∥
∥2

L2 . (4.5)

Next, recombining (4.5), we have

F3 – γ3

∫

∇3�L · ∇2u dx ≈ ∥
∥∇3(�, u)

∥
∥2

L2 , (4.6)

and with the help of (4.4) and (4.6), we can deduce that for a suitable constant C5,

d
dt

(

F3 – γ3

∫

∇3�L · ∇2u dx
)

+ C5

(

F3 – γ3

∫

∇3�L · ∇2u dx
)

≤ C
∥
∥∇3(�L, uL)∥∥2

L2 .

Consequently, thanks to the Gronwall inequality, we conclude that

F3(t) – γ3

∫

∇3�L · ∇2u dx

≤ C5e–C5t
(

F3(0) – γ3

∫

∇3�L
0 · ∇2u0 dx

)

+ C
∫ t

0
e–C5(t–τ )∥∥∇3(�L, uL)∥∥2

L2 dτ .

This completes the proof of Lemma 4.1. �

4.2 Decay estimate of the low frequency part
We will present the estimate of the low frequency part of the constructed solution by
analyzing the structure of the semigroup of the system (1.5). To this end, by Hausdorff de-
composition [49], we first decompose the velocity u into m = �–1 div u and M = �–1 curl u,
where curlij = ∂jui – ∂iuj and � =

√
–�. Then, the system (1.5) can be decoupled into the

following systems:

⎧
⎪⎪⎨

⎪⎪⎩

�t + �m = – div(�u),

mt – 2μ0�m – �� = �–1 divN ,

(�, m)|t=0 = (�0, m0)(x)

(4.7)

and
⎧
⎨

⎩

Mt – μ0�M = �–1 curlN ,

M(0, x) = M0(x),
(4.8)

where m0 := �–1 div u0 and M0 =: �–1 curl u0. Then a direct calculation yields the following
lemma; see [22] for the proof.
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Lemma 4.2 Let M(t, x) be the solution to the linearized system of (4.8). Then, for all |ξ |2 ≥
0, we have

∣
∣M̂(t, ξ )

∣
∣2 ≤ Ce–|ξ |2t∣∣M̂(0, ξ )

∣
∣2,

where C > 0 is a constant and M̂ denotes the Fourier transform of M.

Now we turn to considering the linearized system of (4.7). The following system can be
obtained by applying the Fourier transform:

⎧
⎨

⎩

�̂t = –|ξ |m̂,

m̂t = –|ξ |�̂ – 2μ0|ξ |2m̂,
(4.9)

which is also rewritten by

Ût = Â
(|ξ |)Û , (4.10)

where Û = (�̂, m̂) and

Â
(|ξ |) =

(
0, –|ξ |
|ξ |, –2μ0|ξ |2

)

.

According to the standard theory of ordinary differential equations, the system (4.10)
admits a solution which can be expressed by

Û = etÂ(|ξ |)Û(0). (4.11)

By taking the inverse Fourier transform on both sides of (4.11), we can obtain

U = A(t)U(0),

where

A(t)U = F–1(etÂ(|ξ |)Û(ξ )
)
,

which implies the solution to the linearized system of (4.7). Additionally, we further work
out the eigenvalues λi(ξ ) (i = 1, 2) of matrix Â(|ξ |) and express them by

det
(
Â

(|ξ |) – λI
)

= λ2 + 2μ0|ξ |λ + |ξ |2 = 0. (4.12)

Then the eigenvalues λi(ξ ) (i = 1, 2) of Â(|ξ |) can be calculated by (4.12) as follows:

⎧
⎨

⎩

λ1(ξ ) = –μ0|ξ |2 + |ξ |
√

μ2
0|ξ |2 – 1,

λ2(ξ ) = –μ0|ξ |2 – |ξ |
√

μ2
0|ξ |2 – 1.
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Based on the semigroup decomposition theory given in [2], we have

etÂ(|ξ |) = eλ1tP1(ξ ) + eλ2tP2(ξ ),

where

Pi(ξ ) =
∏

j �=i

A(|ξ |) – λiI
λi – λj

(i, j = 1, 2)

is a projection operator.
Then by tedious and careful calculations, we can present the asymptotic expansions of

λi(ξ ), Pi(ξ ) (i = 1, 2) and etÂ(|ξ |) in the low and high frequency situations, which give rise
to the following lemma.

Lemma 4.3 For any |ξ | ≤ 1, λi(ξ ) (i = 1, 2) has the Taylor series expansion

⎧
⎨

⎩

λ1(ξ ) = –|ξ |2 + i(|ξ | + O(|ξ |3)),

λ2(ξ ) = –|ξ |2 – i(|ξ | + O(|ξ |3)).

We omit the proof of this lemma here; please refer to [17]. With the help of Lemmas 4.2
and 4.3, one can obtain the time decay estimates of the low frequency part of the solution
to the linear system (4.9).

Proposition 4.1 Let 1 ≤ q ≤ 2. Then for any integer k ≥ 0, the solution to the linearized
system of (1.5) satisfies

∥
∥∇k(�L, mL, uL)(t)

∥
∥

L2 ≤ C(1 + t)– 3
2 ( 1

q – 1
2 )– k

2
∥
∥
(
�0, m0, u0)(t)

∥
∥

Lq ,

where C > 0 is a constant independent of T .

Proof Following the arguments in [43], we can deduce that

∥
∥∇k(�L, mL, ML)(t)

∥
∥

L2 ≤ C(1 + t)– 3
2 ( 1

q – 1
2 )– k

2
∥
∥
(
�0, m0, M0)(t)

∥
∥

Lq . (4.13)

Note that

u = �–1(∇ div u – curl curl u) = –�–1∇m + �–1 curl M, (4.14)

which together with (4.13) implies that

∥
∥∇kuL(t)

∥
∥

L2 =
∥
∥∇k(mL, ML)(t)

∥
∥

L2 ≤ C(1 + t)– 3
2 ( 1

q – 1
2 )– k

2
∥
∥u0(t)

∥
∥

Lq . (4.15)

Combining (4.13) and (4.15), we complete the proof of Proposition 4.1. �
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4.3 Decay rates for the nonlinear system
This subsection is devoted to investigating the optimal time decay rates of the solutions
for the nonlinear system (1.5). For convenience, we define

W (t) =
(
�(t), u(t)

)T

and

Q =

(
0, div

∇ , –μ0� – μ0∇ div

)

.

Then it follows from the nonlinear system (1.5) that

Wt + QW = N1(W )

with the initial data W |t=0 = W (0), where N1(W ) has been defined by

N1(W ) =
(
– div(�u),N

)T .

Thanks to Duhamel’s principle, the solution of the nonlinear system can be presented
as

W (t) = Q(0)W (0) +
∫ t

0
Q(t – τ )N1(W )(τ ) dτ ,

where Q(0)W (0) is the initial data of the solution to the linearized system of (1.5). In ad-
dition, with Proposition 4.1 in hand, we have the following lemma.

Lemma 4.4 For any integer k ≥ 0, we have

∥
∥∇kW L(t)

∥
∥

L2 ≤ C6(1 + t)–( 3
4 + k

2 )∥∥W (0)
∥
∥

L1

+ C6

∫ t
2

0
(1 + t – τ )–( 3

4 + k
2 )∥∥N1(W )(τ )

∥
∥

L1 dτ

+ C6

∫ t

t
2

(1 + t – τ )
k
2
∥
∥N1(W )(τ )

∥
∥

L2 dτ , (4.16)

where C6 > 0 is a constant.

Based on Lemmas 4.1 and 4.4, we are in a position to establish the optimal time decay
rates of solutions.

Lemma 4.5 (Optimal time decay rates). With the assumptions in Theorem 1.1, we have,
for any t ∈ [0,∞),

∥
∥∇ l(�, u)(t)

∥
∥

L2 ≤ C(1 + t)–( 3
4 + l

2 ), l = 0, 1, 2, 3,

where C > 0 is a constant.
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Proof We first define a non-decreasing Lyapunov function G(τ ) as

G(τ ) := sup
0≤τ≤t

3∑

l=0

(1 + τ )
3
4 + l

2
∥
∥∇ l(�, u)(τ )

∥
∥

L2 ,

which implies that for 0 ≤ τ ≤ t and 0 ≤ l ≤ 3,

∥
∥∇ l(�, u)(τ )

∥
∥

L2 ≤ C7(1 + τ )–( 3
4 + l

2 )G(τ ), (4.17)

where the constant C7 > 0 is independent of ε0.
Due to (4.17) and Hölder’s inequality, we have

∥
∥N1(W )(τ )

∥
∥

L1 ≤ ∥
∥(�, u)

∥
∥

L2

∥
∥∇(�, u)

∥
∥

L2 + ‖�‖L2
∥
∥∇2u

∥
∥

L2

+ ‖∇u‖2
L2 + ‖∇u‖p–2

L2(q–2)‖∇u‖H1

≤ ε0G(t)(1 + τ )– 5
4

and

∥
∥N1(W )(τ )

∥
∥

L2 ≤ ∥
∥(�, u)

∥
∥

L3

∥
∥∇(�, u)

∥
∥

L6 + ‖�‖L∞
∥
∥∇2u

∥
∥

L2

+ ‖∇u‖2
L3 + ‖∇u‖2

L6 + ‖∇u‖p–2
L∞ ‖∇u‖H1

≤ ε1–ϑ
0 G1+ϑ (t)(1 + τ )–( 7

4 + 3ϑ
4 ),

where ϑ ∈ (0, 1
2 ) is a given constant. Combining with Lemmas 2.6 and 4.4, we have

∥
∥∇ lW L(t)

∥
∥

L2 ≤ C(1 + t)–( 3
4 + l

2 )∥∥W (0)
∥
∥

L1

+ C6

∫ t
2

0
(1 + t – τ )–( 3

4 + l
2 )ε0G(τ )(1 + τ )– 5

4 dτ

+ C6

∫ t

t
2

(1 + t – τ )
l
2 ε1–ϑ

0 G1+ϑ (τ )(1 + τ )–( 7
4 + 3ϑ

4 ) dτ

≤ C(1 + t)–( 3
4 + l

2 )(∥∥W (0)
∥
∥

L1 + ε0G(τ ) + ε1–ϑ
0 G1+ϑ (τ )

)
, (4.18)

where 0 ≤ l ≤ 3. Putting (4.18) into (4.1) and using Lemma 2.6, we can deduce that

∥
∥∇3W (t)

∥
∥2

L2 ≤ Ce–C3t∥∥∇3W (0)
∥
∥2

L2

+ C
(∥
∥W (0)

∥
∥2

L1 + ε2
0G2(t)

)
∫ t

0
e–C3(t–τ )(1 + τ )– 7

2 dτ

+ Cε2–2ϑ
0 G2+2ϑ (t)

∫ t

0
e–C3(t–τ )(1 + t)– 7

2 dτ

≤ C(1 + t)– 7
2
(∥
∥W (0)

∥
∥2

H2∩L1 + ε2
0G2(t) + ε2–2ϑ

0 G2+2ϑ (t)
)
. (4.19)
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Making use of (1.6) and Lemma 2.1, we have

∥
∥∇ lW (t)

∥
∥2

L2 ≤ C
∥
∥∇ lW L(t)

∥
∥2

L2 + C
∥
∥∇ lW H (t)

∥
∥2

L2

≤ C
∥
∥∇ lW L∥∥2

L2 + C
∥
∥∇3W

∥
∥2

L2 . (4.20)

Therefore, by putting (4.18)–(4.19) into (4.20), we deduce that for 0 ≤ l ≤ 3,

∥
∥∇ lW (t)

∥
∥2

L2 ≤ C(1 + t)–( 3
2 +l)(∥∥W (0)

∥
∥2

H2∩L1 + ε2
0G2(t) + ε2–2ϑ

0 G2+2ϑ (t)
)
.

Recalling the definition of G(t), we can derive for sufficiently small ε0 that

G2(t) ≤ C8

2
(∥
∥(�, u)(0)

∥
∥2

H2∩L1 + ε2
0G2(t) + ε2–2ϑ

0 G2+2ϑ (t)
)
, (4.21)

where C8 is independent of ε0.
For the last term on the right-hand side of (4.21), by Young’s inequality, we obtain

C8ε
2–2ϑ
0 G2+2ϑ (t) ≤ 1 – ϑ

2
C

2
1–ϑ

8 +
1 + ϑ

2
ε

1–ϑ
1+ϑ

0 G4(t). (4.22)

From (4.21)–(4.22), we have

G2(t) ≤ I0 + Cε0G4(t),

where

Cε0 :=
1 + ϑ

2
ε

4(1–ϑ)
1+ϑ

0

and

I0 := C8
∥
∥(�, u)(0)

∥
∥2

H2∩L1 +
1 – ϑ

2
C

2
1–ϑ

8 .

Now we prove that G(t) is a bounded function by contradiction. Suppose G2(t) > 2I0 for
any t ≥ t1 with a constant t1 > 0. Noting that G(t) ∈ C0[0, +∞) and G2(0) is small, we have

G2(t0) = 2I0 (4.23)

with some t0 ∈ (0, t1). Moreover, from (4.23), we have

G2(t0) ≤ I0 + Cε0G4(t0),

which implies

G2(t0) ≤ I0

1 – Cε0G2(t0)
. (4.24)

Assume ε0 is a small constant such that Cε0 < 1
4I0

, which leads to Cε0G2(t0) < 1
2 . This fact

together with (4.24) implies

G2(t0) < 2I0. (4.25)
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Clearly, (4.25) contradicts (4.23). Therefore, one always gets G2(t) ≤ 2I0 for any t ≥ t1.
Keeping in mind that G(t) is non-decreasing, we can deduce G(t) ≤ C for any t ∈ [0, +∞).
This completes the proof. �

5 Conclusion
In this paper, we investigated the time decay properties of solutions for compressible non-
Newtonian fluid equations. More specifically, we investigated the long-time behavior of
the Cauchy problem for Eills-type three-dimensional isentropic compressible fluids by the
well-posedness result for the non-Newtonian fluid equations in [1], as well as the long-
time behavior result for the Navier–Stokes system in [2]. Li–Zhang investigated the long-
time behavior of Newtonian fluids; we further investigated the long-time behavior of Eills-
type non-Newtonian fluids.
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