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Abstract
In this paper, we focus on the existence of ground state solutions for the
p(x)-Laplacian equation

{
–�p(x)u + λ|u|p(x)–2u = f (x,u) + h(x) in �,

u = 0, on ∂�.

Using the constraint variational method, quantitative deformation lemma, and strong
maximum principle, we proved that the above problem admits three ground state
solutions, especially speaking, one solution is sign-changing, one is positive, and one
is negative. Our results improve on those existing in the literature.
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1 Introduction and main results
In this paper, we mainly study the p(x)-Laplacian equation with variable exponent

⎧⎨
⎩–�p(x)u + λ|u|p(x)–2u = f (x, u) + h(x) in �,

u = 0, on ∂�,
(1.1)

where � ⊂ R
N (N ≥ 2) is a smooth bounded domain, λ > 0 is a real parameter, and �p(x)

is the p(x)-Laplacian operator, that is,

�p(x) = div
(|∇u|p(x)–2∇u

)
=

N∑
i=1

(
|∇u|p(x)–2 ∂u

∂xi

)
,

p ∈ C(�̄) is a Lipschitz function, and it satisfies 1 < p– := infx∈� p(x) ≤ p+ := supx∈� p(x) <
N , h(x) is a continuous function satisfying conditions that will be proposed later, and f :
� ×R �→R is a Carathéodory function.
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A new and interesting research direction is the study of variational problems with p(x)-
growth condition. It has many practical physical meanings, such as the nonlinear elas-
ticity theory [1], stationary thermorheological viscous flows [2], electrorheological fluids
[3], image processing [4] and nonlinear Darcy’s law in porous medium [5]. Recently, many
scholars have become increasingly concerned about the existence and multiplicity of solu-
tions to the p(x)-Laplacian problems and have obtained many results under the following
two useful conditions:

(f1) f (x, t) = o(|t|p+–2t) as t → 0 uniformly in x ∈ �;
(f2) there exist p+ < r(x) < p∗(x) and some positive constant C such that

∣∣f (x, t)
∣∣ ≤ C

(
1 + |t|r(x)–1),

where p∗(x) = Np(x)
N–p(x) .

As is well known, (f1) and (f2) are standard and are important in many studies. Fan and
Zhang [6] considered the cases when the nonlinear term f (x, u) is p(x)-superlinear and
p(x)-sublinear with u, respectively, and obtained the existence of infinitely many solutions
for problem (1.1) with λ = 0 and h(x) ≡ 0. Amrouss and Kissi [7] proved that (1.1) has at
least two nontrivial solutions with λ = 0 and h(x) ≡ 0, under adequate variational methods
and a variant of the Mountain Pass lemma. The common feature of [6, 7] is that the authors
used the well-known Ambrosetti-Rabinowitz’s type conditions, that is

(AR) there exist μ > p+ and M0 > 0 such that

0 < μF(x, t) ≤ tf (x, t), x ∈ �, |t| ≥ M0.

However, many functions are superlinear but do not satisfy the (AR) condition. As is well
known, the main purpose of using (AR) is to ensure the boundedness of Palais-Smail-type
sequences of the corresponding functional. Many scholars attempt to study such problems
using weaker conditions. Avci [8] used a variant Fountain theorem and variational method
to obtain the existence of infinitely many solutions for the Dirichlet boundary problems.
Applying the Morse theory and modified functional methods, Tan and Fang [9] obtained
some existence and multiplicity results. Zang [10] proved the existence and multiplicity
of the solutions by Cerami condition. Yucedag [11] obtained infinitely many solutions for
this problem with two superlinear terms. Liu and Pucci [12] dealt with the existence of a
pair of nontrivial nonnegative and nonpositive solutions for a nonlinear weighted quasi-
linear equation in R

N , which involves a double-phase operator under the Cerami condi-
tion instead of the classical Palais-Smale condition. Chu, Xie and Zhou [13] introduced
new methods to show the boundedness of Cerami sequences and obtained the existence
and multiplicity of solutions for a new Kirchhoff equation. Qin, Tang, and Zhang [14]
developed a direct method and used approximation arguments to search for the Cerami
sequences of energy functionals, estimated the minimax energy levels of these sequences,
and obtained the existence of ground states and nontrivial solutions for a planar Hamil-
tonian elliptic system with critical exponential growth. Zhang and Zhang [15] obtained
the existence of semiclassical ground state solutions via the generalized Nehari manifold
method, in which nonlinearity f is continuous but not necessarily of class C1. Li, Nie, and
Zhang [16] obtained the existence of normalized ground states by the Sobolev subcriti-
cal approximation method for the first time considering mass constraints, Kirchhof-type
problems, and Schwartz symmetric rearrangement.



Xiao and Zhang Boundary Value Problems          (2024) 2024:2 Page 3 of 23

Next, we will continue to make the following assumptions on f (x, t).
(f3) lim|t|→+∞ F(x,t)

|t|p+ = ∞ uniformly in x ∈ �, where F(x, t) =
∫ t

0 f (x, s) ds;

(f4) for each x ∈ �, f (x,t)
|t|p+–1 is an increasing function of t on R \ {0}.

There are many nonlinear terms f (x, t) that satisfy (f3) and (f4) but not (AR) (e.g.,
f (x, t) = p+|t|p+–2t ln(1 + t2)). There are some works that use (f3) and (f4); for example,
when λ = 0 and h(x) ≡ 0, Ge, Zhuge, and Yuan [17] proved that (1.1) possesses one positive
ground state solution, one negative ground state solution, and one sign-changing ground
state solution; Ge, Zhang, and Hou [18] discussed the existence of the Nehari-type ground
state solutions for a superlinear p(x)- Laplacian equation with potential V (x) using per-
turbation methods. However, to the best of our knowledge, there are few results in the
literature regarding ground state solutions for problem (1.1) since problem (1.1) is more
complicated.

The solution of problem (1.1) is understood in the weak sense, that is, u ∈ W 1,p(x)
0 (�) is

the solution of problem (1.1) if
∫

�

(|∇u|p(x)–2∇u · ∇v + λ|u|p(x)–2u · v
)

dx –
∫

�

h(x)v dx

=
∫

�

f (x, u)v dx, ∀v ∈ W 1,p(x)
0 (�), (1.2)

where W 1,p(x)
0 (�) is the variable exponent Sobolev space and will be defined in Sect. 2.

The energy functional related to problem (1.1) is represented by

J(u) =
∫

�

1
p(x)

(|∇u|p(x) + λ|u|p(x))dx –
∫

�

h(x)u dx –
∫

�

F(x, u) dx. (1.3)

If u ∈ W 1,p(x)
0 (�) is a solution of problem (1.1) with u± 
= 0, then u is called a sign-changing

solution of problem (1.1), where u± are defined as follows,

u+(x) := max
{

u(x), 0
}

and u–(x) := min
{

u(x), 0
}

. (1.4)

For the convenience of further discussions, we set

� :=
{

u ∈ W 1,p(x)
0 (�) :

〈
J ′(u), u+〉

=
〈
J ′(u), u–〉

= 0, u± 
= 0
}

,

� :=
{

u ∈ W 1,p(x)
0 (�) :

〈
J ′(u), u

〉
= 0, u 
= 0

}
,

and let

ξ := inf
u∈�

J(u), ψ := inf
u∈�

J(u).

To obtain the desired results, the following assumption is made for h(x).
(h1) for any u ∈ � and h ∈ L2(RN ), we have 〈h(x), u〉 ≤ 0.
Now, we present our main results:

Theorem 1.1 Assume that (f1)–(f4) and (h1) hold, then for any λ > 0, problem (1.1) admits
a sign-changing solution u0 ∈ � such that

J(u0) = inf
u∈�

J(u).
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Theorem 1.2 Assume that p ∈ C1(�̄), (f1)–(f4) and (h1) hold, then for any λ > 0, problem
(1.1) admits at least a positive ground state solution and a negative ground state solution.

Combining Theorem 1.1 and Theorem 1.2, we can obtain the following result.

Corollary 1.3 Assume that p ∈ C1(�̄), (f1)–(f4) and (h1) hold, then for any λ > 0, problem
(1.1) admits at least a ground state sign-changing solution, a positive ground state solution,
and a negative ground state solution.

This paper is organized as follows. Section 2 introduces some preliminary knowledge of
variable exponent spaces and gives some preliminary lemmas needed to prove our results.
Section 3 presents the proof of Theorem 1.1 and Theorem 1.2.

2 Preliminaries
In this section, we will give out some results on the variable exponent Sobolev space, which
come from [6, 19–23] and references therein.

For p ∈ C(�̄), let

C+(�̄) =
{

p ∈ C(�̄) : p(x) > 1 for all x ∈ �̄
}

.

For any p ∈ C+(�̄), we introduce the variable exponent Lebesgue space defined by

Lp(x)(�) =
{

u : u is a measurable real-valued function such that

∫
�

∣∣u(x)
∣∣p(x) dx < +∞

}

endowed with the Luxemburg norm

|u|p(x) = inf

{
μ > 0 :

∫
�

∣∣∣∣u(x)
μ

∣∣∣∣
p(x)

dx ≤ 1
}

,

which is a separable and reflexive Banach space. The fundamental properties of variable
exponent Lebesgue spaces can be found in [21, 24].

Proposition 2.1 [19] The space Lp(x)(�) is separable, uniformly convex, and reflexive, and
its conjugate space is Lq(x)(�), where 1

p(x) + 1
q(x) = 1. For all u ∈ Lp(x)(�), v ∈ Lq(x)(�), the

Hölder inequality

∣∣∣∣
∫

�

uv dx
∣∣∣∣ ≤

(
1

p– +
1

q–

)
|u|p(x)|v|q(x)

holds.

When dealing with generalized Lebesgue and Sobolev spaces, the module ρ(u) of space
Lp(x)(�) plays an important role, and we set

ρ(u) =
∫

�

|u|p(x) dx.
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Proposition 2.2 [20] For all u ∈ Lp(x)(�), the following properties are valid:
(i) For u 
= 0, |u|p(x) = μ ⇔ ρ( u

μ
) = 1;

(ii) |u|p(x) < 1 (= 1; > 1) ⇔ ρ(u) < 1 (= 1; > 1);
(iii) If |u|p(x) ≥ 1, then |u|p–

p(x) ≤ ρ(u) ≤ |u|p+

p(x);
(iv) If |u|p(x) ≤ 1, then |u|p+

p(x) ≤ ρ(u) ≤ |u|p–

p(x).

The variable exponent Sobolev space W 1,p(x)(�) is defined as

W 1,p(x) =
{

u ∈ Lp(x)(�) : |∇u| ∈ Lp(x)(�)
}

,

and is equipped with the norm

‖u‖1,p(x) = |u|p(x) + |∇u|p(x). (2.1)

Then W 1,p(x)
0 (�) is defined as the completion of C∞

0 (�) with respect to the norm ‖u‖1,p(x).

Proposition 2.3 [21] If q ∈ C+(�̄) and 1 ≤ q(x) ≤ p∗(x), then for all x ∈ �̄, there is a con-
tinuous embedding

W 1,p(x)(�) ↪→ Lq(x)(�).

If replace ≤ with <, the embedding is compact.

Proposition 2.4 [21] In W 1,p(x)
0 (�), the Poincare inequality holds, that is, there is a con-

stant C0 > 0, such that

‖u‖1,p(x) ≤ C0‖∇u‖Lp(x)(�), (2.2)

for all u ∈ W 1,p(x)
0 (�).

Remark 2.5 By Proposition 2.4, there exists cq(x) > 0 such that

|u|q(x) ≤ cq(x)‖u‖1,p(x), ∀u ∈ W 1,p(x)
0 (�). (2.3)

From Proposition 2.4, it is easy to see that |∇u|p(x) is an equivalent norm on W 1,p(x)
0 (�).

For the convenience of future discussion, we will set ‖u‖ = ‖u‖1,p(x).

Proposition 2.6 [18] Let

I(u) =
∫

�

(|∇u|p(x) + |u|p(x))dx, ∀u ∈ W 1,p(x)
0 (�).

Then
(i) For u 
= 0, ‖u‖ = μ ⇔ ρ( u

μ
) = 1;

(ii) ‖u‖ < 1 (= 1; > 1) ⇔ ρ(u) < 1 (= 1; > 1);
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(iii) If ‖u‖ ≥ 1, then ‖u‖p– ≤ ρ(u) ≤ ‖u‖p+ ;
(iv) If ‖u‖ ≤ 1, then ‖u‖p+ ≤ ρ(u) ≤ ‖u‖p– .

Proposition 2.7 [23] For a.e. x ∈ �, let p and q be measurable functions such that p ∈
L∞(�) and 1 < p(x)q(x) ≤ ∞. Let 0 
= u ∈ Lq(x)(�), then

|u|p(x)q(x) ≤ 1 ⇒ |u|p+

p(x)q(x) ≤ ∣∣|u|p(x)∣∣
q(x) ≤ |u|p–

p(x)q(x),

|u|p(x)q(x) ≥ 1 ⇒ |u|p–

p(x)q(x) ≤ ∣∣|u|p(x)∣∣
q(x) ≤ |u|p+

p(x)q(x).

To study problem (1.1), a functional in W 1,p(x)
0 (�) is defined as follows:

T(u) :=
∫

�

1
p(x)

|∇u|p(x) dx.

From [25], we know that T ∈ C1(W 1,p(x)
0 ,R) and the double phase operator

– div(|∇u|p(x)–2∇u) is the derivative operator of T in the weak sense. We let � = T ′ :
W 1,p(x)

0 (�) → (W 1,p(x)
0 (�))∗, and we have

〈
�(u), v

〉
=

∫
�

|∇u|p(x)–2∇u · ∇v dx,

for all u, v ∈ W 1,p(x)
0 (�). The dual space of W 1,p(x)

0 (�) is denoted as (W 1,p(x)
0 (�))∗, and 〈·, ·〉

denotes the paring between W 1,p(x)
0 (�) and (W 1,p(x)

0 (�))∗. Then, one has the following
proposition.

Proposition 2.8 [6] � : W 1,p(x)
0 (�) → W 1,p(x)

0 (�)∗ is a mapping of type (S)+, i.e., if un ⇀ u
in W 1,p(x)

0 (�) and lim supm→+∞〈�(un) – �(u), un – u〉 ≤ 0, then un → u in W 1,p(x)
0 (�).

To prove the Theorem 1.2, we need the following strong comparison theorem:

Lemma 2.9 [22] Let u ≥ 0 be a weak up-solution of – div(|∇u|p(x)–2∇u) = 0 and u 
≡ 0.
Then, for any compact subset G ⊂ � with G 
= ∅, there is a constant c > 0 such that u(x) ≥ c
for any x ∈ G.

In the following, some lemmas will be proved, which are very important for obtaining
our main results.

Lemma 2.10 If assumptions (f1)–(f4) and (h1) hold, we have

J(u) ≥ J
(
su+ + tu–)

+
1 – sp+

p+

〈
J ′(u), u+〉

+
1 – tp+

p+

〈
J ′(u), u–〉

+
∫

�

g(s)
(∣∣∇u+∣∣p(x) + λ

∣∣u+∣∣p(x))dx +
∫

�

g(t)
(∣∣∇u–∣∣p(x) + λ

∣∣u–∣∣p(x))dx

∀u = u+ + u– ∈ W 1,p(x)
0 (�), s, t ≥ 0, (2.4)

where g(i) = 1–ip(x)

p(x) – 1–ip
+

p+ , i ≥ 0, x ∈ �.
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Proof

J(u) – J
(
su+ + tu–)

=
∫

�

1 – sp(x)

p(x)
∣∣∇u+∣∣p(x) dx +

∫
�

1 – tp(x)

p(x)
∣∣∇u–∣∣p(x) dx

+
∫

�

λ

p(x)
(
1 – sp(x))∣∣u+∣∣p(x) dx +

∫
�

λ

p(x)
(
1 – tp(x))∣∣u–∣∣p(x) dx

+
∫

�

[
F
(
x, su+)

– F
(
x, u+)]

dx +
∫

�

[
F
(
x, tu–)

– F
(
x, u–)]

dx

+
∫

�

(s – 1)h(x)u+ dx +
∫

�

(t – 1)h(x)u– dx

=
∫

�

1 – sp(x)

p(x)
(∣∣∇u+∣∣p(x) + λ

∣∣u+∣∣p(x))dx +
∫

�

1 – tp(x)

p(x)
(∣∣∇u–∣∣p(x) + λ

∣∣u–∣∣p(x))dx

+
∫

�

[
F
(
x, su+)

– F
(
x, u+)]

dx +
∫

�

[
F
(
x, tu–)

– F
(
x, u–)]

dx

+
∫

�

(s – 1)h(x)u+ dx +
∫

�

(t – 1)h(x)u– dx

=
∫

�

g(s)
(∣∣∇u+∣∣p(x) + λ

∣∣u+∣∣p(x))dx +
∫

�

g(t)
(∣∣∇u–∣∣p(x) + λ

∣∣u–∣∣p(x))dx

+
1 – sp+

p+

〈
J ′(u), u+〉

+
∫

�

[
1 – sp+

p+ f
(
x, u+)

u+ + F
(
x, su+)

– F
(
x, u+)]

dx

+
1 – tp+

p+

〈
J ′(u), u–〉

+
∫

�

[
1 – tp+

p+ f
(
x, u–)

u– + F
(
x, tu–)

– F
(
x, u–)]

dx

+
∫

�

(
1 – tp+

p+ + t – 1
)

h(x)u– dx +
∫

�

(
1 – sp+

p+ + s – 1
)

h(x)u+ dx. (2.5)

We set z(t) = 1–tp+

p+ if (x, i) + F(x, ti) – F(x, i), and take the derivative of z(t) yields

∂z(t)
∂t

= if (x, ti) – tp+–1if (x, i) = i|t|p+–1|i|p+–1
[

f (x, ti)
|ti|p+–1 –

f (x, i)
|i|p+–1

]
. (2.6)

From (2.6) and (f4), for any i ∈ (–∞, 0) ∪ (0, +∞), we have⎧⎨
⎩

∂z(t)
∂t < 0, if 0 < t < 1,

∂z(t)
∂t > 0, if t > 1.

(2.7)

Therefore, from (2.7), we get

z(t) ≥ z(1) ≥ 0. (2.8)

Next, through simple calculations, 1–ip
+

p+ + i – 1 ≤ 0 can be obtained. Combined with hy-
pothesis (h1), it can be concluded that

∫
�

(
1 – sp+

p+ + s – 1
)

h(x)u+ dx +
∫

�

(
1 – tp+

p+ + t – 1
)

h(x)u– dx ≥ 0. (2.9)

Combining (2.5), (2.8), and (2.9) completes the proof. �
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The following two corollaries come from Lemma 2.10.

Corollary 2.11 Assume that (f1)–(f4) and (h1) hold. From Lemma 2.10, if u = u+ + u– ∈ �,
then we have

J(u) = J
(
u+ + u–)

= max
s,t≥0

J
(
su+ + tu–)

.

Corollary 2.12 Assume that (f1)–(f4) and (h1) hold. From Lemma 2.10, if u ∈ � , then we
have

J(u) = max
t≥0

J(tu).

Lemma 2.13 Assume that (f1)–(f4) and (h1) hold. If u ∈ W 1,p(x)
0 (�) with u± 
= 0, then there

is a unique positive number pair (su, tu) such that

suu+ + tuu– ∈ �.

Proof For any u ∈ W 1,p(x)
0 (�) with u± 
= 0, define the functions g(s, t) and h(s, t) : [0, +∞) ×

[0, +∞) →R as

g(s, t) =
〈
J ′(su+ + tu–)

, su+〉
and h(s, t) =

〈
J ′(su+ + tu–)

, tu–〉
, respectively.

By simple calculation, it can be concluded that

g(s, t) =
∫

�

sp(x)∣∣∇u+∣∣p(x) dx +
∫

�

λsp(x)∣∣u+∣∣p(x) dx

–
∫

�

f
(
x, su+)

su+ dx –
∫

�

h(x)su+ dx,

h(s, t) =
∫

�

tp(x)∣∣∇u–∣∣p(x) dx +
∫

�

λtp(x)∣∣u–∣∣p(x) dx

–
∫

�

f
(
x, tu–)

tu– dx –
∫

�

h(x)tu– dx.

(2.10)

By assumptions (f1) and (f2), one has that for every ε > 0, there exists a Cε > 0 such that

∣∣f (x, t)
∣∣ ≤ ε|t|p+–1 + Cε|t|r(x)–1, ∀(x, t) ∈ � ×R,∣∣F(x, t)
∣∣ ≤ ε|t|p+

+ Cε|t|r(x), ∀(x, t) ∈ � ×R,
(2.11)

where p+ < r(x) < p∗.
Therefore, for 0 < s < 1, by Proposition 2.2, Proposition 2.4, Proposition 2.6 and (2.11),

one has

g(s, t) ≥ sp+
∫

�

∣∣∇u+∣∣p(x) dx + λsp+
∫

�

∣∣u+∣∣p(x) dx –
∫

�

(
εsp+ ∣∣u+∣∣p+

+ Cεsr(x)∣∣u+∣∣r(x))dx

– s
∫

�

h(x)u+ dx
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≥ min{1,λ}sp+
∫

�

(∣∣∇u+∣∣p(x) +
∣∣u+∣∣p(x))dx –

∫
�

(
εsp+ ∣∣u+∣∣p(x) + Cεsr(x)∣∣u+∣∣r(x))dx

– s
∣∣∣∣
∫

�

h(x)u+ dx
∣∣∣∣

≥

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min{1,λ}sp+‖u+‖p+ – εsp+ cp+

p+‖u+‖p+ – Cεsr–
max{cr–

r(x), cr+
r(x)}‖u+‖r–

– sc2|h|2‖u+‖, if ‖u+‖ < 1,

min{1,λ}sp+‖u+‖p– – εsp+ cp+

p+‖u+‖p+ – Cεsr–
max{cr–

r(x), cr+
r(x)}‖u+‖r+

– sc2|h|2‖u+‖, if ‖u+‖ > 1.

(2.12)

Similarly, for 0 < t < 1, we have

h(s, t) ≥ tp+
∫

�

∣∣∇u+∣∣p(x) dx + λtp+
∫

�

∣∣u+∣∣p(x) dx –
∫

�

(
εtp+ ∣∣u+∣∣p+

+ Cεtr(x)∣∣u+∣∣r(x))dx

≥

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min{1,λ}tp+‖u–‖p+ – εtp+ cp+

p+‖u–‖p+ – Cεtr–
max{cr–

r(x), cr+
r(x)}‖u–‖r–

– tc2|h|2‖u–‖, if ‖u–‖ < 1,

min{1,λ}tp+‖u–‖p– – εtp+ cp+

p+‖u–‖p+ – Cεtr–
max{cr–

r(x), cr+
r(x)}‖u–‖r+

– tc2|h|2‖u–‖, if ‖u–‖ > 1.

(2.13)

Because p+ < r– and u± 
= 0, from (2.12), (2.13) and arbitrariness of ε, it is easy to obtain
that g(s, s) > 0 and h(s, s) > 0 when s is sufficiently small.

Next, by (2.8), let t = 0, we have

1
p+ if (x, i) – F(x, i) ≥ 0, i ∈R \ {0}. (2.14)

Therefore, by (2.14) and (f3), if s > 1, we have

g(s, t) ≤ sp+
∫

�

∣∣∇u+∣∣p(x) dx + λsp+
∫

�

∣∣u+∣∣p(x) dx

– p+
∫

�

F
(
x, su+)

dx + s
∫

�

∣∣h(x)u+∣∣dx

≤ sp+
∫

�

∣∣∇u+∣∣p(x) dx + λsp+
∫

�

∣∣u+∣∣p(x) dx

– p+
∫

�

F(x, su+)
|su+|p+

∣∣su+∣∣p+
dx + s|h|2

∣∣u+∣∣
2

= sp+
(∫

�

∣∣∇u+∣∣p(x) dx + λ

∫
�

∣∣u+∣∣p(x) dx

– p+
∫

u+ 
=0

F(x, su+)
|su+|p+

∣∣u+∣∣p+
dx

)
+ s|h|2

∣∣u+∣∣
2. (2.15)

Similarly, for t > 1, one obtains

h(s, t) ≤ tp+
(∫

�

∣∣∇u–∣∣p(x) dx + λ

∫
�

∣∣u–∣∣p(x) dx – p+
∫

u– 
=0

F(x, tu–)
|tu–|p+

∣∣u–∣∣p+
dx

)

+ s|h|2
∣∣u–∣∣

2. (2.16)
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By (2.15) and (2.16), when t > 0 is sufficiently large, we have g(t, t) < 0 and h(t, t) < 0. To
sum up, there exists 0 < S < T such that

g(T , T) > 0, h(T , T) > 0 and g(S, S) < 0, h(S, S) < 0. (2.17)

By (2.10) and (2.17), for any t ∈ [S, T], we have

g(T , t) > 0, g(S, t) < 0, and h(T , t) > 0, h(S, t) < 0.

Therefore, according to Miranda’s theorem [26], one can find (su, tu) ∈ (S, T) × (S, T) such
that g(su, tu) = 0, h(su, tu) = 0, that is suu+ + tuu– ∈ �.

Finally, we prove the uniqueness of (su, tu). Let (s1, t1), (s2, t2) ∈ � be such that

g(s1, t1) = h(s1, t1) = g(s2, t2) = h(s2, t2) = 0. (2.18)

By Lemma 2.10, (2.10) and (2.18), we have

J
(
s1u+ + t1u–) ≥ sp+

1 – sp+

2

p+sp+
1

〈
J ′(s1u+ + t1u–)

, s1u+〉
+

tp+

1 – tp+

2

p+tp+
1

〈
J ′(s1u+ + t1u–)

, t1u–〉

+
∫

�

(
sp(x)

1 – sp(x)
2

p(x)
–

sp+

1 – sp+

2

p+sp+
1

sp(x)
1

)(∣∣∇u+∣∣p(x) + λ
∣∣u+∣∣p(x))dx

+
∫

�

(
tp(x)
1 – tp(x)

2
p(x)

–
tp+

1 – tp+

2

p+tp+
1

tp(x)
1

)(∣∣∇u–∣∣p(x) + λ
∣∣u–∣∣p(x))dx

+ J
(
s2u+ + t2u–)

=
∫

�

(
sp(x)

1 – sp(x)
2

p(x)
–

sp+

1 – sp+

2

p+sp+
1

sp(x)
1

)(∣∣∇u+∣∣p(x) + λ
∣∣u+∣∣p(x))dx

+
∫

�

(
tp(x)
1 – tp(x)

2
p(x)

–
tp+

1 – tp+

2

p+tp+
1

tp(x)
1

)(∣∣∇u–∣∣p(x) + λ
∣∣u–∣∣p(x))dx

+ J
(
s2u+ + t2u–)

(2.19)

and

J
(
s2u+ + t2u–) ≥ sp+

2 – sp+

1

p+sp+
2

〈
J ′(s2u+ + t2u–)

, s2u+〉
+

tp+

2 – tp+

1

p+tp+
2

〈
J ′(s2u+ + t2u–)

, t2u–〉

+
∫

�

(
sp(x)

2 – sp(x)
1

p(x)
–

sp+

2 – sp+

1

p+sp+
2

sp(x)
2

)(∣∣∇u+∣∣p(x) + λ
∣∣u+∣∣p(x))dx

+
∫

�

(
tp(x)
2 – tp(x)

1
p(x)

–
tp+

2 – tp+

1

p+tp+
2

tp(x)
2

)(∣∣∇u–∣∣p(x) + λ
∣∣u–∣∣p(x))dx

+ J
(
s1u+ + t1u–)

=
∫

�

(
sp(x)

2 – sp(x)
1

p(x)
–

sp+

2 – sp+

1

p+sp+
2

sp(x)
2

)(∣∣∇u+∣∣p(x) + λ
∣∣u+∣∣p(x))dx
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+
∫

�

(
tp(x)
2 – tp(x)

1
p(x)

–
tp+

2 – tp+

1

p+tp+
2

tp(x)
2

)(∣∣∇u–∣∣p(x) + λ
∣∣u–∣∣p(x))dx

+ J
(
s1u+ + t1u–)

. (2.20)

Combining (2.19) and (2.20), we have s1 = s2 and t1 = t2. Therefore, one has that (su, tu) is
the unique positive pair such that suu+ + tuu– ∈ �. The proof is completed. �

Lemma 2.14 Assume that (f1)–(f4) and (h1) hold. Then, we have

ξ = inf
u∈�

J(u) = inf
u∈W 1,p(x)

0 (�),u±
=0
max
s,t≥0

J
(
su+ + tu–)

.

Proof By Corollary 2.11, we can deduce that

inf
u∈W 1,p(x)

0 (�),u±
=0
max
s,t≥0

J
(
su+ + tu–) ≤ inf

u∈�
max
s,t≥0

J
(
su+ + tu–)

= inf
u∈�

J(u) = ξ . (2.21)

On the other hand, by Lemma 2.13, for any u ∈ W 1,p(x)
0 (�) with u± 
= 0, we can deduce that

max
s,t≥0

J
(
su+ + tu–) ≥ J

(
suu+ + tuu–) ≥ inf

u∈�
J(u) = ξ , (2.22)

which implies

inf
u∈W 1,p(x)

0 (�),u±
=0
max
s,t≥0

J
(
su+ + tu–) ≥ ξ . (2.23)

Combining (2.21) and (2.22), we can deduce that

ξ = inf
u∈W 1,p(x)

0 (�),u±
=0
max
s,t≥0

J
(
su+ + tu–)

. (2.24)

The proof is completed. �

Lemma 2.15 Assume that (f1)–(f4) and (h1) hold. Then ξ > 0 can be achieved.

Proof First, prove that infu∈� J(u) > 0. For ∀u ∈ � , we have 〈J ′(u), u〉 = 0, that is

∫
�

(|∇u|p(x) + λ|u|p(x))dx –
∫

�

h(x)u dx =
∫

�

f (x, u)u dx. (2.25)

By (2.11) and Remark 2.5, we have

∫
�

f (x, u)u dx ≤
∫

�

(
ε|u|p+

+ Cε|u|r(x))dx

≤ ε|u|p+

p+ + Cε max
{|u|r–

r(x), |u|r+
r(x)

}
≤ εcp+

p+‖u‖p+
+ Cε max

{
cr–

r(x)‖u‖r–
, cr+

r(x)‖u‖r+}
. (2.26)
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By Proposition 2.1, Remark 2.5, Proposition 2.6 and (h1), one obtains

∫
�

(|∇u|p(x) + λ|u|p(x))dx –
∫

�

h(x)u dx

≥
⎧⎨
⎩min{1,λ}‖u‖p+ , if ‖u‖ < 1,

min{1,λ}‖u‖p– , if ‖u‖ > 1.
(2.27)

Combining (2.23), (2.26), and (2.27), for any u ∈ � with ‖u‖ < 1, we have

εcp+

p+‖u‖p+
+ Cε max

{
cr–

r(x)‖u‖r–
, cr+

r(x)‖u‖r+} ≥ min{1,λ}‖u‖p+
. (2.28)

Due to the arbitrariness of ε, from (2.28), we can deduce that

‖u‖ ≥
(

1
2Cε max{cr–

r(x), cr+
r(x)}

) 1
r––p+

> 0. (2.29)

Therefore, there exists a positive constant κ0 < 1 such that

‖u‖ ≥ κ0, ∀u ∈ � . (2.30)

By hypothesis (h1), (2.11) and (2.29), we have

J(tu) =
∫

�

tp(x)

p(x)
(|∇u|p(x) + λ|u|p(x))dx –

∫
�

F(x, tu) dx – t
∫

�

h(x)u dx

≥ min{1,λ}
p+

∫
�

tp(x)(|∇u|p(x) + λ|u|p(x))dx – εtp+
cp+

p+‖u‖p+
– Cε

∫
�

tr(x)|u|r(x) dx

– t
∫

�

∣∣h(x)u
∣∣dx

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{1,λ}
p+ tp+‖u‖p+ – εtp+ cp+

p+‖u‖p+ – Cε max{cr–
r(x), cr+

r(x)}tr–‖u‖r–

– tc2|h|2‖u‖, if 0 ≤ t ≤ 1,κ0 ≤ ‖u‖ ≤ 1,
min{1,λ}

p+ tp–‖u‖p+ – εtp+ cp+

p+‖u‖p+ – Cε max{cr–
r(x), cr+

r(x)}tr+‖u‖r+

– tc2|h|2‖u‖, if t > 1,κ0 ≤ ‖u‖ ≤ 1,
min{1,λ}

p+ tp+‖u‖p– – εtp+ cp+

p+‖u‖p+ – Cε max{cr–
r(x), cr+

r(x)}tr–‖u‖r+

– tc2|h|2‖u‖, if 0 ≤ t ≤ 1,‖u‖ > 1,
min{1,λ}

p+ tp–‖u‖p– – εtp+ cp+

p+‖u‖p+ – Cε max{cr–
r(x), cr+

r(x)}tr+‖u‖r+

– tc2|h|2‖u‖, if t > 1,‖u‖ > 1.

(2.31)

From Corollary 2.12 and (2.31), we have

J(u) = max
t≥0

J(tu)
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≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxt≥0( min{1,λ}
p+ tp–‖u‖p+ – εtp+ cp+

p+‖u‖p+ – Cε max{cr–
r(x), cr+

r(x)}tr+‖u‖r–

–tc2|h|2‖u‖), if 0 ≤ t ≤ 1,κ0 ≤ ‖u‖ ≤ 1,

maxt≥0( min{1,λ}
p+ tp–‖u‖p+ – εtp+ cp+

p+‖u‖p+ – Cε max{cr–
r(x), cr+

r(x)}tr+‖u‖r+

–tc2|h|2‖u‖), if t > 1,κ0 ≤ ‖u‖ ≤ 1,

maxt≥0( min{1,λ}
p+ tp–‖u‖p– – εtp+ cp+

p+‖u‖p+ – Cε max{cr–
r(x), cr+

r(x)}tr+‖u‖r+

–tc2|h|2‖u‖), if 0 ≤ t ≤ 1,‖u‖ > 1,

maxt≥0( min{1,λ}
p+ tp–‖u‖p– – εtp+ cp+

p+‖u‖p+ – Cε max{cr–
r(x), cr+

r(x)}tr+‖u‖r+

–tc2|h|2‖u‖), if t > 1,‖u‖ > 1.

≥

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

maxt≥0( min{1,λ}
p+ tp–‖u‖p+ – εtp+ cp+

p+‖u‖p+ – Cε max{cr–
r(x), cr+

r(x)}tr+‖u‖r–

–tc2|h|2‖u‖), if 0 ≤ t ≤ 1,κ0 ≤ ‖u‖ ≤ 1,

maxt≥0( min{1,λ}
p+ tp–‖u‖p– – εtp+ cp+

p+‖u‖p+ – Cε max{cr–
r(x), cr+

r(x)}tr+‖u‖r+

–tc2|h|2‖u‖), if 0 ≤ t ≤ 1,‖u‖ > 1.

(2.32)

Hence, through basic calculations, it can be concluded that there exists a positive constant
κ1(p–, p+, r–, r+,κ0) such that

J(u) ≥ κ1, ∀u ∈ � ,

which implies that

ψ = inf
u∈�

J(u) ≥ κ1 > 0.

And since � ⊆ � , we have

ξ = inf
u∈�

J(u) ≥ inf
u∈�

J(u) = ψ > 0.

Next, let {un} ⊂ � be a sequence of function such that J(un) → ξ as n → +∞. First, we
prove that {un} is bounded. Arguing by contradiction, suppose that ‖un‖ → +∞ as n →
+∞ and let vn = un

‖un‖ . Passing, if necessary, to a subsequence, we may assume that

vn ⇀ v in W 1,p(x)
0 (�),

vn → v in Lq(x)(�), p(x) ≤ q(x) < p∗(x), (2.33)

vn → v a.e. on �.

If v = 0, then vn → 0 in Lq(x) with 1 ≤ q(x) < p∗(x). Fix M > ( p+(ξ+1)
min{1,λ} )

1
p– > 1. By (f1) and (f2),

there exists C1 > 0 such that

F(x, t) ≤ |t|p+
+ C1|t|r(x), ∀(x, t) ∈ � ×R. (2.34)

Then, using the Lebesgue dominated convergence theorem yields

lim sup
m→∞

∫
�

F(x, Rvn) dx

≤ Mp+
lim

n→∞|vn|p+

p+ + C1Mr+
lim

n→∞ max
{|vn|r–

r(x), |vn|r+
r(x)

}
= 0. (2.35)
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Let tn = M
‖un‖ . Hence, by Proposition 2.1, Corollary 2.12, and (2.35), we have

ξ + o(1) = J(un) ≥ J(tnun) = J(Mvn)

=
∫

�

min{1,λ}
p(x)

Mp(x)(|∇vn|p(x) + λ|vn|p(x))dx

– M
∫

�

h(x)vn dx –
∫

�

F(x, Mvn) dx

≥ min{1,λ}
p+ Mp–

– M
∫

�

∣∣h(x)vn
∣∣dx –

∫
�

F(x, Mvn) dx

≥ min{1,λ}
p+ Mp–

– M|h|2|vn|2 –
∫

�

F(x, Mvn) dx

≥ min{1,λ}
p+ Mp–

–
∫

�

F(x, Mvn) dx

≥ min{1,λ}
p+ Mp–

– o(1)

≥ ξ + 1 + o(1), (2.36)

which leads to a contradiction. Thus, v 
= 0. By (f3), we have

lim
n→∞

F(x, un(x))
‖un‖p+ = lim

n→∞
F(x, un(x))
|un(x)|p+

∣∣vn(x)
∣∣p+

= +∞, (2.37)

for all x ∈ {x ∈ R
N : v(x) 
= 0}. By (f1) and (f2), there exists C2 ∈ R such that

F(x, t) ≥ C2, ∀(x, t) ∈ � ×R. (2.38)

Therefore, from Proposition 2.6, (2.37), (2.38) and Fatou’s Lemma, it yields

0 = lim
n→∞

ξ + o(1)
‖un‖p+ = lim

n→∞
J(un)

‖un‖p+

= lim
n→∞

[∫
�

1
p(x) [|∇un|p(x) + λ|un|p(x)] dx

‖un‖p+ –
∫
�

h(x)un dx
‖un‖p+ –

∫
�

F(x, un) dx
‖un‖p+

]

≤ max{1,λ}
p– + lim

n→∞

∫
�

|h(x)u|dx
‖un‖p+ – lim

n→∞

∫
�

F(x, un)
‖un‖p+ dx

≤ max{1,λ}
p– + lim

n→∞
c2|h|2‖un‖

‖un‖p+ – lim
n→∞

∫
�

F(x, un) – C2

‖un‖p+ dx

≤ max{1,λ}
p– – lim inf

n→+∞

∫
�

F(x, un) – C2

‖un‖p+ dx

≤ max{1,λ}
p– – lim inf

n→+∞

∫
�

F(x, un)
‖un‖p+ dx

≤ max{1,λ}
p– – lim inf

n→+∞
F(x, un)
|un|p+ |vn|p+

dx

= –∞. (2.39)
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This is a contradiction; therefore, {un} is bounded in W 1,p(x)
0 (�). Without loss of generality,

we can assume that

u±
n ⇀ u±

0 in W 1,p(x)
0 (�),

u±
n → u±

0 in Lq(x)(�) for 1 ≤ q(x) < p∗(x),

u±
n → u±

0 a.e. on �. (2.40)

Next, we prove that u0 ∈ � and J(u0) = ξ . Since {un}n∈N ⊂ �, we have {u±
n }n∈N ⊂ � , that

is
∫

�

(∣∣∇u±
n
∣∣p(x) dx + λ

∣∣u±
n
∣∣p(x))dx –

∫
�

h(x)u±
n dx =

∫
�

f
(
x, u±

n
)
u±

n dx, and

∥∥u±
n
∥∥ ≥ κ0.

By hypothesis (h1), (2.11) and (2.30), we have

ε

∫
�

∣∣u±
n
∣∣p+

dx + Cε

∫
�

∣∣u±
n
∣∣r(x) dx ≥

∫
�

f
(
x, u±

n
)
u±

n dx

=
∫

�

(∣∣∇u±
n
∣∣p(x) + λ

∣∣u±
n
∣∣p(x))dx –

∫
�

h(x)u±
n dx

≥ min{1,λ}min
{∥∥u±

n
∥∥p–

,
∥∥u±

n
∥∥p+}

≥ min{1,λ}min
{
κ

p–

0 ,κp+

0
}

. (2.41)

Since {un} is bounded, there is a constant C3 > 0 such that

min{1,λ}min
{
κ

p–

0 ,κp+

0
} ≤ εC3 + Cε

∫
�

∣∣u±
n
∣∣r(x) dx.

Let ε = min{1,λ}min{κp–
0 ,κp+

0 }
2C3

, we have

∫
�

∣∣u±
n
∣∣r(x) dx ≥ min{1,λ}min{κp–

0 ,κp+

0 }
2Cε

.

By the compactness of the embedding W 1,p(x)
0 (�) ↪→ Lr(x)(�) with p+ ≤ r(x) ≤ p∗(x), we

have

∫
�

∣∣u±
0
∣∣r(x) dx ≥ min

min{1,λ}min{κp–

0 ,κp+

0 }
2Cε

,

which means u±
0 
= 0. Afterwards, notice that u±

n → u±
0 in Lq(x)(�) with 1 ≤ q(x) ≤ p∗(x),

by (f1), (f2), the Hölder inequality, and Lebesgue theorem, it yields

lim
n→+∞

∫
�

f
(
x, u±

n
)
u±

n dx =
∫

�

f
(
x, u±

0
)
u±

0 dx,

lim
n→+∞

∫
�

F
(
x, u±

n
)

dx =
∫

�

F
(
x, u±

0
)

dx.
(2.42)
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Therefore, by the weak lower semicontinuity of the norm and u±
n ∈ � , we can deduce that

〈
J ′(u0), u±

0
〉

=
∫

�

(∣∣∇u±
0
∣∣p(x) + λ

∣∣u±
0
∣∣p(x))dx –

∫
�

h(x)u±
0 dx –

∫
�

f
(
x, u±

0
)
u±

0 dx

≤ lim inf
n→+∞

∫
�

(∣∣∇u±
n
∣∣p(x) + λ

∣∣u±
n
∣∣p(x))dx

– lim
n→+∞

∫
�

h(x)u±
n dx –

∫
�

f
(
x, u±

n
)
u±

n dx

= lim inf
n→+∞

〈
J ′(un), u±

n
〉

= 0. (2.43)

Hence, from Lemma 2.13, there exists s0, t0 > 0 such that s0u+
0 + t0u–

0 ∈ �. By Lemma 2.10,
and (2.43), we get

ξ = lim
n→+∞

[
J(un) –

1
p+

〈
J ′(un), un

〉]

= lim
n→+∞

∫
�

(
1

p(x)
–

1
p+

)(|∇un|p(x) + λ|un|p(x))dx + lim
n→+∞

∫
�

(
1

p+ – 1
)

h(x)un dx

+ lim
n→+∞

∫
�

[
1

p+ f (x, un)un – F(x, un)
]

dx

≥ lim inf
n→+∞

∫
�

(
1

p(x)
–

1
p+

)(|∇un|p(x) + λ|un|p(x))dx + lim
n→+∞

∫
�

(
1

p+ – 1
)

h(x)un dx

+ lim
n→+∞

∫
�

[
1

p+ f (x, un)un – F(x, un)
]

dx

≥
∫

�

(
1

p(x)
–

1
p+

)(|∇u0|p(x) + λ|u0|p(x))dx +
∫

�

(
1

p+ – 1
)

h(x)u0 dx

+
∫

�

[
1

p+ f (x, u0)u0 – F(x, u0)
]

dx

= J(u0) –
1

p+

〈
J ′(u0), u0

〉

≥ J
(
s0u+

0 + t0u–
0
)

+
1 – sp+

0
p+

〈
J ′(u0), u+

0
〉
+

1 – tp+

0
p+

〈
J ′(u0), u–

0
〉
–

1
p+

〈
J ′(u0), u0

〉

= J
(
s0u+

0 + t0u–
0
)

–
sp+

0
p+

〈
J ′(u0), u+

0
〉
–

tp+

0
p+

〈
J ′(u0), u–

0
〉

≥ ξ –
sp+

0
p+

〈
J ′(u0), u+

0
〉
–

tp+

0
p+

〈
J ′(u0), u–

0
〉
,

that is

sp+

0
p+

〈
J ′(u0), u+

0
〉
+

tp+

0
p+

〈
J ′(u0), u–

0
〉 ≥ 0. (2.44)

Combining (2.43) and (2.44), we can deduce that

〈
J ′(u0), u±

0
〉

= 0 and J(u0) = ξ . (2.45)

The proof is completed. �
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Lemma 2.16 Assume that (f1)–(f4) and (h1) hold, if u0 ∈ � and J(u0) = ξ , then u0 is a
critical point of J(u).

Proof Since u0 ∈ �, one has 〈J ′(u±
0 ), u±

0 〉 = 0 = 〈J ′(u0), u0〉. By assumption (f4), for 0 < s 
= 1
and 0 < t 
= 1, we have

J
(
su+

0 + tu–
0
)

= J
(
su+

0
)

+ J
(
tu–

0
)

< J
(
u+

0
)

+ J
(
u–

0
)

= J(u0) = ξ . (2.46)

If J ′(u0) 
= 0, then there exist δ > 0 and v > 0, such that

‖v – u0‖ ≤ 3δ :
∥∥J ′(v)

∥∥ ≥ v.

Let Q = ( 1
2 , 3

2 ) × ( 1
2 , 3

2 ) and ψ(s, t) = su+
0 + tu–

0 , by (2.46), we have

β = max
(s,t)∈∂Q

J
(
ψ(s, t)

)
< ξ . (2.47)

Let ε := min{ ξ–β

4 , vδ
8 } and B(u, δ) := {v ∈ W 1,p(x)

0 (�) : ‖v – u‖ ≤ δ}, by the Quantitative de-
formation lemma [27], there is a deformation θ such that

(i) θ (1, v) = v if J(v) < ξ – 2ε or J(v) > ξ + 2ε,
(ii) θ (1, Jξ+ε ∩ B(u, δ)) ⊂ Jξ–ε ,

(iii) J(θ (1, v)) is nonincreasing, ∀v ∈ W 1,p(x)
0 (�),

where Jξ±ε := {v ∈ W 1,p(x)
0 (�) : J(v) ≤ ξ ± ε}.

It is easy to see that

max
(s,t)∈D

J
(
θ
(
1,ψ(s, t)

))
< ξ .

Next, we show that θ (1,ψ(Q)) ∩ � 
= ∅. Let φ(s, t) = θ (1,ψ(s, t)), J0(s, t) = 〈J ′(su+
0 )u+

0 ,
J ′(tu–

0 )u–
0 〉 and J1(s, t) = 〈 1

s J ′(φ+(s, t)), 1
t J ′(φ–(s, t))〉. Note that

〈
J ′(tu±

0
)
, u±

0 > 0
〉

if 0 < t < 1,〈
J ′(tu±

0
)
, u±

0 < 0
〉

if t > 1. (2.48)

Therefore, we have that deg(J0, Q, 0) = 1. On the other hand, by (2.47) and the property
(i) of θ , we have that ψ = φ on ∂Q. Hence, J0 = J1 on ∂Q and deg(J0, Q, 0) = deg(J1, Q, 0) =
1. This indicates that J1(s, t) = 0 with some (s, t) ∈ Q, and thus θ (1,ψ(s, t)) = φ(s, t) ∈ �.
Therefore, u0 is a critical point of J(u). The proof is completed. �

Lemma 2.17
(i) For x ∈ �, t ≤ 0, if f (x, t) ≥ 0 and u ∈ W 1,p(x)

0 (�) is a solution of problem (1.1), then
u ≥ 0 hold.

(ii) For x ∈ �, t ≥ 0, if f (x, t) ≤ 0 and u ∈ W 1,p(x)
0 (�) is a solution of problem (1.1), then

u ≤ 0 hold.
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Proof (i) Define �1 = {x ∈ � : u(x) < 0} and �2 = � \ �1. Since u– = min{u, 0} and u– ∈
W 1,p(x)

0 (�), we have

∇u– =

⎧⎨
⎩∇u, in �1,

0, in �2.

Replacing v in (1.2) with u–, we have
∫

�

(|∇u|p(x)–2∇u · ∇u– + λ|u|p(x)–2u · u–)
dx –

∫
�

h(x)u– dx =
∫

�

f (x, u)u– dx. (2.49)

By (h1) and (2.49), we can deduce that
∫

�1

(|∇u|p(x) + λ|u|p(x))dx =
∫

�1

h(x)u dx +
∫

�1

f (x, u)u dx

≤
∫

�1

f (x, u)u dx ≤ 0.

Therefore, |�1| = 0. Similarly, replacing v in (1.2) with u+, we can proof (ii). The proof is
completed. �

3 Proof of main results
Proof of Theorem 1.1 Combining Lemma 2.15 and Lemma 2.16, there exists u0 ∈ � such
that

J(u0) = ξ and J ′(u0) = 0. (3.1)

From (3.1), we know that u0 is a critical point of J ; therefore, u0 is a sign-changing solution
of problem (1.1). �

Proof of Theorem 1.2 First, we define f + = f (x, t) for t > 0 and f + = 0 for t ≤ 0, and F+(x, t) =∫ t
0 f +(x, s) ds. Let

J+(u) =
∫

�

1
p(x)

(|∇u|p(x) + λ|u|p(x))dx –
∫

�

h(x)u dx

–
∫

�

F+(x, u) dx, ∀u ∈ W 1,p(x)
0 (�).

It is easy to verify that for f + and F+, conditions (f1)–(f4) still hold. There are two claims
to consider.

Claim 1 J+ satisfies the (PS)-condition on � . Let {un} ⊆ � be a (PS)-sequence such that

(
J+)′(un) → 0, J+(un) → c, ∀c > 0. (3.2)

First, we prove that {un} is bounded. Arguing by contradiction, suppose that ‖un‖ → +∞
as n → +∞ and let vn = un

‖un‖ . Passing, if necessary, to a subsequence, we suppose that

vn ⇀ v in W 1,p(x)
0 (�),
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vn → v in Lq(x)(�), p(x) ≤ q(x) < p∗(x), (3.3)

vn → v a.e. on �.

If v = 0, then vn → 0 in Lq(x) with 1 ≤ q(x) < p∗(x). Fix M > ( p+(c+1)
min{1,λ} )

1
p– > 1. By (f1) and (f2),

there exists C4 > 0 such that

F+(x, u) ≤ |u|p+
+ C4|u|r(x), ∀(x, u) ∈ � ×R. (3.4)

Thanks to (3.4) and the Lebesgue dominated convergence theorem, one has

lim sup
m→∞

∫
�

F(x, Mvn) dx ≤ Mp+
lim

n→∞|vn|p
+

p+ + C4Mr+
lim

n→∞ max
{|vn|r–

r(x), |vn|r+
r(x)

}
= 0. (3.5)

Let tn = M
‖un‖ . Hence, by Proposition 2.1, Corollary 2.12 and (3.5), we have

c + o(1) = J+(un) ≥ J(tnun) = J+(Mvn)

=
∫

�

1
p(x)

Mp(x)(|∇vn|p(x) + λ|vn|p(x))dx – M
∫

�

h(x)vn dx –
∫

�

F+(x, Mvn) dx

≥ min{1,λ}
p+ Mp–

– M
∫

�

∣∣h(x)vn
∣∣dx –

∫
�

F+(x, Mvn) dx

≥ min{1,λ}
p+ Mp–

– M|h|2|vn|2 –
∫

�

F+(x, Mvn) dx

≥ min{1,λ}
p+ Mp–

–
∫

�

F+(x, Mvn) dx

≥ min{1,λ}
p+ Mp–

– o(1)

≥ c + 1 + o(1). (3.6)

(3.6) is a contradiction. Hence, v 
= 0. By (f3), we have

lim
n→∞

F+(x, un(x))
‖un‖p+ = lim

n→∞
F+(x, un(x))
|un(x)|p+

∣∣vn(x)
∣∣p+

= +∞, (3.7)

for all x ∈ {x ∈ � : v(x) 
= 0}. Hence, it follows from Proposition 2.6, (2.36), (2.37), (2.38),
(3.7) and Fatou’s Lemma that

0 = lim
n→∞

c + o(1)
‖un‖p+ = lim

n→∞
J+(un)
‖un‖p+

≤ lim
n→∞

[∫
�

1
p(x) [|∇un|p(x) + λ|un|p(x)] dx

‖un‖p+ –
∫
�

h(x)un dx
‖un‖p+ –

∫
�

F+(x, un) dx
‖un‖p+

]

≤ max{1,λ}
p– + lim

n→∞

∫
�

|h(x)u|dx
‖un‖p+ – lim

n→∞

∫
�

F+(x, un)
‖un‖p+ dx

≤ max{1,λ}
p– + lim

n→∞
c2|h|2‖un‖

‖un‖p+ – lim
n→∞

∫
�

F+(x, un) – C2

‖un‖p+ dx

≤ max{1,λ}
p– – lim inf

n→+∞

∫
�

F+(x, un) – C2

‖un‖p+ dx



Xiao and Zhang Boundary Value Problems          (2024) 2024:2 Page 20 of 23

≤ max{1,λ}
p– – lim inf

n→+∞

∫
�

F+(x, un)
‖un‖p+ dx

≤ max{1,λ}
p– – lim inf

n→+∞
F+(x, un)
|un|p+ |vn|p+

dx

= –∞. (3.8)

(3.8) implies that {un} is bounded in W 1,p(x)
0 (�). Without loss of generality, we can assume

that

un ⇀ u0 in W 1,p(x)
0 (�),

un → u0 in Lq(x)(�) for 1 ≤ q(x) < p∗(x),

un → u0 a.e. on �. (3.9)

By (f2), Proposition 2.1, Proposition 2.7 and the boundedness of {un}, we have

lim
n→+∞

∫
�

∣∣f +(x, un)
∣∣|un – u0|dx

≤ lim
n→+∞

∫
�

C
(
1 + |un|r(x)–1)|un – u0|dx

≤ C lim
n→+∞

∫
�

|un|r(x)–1|un – u0|dx + C lim
n→+∞

∫
�

|un – u0|dx

≤ 2C lim
n→+∞||un|r(x)–1|r′(x)|un – u0|r(x) + lim

n→+∞|un – u0|1
≤ 2C lim

n→+∞ max
{|un|r––1

r(x) , |un|r+–1
r(x)

}|un – u0|r(x) + lim
n→+∞|un – u0|1

= 0, (3.10)

and

lim
n→+∞

∫
�

λ|un|p(x)–2un(un – u0) dx ≤ lim
n→+∞

∫
�

|un|p(x)–1|un – u0|dx

≤ 2||un|p(x)–1|p′(x)|un – u0|p(x)

≤ 2 lim
n→+∞ max

{|un|p
––1

p(x) , |un|p
+–1

p(x)
}|un – u0|p(x)

= 0, (3.11)

where 1
r(x) + 1

r′(x) = 1. Therefore, by (f2), (3.10) and (3.11), we can deduce that

〈
�(un) – �(u0), un – u0

〉
=

〈(
J+)′(un) –

(
J+)′(u0), un – u0

〉
+

∫
�

λ|un|p(x)–2un(un – u0) dx (3.12)

–
∫

�

λ|u0|p(x)–2un(un – u0) dx +
∫

�

f +(x, u0)(un – u0) dx

–
∫

�

f +(x, un)(un – u0) dx

→ 0, as n → +∞. (3.13)
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So, � is of type (S)+, and we can deduce that

un → u0 in W 1,p(x)
0 (�). (3.14)

The proof of Claim 1 is completed.
From Lemma 2.13, it can be seen that for any u ∈ W 1,p(x)

0 (�) \ {0}, there exists a unique
positive number tu such that tuu ∈ � . Therefore, one can obtain that if B is a unit ball
in W 1,p(x)

0 (�), and by setting γ (u) := tuu to define the homomorphism γ : B → � , then
‖γ (u)‖ = tu. Therefore, if γ –1 is the inverse of γ , and γ –1 is defined as γ –1(v) = v

‖v‖ , then
γ –1 : � → B is Lipschitz continuous. By (2.30), for any v1, v2 ∈ � , we can deduce that

∥∥γ –1(v1) – γ –1(v2)
∥∥ =

∥∥∥∥ v1

‖v1‖ –
v2

‖v2‖
∥∥∥∥

=
∥∥∥∥v1 – v2

‖v1‖ +
(‖v2‖ – ‖v1‖)v2

‖v1‖‖v2‖
∥∥∥∥

≤ 2
‖v1‖‖v1 – v2‖

≤ 2
κ0

‖v1 – v2‖.

Next, we define � : B→ R by

�(u) := J
(
γ (u)

)
.

Claim 2 �+ satisfies the (PS)-condition on B. Set {un} ⊂ B as a (PS)-sequence of �+. Let
vn = γ (un). Similar to the proof of Lemma 3.7 in [28], we need to prove that {vn} ⊂ � is a
(PS)-sequence of �+. From Claim 1, we can take the appropriate subsequence, for conve-
nience, still denoted by {vn}, and suppose that vn → v0 and un = γ –1(vn) → γ –1(vn) with
n → +∞. We can deduce that �+ satisfies the (PS)-condition.

Finally, we prove that problem (1.1) admits at least one positive ground state solution
and one negative ground state solution. Let {u+

n} be a minimizing sequence for �+. Then,
using Ekeland’s variational principle [29], one can suppose that (�+)′(u+

n) → 0. By Claim 2,
passing, if necessary, to a subsequence, one can suppose that u+

n → u+
0 in W 1,p(x)

0 (�). There-
fore, u+

0 is a minimizer of �+, and from [17], we can deduce that v+
0 := γ (u+

0 ) is a ground
state solution for the equation (φ+)′(v) = 0, that is

∫
�

∣∣∇v+
0
∣∣p(x)–2∇v+

0∇η dx +
∫

�

λ
∣∣v+

0
∣∣p(x)–2v+

0η0 dx

=
∫

�

h(x)v+
0 dx +

∫
�

f +(
x, v+

0
)
η dx, ∀η ∈ W 1,p(x)

0 (�). (3.15)

Since f +(x, t) = 0 for x ∈ �, t ≤ 0, from Lemma 2.17 (i), we can conclude that u+ ≥ 0.
Therefore, by (3.15), we have

∫
�

∣∣∇v+
0
∣∣p(x)–2∇v+

0∇η dx +
∫

�

λ
∣∣v+

0
∣∣p(x)–2v+

0η0 dx

=
∫

�

h(x)v+
0 dx +

∫
�

f
(
x, v+

0
)
η dx, ∀η ∈ W 1,p(x)

0 (�),
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which indicates that problem (1.1) has a nontrivial ground solution u+ ≥ 0. Therefore, by
Lemma 2.9, we can deduce that u+ > 0.

Similarly, replace f + with f –, where f – is defined as f –(x, t) = f (x, u) for t < 0 and f –(x, t) =
0 for t ≥ 0, we can deduce that problem (1.1) has a negative ground state solution u– < 0.
In summary, problem (1.1) has at least one positive ground state solution and one negative
ground state solution. The proof is completed. �
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