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Abstract
In this paper, we consider n-type Markov branching–immigration processes. The
uniqueness criterion is first established. Then, we construct a related system of
differential equations based on the branching property. Furthermore, the explicit
expression of extinction probability and the mean extinction time are successfully
obtained in the absorbing case by using the unique solution of the related system of
differential equations and Kolmogorov forward equations. Finally, the recurrence and
ergodicity criteria are given if the zero state 0 is not absorbing.
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1 Introduction
Markov branching processes occupy a major niche in the theory and applications of
probability. Good general references are Asmussen and Hering [2], Athreya and Jagers
[3], Athreya and Ney [4] and Harris [7]. Within the branching structure, both state-
independent and state-dependent immigration have been studied. For the former, Sev-
ast’yanov [13] and Vatutin [14] and [15] considered a branching process with state-
independent immigration. Aksland [1] considered a modified birth–death process where
the state-independent immigration is imposed. On the other hand, for the latter, Kulkarni
and Pakes [8] discussed the total progeny of a branching process with state-dependent im-
migration. Foster [6] and Pakes [11] considered a discrete-time branching process with im-
migration at state 0. Yamazato [16] and Pakes and Tavaré [12] investigated the continuous-
time version.

Let (Zt : t ≥ 0) denote an n-type Markov branching process (nTMBP) with per capita
birth rate and offspring distribution of the type k particle being θk > 0 and {p(k)

j : j ∈ Zn
+}

(k = 1, . . . , n), respectively, where Zn
+ = {j = (j1, . . . , jn) : j1, . . . , jn ∈ Z+} with Z+ = {0, 1, . . .}. In

this paper, we mainly consider a modification (Xt : t ≥ 0) of the nTMBP that allows it to
be resurrected whenever it hits the zero state and allows immigration when it does not
hit the zero state. (Xt : t ≥ 0) is called an n-type Markov branching–immigration process
(nTMBPI). In order to clearly describe the evolution of (nTMBPI), we adopt the following
conventions throughout this paper.
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(C-1) For any i = (i1, . . . , in) ∈ Zn
+, denote |i| =

∑n
k=1 ik .

(C-2) [0, 1]n = {(u1, . . . , un) : 0 ≤ u1, . . . , un ≤ 1}. For u, v ∈ [0, 1]n, u ≤ v means uk ≤ vk

(k = 1, . . . , n), while u < v means uk ≤ vk (k = 1, . . . , n) and uk < vk for at least one k.
(C-3) For u ∈ [0, 1]n and i ∈ Zn

+, ui =
∏n

k=1 uik
k .

(C-4) χZn
+ (·) is the indicator of Zn

+.
(C-5) 0 = (0, . . . , 0), 1 = (1, . . . , 1), ei = (0, . . . , 1i, . . . , 0) are vectors in [0, 1]n. Zn

+ \ {0} is
simply written as Zn

++.
The evolution of nTMBPI can be described as follows.
(i) There are n types of particles in the system. The life length of a type k particle is

exponentially distributed with parameter θk . Upon its death, it produces offspring of the
n-types according to the distribution {p(k)

j : j ∈ Zn
+}, k = 1, . . . , n. Particles live and produce

independently of each other, and of the past. Without loss of generality, we assume p(k)
ek = 0

(k = 1, . . . , n).
(ii) Let α > 0 and {aj : j ∈ Zn

++} be a discrete law. When the system is nonempty, then
Poisson immigration events with parameter α may occur with random numbers of immi-
grates according to the law {aj : j ∈ Zn

++}. Immigration is independent of particles in the
system.

(iii) Let β ≥ 0 and {hj : j ∈ Zn
++} be a discrete law. When the system is empty, then Poisson

resurrection events with parameter h may occur with random numbers of immigrates
according to the law {hj : j ∈ Zn

++}. Resurrection, immigration, and particles in the system
are independent of each other.

By the above description, (Xt : t ≥ 0) is a Markov process satisfying the following condi-
tions:

(a) the state space is Zn
+;

(b) its generator Q = (qij : i, j ∈ Zn
+) satisfies

qij =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

βhj, if |i| = 0, j �= 0
∑n

k=1 ikθkp(k)
j–i+ek

+ αaj–i, if |i| > 0, j �= i,

–(
∑n

k=1 ikθk + α(1 – δi0) + βδi0), if j = i,

0, otherwise.

(1.1)

Remark 1.1 θk , α, and β are viewed as “branching rate”, “immigration rate”, and “resur-
rection rate”, respectively. The matrix Q given in (1.1) is called an n-type branching–
immigration Q-matrix (nTBI Q-matrix).

Li and Chen [9] considered the one-type case. The aim of this paper is to consider the
extinction behavior and recurrence property of n-type Markov branching–immigration
processes. In contrast to the one-type cases, when a particle of one type in the system
splits, the number of particles of different type may change. Therefore, the method used
in the one-type case fails and some new approaches should be used in the current situa-
tion. In this paper, we find a new method to investigate the extinction behavior and recur-
rence property of the n-type Markov branching–immigration processes (see, Theorems
3.1 and 3.2).

The structure of this paper is as follows. Regularity and uniqueness criteria together
with some preliminary results are first established in Sect. 2. In Sect. 3, we concentrate
on discussing the extinction behavior of the absorbing nTBIP (i.e., β = 0) and the explicit



Li and Wang Boundary Value Problems          (2024) 2024:1 Page 3 of 16

extinction probability is obtained. In Sect. 4, the recurrence criterion is presented in the
case β > 0.

2 Preliminaries and uniqueness
Since Q is determined by the sequences {p(i)

j : j ∈ Zn
+} (i = 1, . . . , n), {aj : j ∈ Zn

++}, and {hj :
j ∈ Zn

++}, we define their generating functions as

Bi(u) = θi

(∑

j∈Zn
+

p(i)
j uj – ui

)

, i = 1, . . . , n,

I(u) = α

( ∑

j∈Zn
++

ajuj – 1
)

,

R(u) = β

( ∑

j∈Zn
++

hjuj – 1
)

.

It is obvious that all the generating functions are well defined at least on [0, 1]n. We now
investigate the properties of the generating functions {Bi(u); i = 1, . . . , n}, α(u), and β(u).
Let

Bij(u) =
∂Bi(u)
∂uj

, i, j = 1, . . . , n,

Ij(u) =
∂I(u)
∂uj

, j = 1, . . . , n,

Rj(u) =
∂R(u)
∂uj

, j = 1, . . . , n,

gij(u) = δij +
Bij(u)

θi
, i, j = 1, . . . , n,

where u ∈ [0, 1]n and δij is the Dirac function. The matrices (Bij(u)) and (gij(u)) are denoted
by B(u) and G(u), respectively.

Definition 2.1 The system {Bi(u) : 1 ≤ i ≤ n} is called singular if there exists an n × n
matrix M such that

(
B1(u), . . . , Bn(u)

)′ = M · u′,

where u′ denotes the transpose of the vector u.

Definition 2.2 A nonnegative n × n matrix A = (aij) is called positively regular if there
exists an integer N > 0, such that AN > 0.

If {Bi(u) : 1 ≤ i ≤ n} is singular, then each particle has exactly one offspring, and hence
the branching process will be equivalent to an ordinary finite Markov chain. In order to
avoid discussing such trivial cases, we shall assume throughout this paper that the follow-
ing conditions are satisfied:

(A-1). {Bi(u) : 1 ≤ i ≤ n} is nonsingular;
(A-2). Bij(1) < +∞, i, j = 1, . . . , n;
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(A-3). G(1) is positively regular.
The above conditions guarantee that Zn

++ is irreducible. The following two lemmas are
well known and the proofs are omitted.

Lemma 2.1 I(u) < 0 for all u ∈ [0, 1)n and limu↑1 I(u) = I(1) = 0. A similar property holds
for R(u).

Lemma 2.2 Suppose G(1) is positively regular and {Bi(u) : 1 ≤ i ≤ n} is nonsingular. Then,
the equation

(
B1(u), B2(u), . . . , Bn(u)

)
= 0 (2.1)

has at most two solutions in [0, 1]n. Let q = (q1, . . . , qn) and ρ(u) denote the smallest non-
negative solution to (2.1) and the maximal eigenvalue of B(u), respectively. Then,

(i) qi is the extinction probability when the Feller minimal process starts at state ei (i =
1, . . . , n). Moreover, if ρ(1) ≤ 0, then q = 1; while if ρ(1) > 0, then q < 1, i.e., q1, . . . , qn < 1.

(ii) ρ(q) ≤ 0.

For nTBI Q-matrix Q given in (1.1), let P(t) = (pij(t) : i, j ∈ Zn
+) and 	(λ) = (φij(λ) : i, j ∈

Zn
+) be the Feller minimal Q-function and Q-resolvent, respectively.

Lemma 2.3 For any i ∈ Zn
+ and u ∈ [0, 1)n, we have

∂Fi(t, u)
∂t

= R(u)pi0(t) + I(u)
∑

j∈Zn
++

pij(t)uj +
n∑

k=1

Bk(u)
∂Fi(t, u)

∂uk
, (2.2)

where Fi(t, u) =
∑

j∈Zn
+

pij(t)uj , or in the resolvent version

λ	i(λ, u) – ui = R(u)φi0(λ) + I(u)
∑

j∈Zn
++

φij(λ)uj +
n∑

k=1

Bk(u)
∂	i(λ, u)

∂uk
, (2.3)

where 	i(λ, u) =
∑

j∈Zn
+
φij(λ)uj .

Proof By the Kolmogorov forward equations, we have that for any i, j ∈ Zn
+,

p′
ij(t)

=
∑

k �=j

pik(t)

[ n∑

l=1

klθlp(l)
j–k+el

· χZn
+ (j – k + el) + αaj–k · χZn

+ (j – k)(1 – δ0k) + βhj · δ0k

]

– pij(t)

[ n∑

l=1

jlθl + α(1 – δ0j) + βδ0j

]

.

Multiplying by uj on both sides of the above equality and summing over j ∈ Zn
+ we imme-

diately obtain (2.2). Taking a Laplace transform on (2.2) immediately yields (2.3). �

Lemma 2.4 Suppose that G(1) is positively regular and {Bi(u) : 1 ≤ i ≤ n} is nonsingular.
If ρ(1) ≤ 0, then the Q-function is honest.
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Proof By Lemma 2.5 of Li and Wang [10], we know that if ρ(1) ≤ 0, then q = 1.
Denote

r∗ = sup
{

r ≥ 0 : Bk(u) = r, k = 1, . . . , n has a solution in [0, 1]n}.

By Lemma 2.9 of Li and Wang [10], we know that r∗ > 0 and for any r ∈ (0, r∗], there exist
u(r) = (u1(r), . . . , un(r)) ∈ [0, 1)n such that

Bk
(

u(r)
)

= r, k = 1, . . . , n

and, moreover,

lim
r↓0

u(r) = 1.

Letting u = u(r) in (2.2) and letting r ↓ 0 yield

∑

j∈Zn
+

pij(t) ≥ 1,

i.e.,
∑

j∈Zn
+

pij(t) = 1. Hence, P(t) is honest. �

Having completed the preparation, we now prove the uniqueness of nTMBPI.

Theorem 2.1 Let Q be given in (1.1). Then, there exists exactly one nTMBPI, i.e., the Feller
minimal process.

Proof By Lemma 2.4, We only need to consider the case that ρ(1) > 0. For this purpose,
we will show that the equations

⎧
⎨

⎩

η(λI – Q) = 0, ηj ≥ 0, j ∈ Zn
+,

∑
j∈Zn

+
ηj < +∞

(2.4)

have only trivial solution. Suppose that the contrary is true and let η = (ηj : j ∈ Zn
+) be a

nontrivial solution of (2.4) corresponding to λ = 1. Then, by (2.4) we have

ηj =
∑

k �=j

ηk

[ n∑

i=1

kiθip(i)
j–k+ei

· χZn
+ (j – k + ei) + αaj–k · χZn

+ (j – k)(1 – δ0k) + βhj · δ0k

]

– ηj

[ n∑

i=1

kiθi + α(1 – δ0j) + βδ0j

]

, j ∈ Zn
+. (2.5)

Multiplying by uj on both sides of (2.5) and using some algebra yields that

η(u) =
n∑

i=1

Bi(u) · ∂η(u)
∂ui

+ I(u)
(
η(u) – η0

)
+ R(0)η0,
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i.e.,

(
1 – I(u)

)[
η(u) – η0

]
+

(
1 – R(u)

)
η0 =

n∑

i=1

Bi(u) · ∂η(u)
∂ui

. (2.6)

If ρ(1) > 0, then by Lemma 2.2 and the irreducibility of Zn
+ \ 0 we know that (2.1) has a

solution (q1, . . . , qn) ∈ (0, 1)n. Let u = (q1, . . . , qn) in (2.6), we can see that the right-hand
side of (2.6) is zero. Therefore, the left-hand side of (2.6) must be zero, which implies that
ηj = 0 (∀j ∈ Zn

+). The proof is complete. �

3 Extinction
In this section, we shall discuss the extinction property of the absorbing nTMBPI (i.e.,
β = 0). Let Q̃ denote the absorbing nTBI Q-matrix and P̃(t) = (p̃ij(t) : i, j ∈ Zn

+) denote the
Feller minimal Q̃-function. Also, let ai0 = limt→∞ p̃i0(t) be the extinction probability of
P̃(t) starting at state i. In order to discuss the extinction property, we need the following
important result, which plays a key role in our discussion.

Theorem 3.1 Suppose that G(1) is positively regular and {Bi(u); 1 ≤ i ≤ n} is nonsingular.
If B1(0) > 0, then the system of equations

⎧
⎨

⎩

u′
k(u) = Bk (u,u2,...,un)

B1(u,u2,...,un) , 2 ≤ k ≤ n,

uk|u=0 = 0, 2 ≤ k ≤ n
(3.1)

has a unique solution (uk(u); 2 ≤ k ≤ n). Furthermore, this solution satisfies
(i) (uk(u); 2 ≤ k ≤ n) is well defined on [0, q1];
(ii) u′

k(0) ≥ 0 and u′
k(u) > 0 for all u ∈ (0, q1) and 2 ≤ k ≤ n;

(iii) uk(q1) = qk , 2 ≤ k ≤ n.

Proof Since B1(0) > 0, we know that B1(u, 0, . . . , 0) = 0 has a positive root u∗ ∈ (0, 1]. For
any ε > 0, {Bk (u,u2,...,un)

B1(u,u2,...,un) ; 2 ≤ k ≤ n} satisfy the Lipschitz condition on [0, u∗ – ε] × [0, 1]n–1,
therefore, by the theory of differential equations, (3.1) has a unique solution (uk(u); 2 ≤
k ≤ n) defined on [0, u∗ – ε]. Furthermore, (3.1) has a unique solution (uk(u); 2 ≤ k ≤ n)
defined on [0, u∗) since ε > 0 is arbitrary.

We claim that u′
k(u) ≥ 0 (2 ≤ k ≤ n) for all u ∈ [0, u∗). In fact, if there exist u ∈ [0, u∗)

and 2 ≤ k ≤ n such that u′
k(u) < 0, denote

ũ = inf
{

u ∈ [0, u∗) : u′
k(u) < 0 for some k ∈ {2, . . . , n}}

and

H =
{

k ∈ {2, . . . , n} : ∃ε > 0 s.t. u′
k(u) < 0 for u ∈ (ũ, ũ + ε)

}
.

It is obvious that H �= ∅. Since (uk(u); 2 ≤ k ≤ n) is the solution of (3.1), we have

Bk
(
ũ, u2(ũ), . . . , un(ũ)

)
= 0, k ∈ H



Li and Wang Boundary Value Problems          (2024) 2024:1 Page 7 of 16

and there exists ū ∈ (ũ, u∗) such that uk(ū) ≥ uk(ũ) (k ∈ Hc =: {2, . . . , n} \ H), uk(ū) < uk(ũ)
(k ∈ H) and

Bk
(
ū, u2(ū), . . . , un(ū)

)
< 0, k ∈ H . (3.2)

Consider

I =
{

Bk
(
ū, uHc (ū), uH

)
: k ∈ H

}
,

where uH = (uk : k ∈ H) and uHc (ū) = (uk(ū) : k ∈ Hc). Obviously,

Bk
(
ū, uHc (ū), uH (ũ)

) ≥ 0, k ∈ H ,

where uH (ũ) = (uk(ũ) : k ∈ H). Therefore, the smallest nonnegative zero of I is in
∏n

k=k̃[uk(ũ), 1]. Combining with (3.2) we know that uk(ū) ≥ uk(ũ) (k ∈ H), which con-
tradicts uk(ū) < uk(ũ) (k ∈ H).

We now further claim that u′
k(u) > 0 (2 ≤ k ≤ n) for all u ∈ (0, u∗]. In fact, suppose that

there exists û ∈ (0, u∗] such that

Bk
(
û, u2(û), . . . , un(û)

)
= 0

for some k ≥ 2. Denote

Ĥ =
{

k; Bk
(
û, u2(û), . . . , un(û)

)
= 0

}

and

Ĥc = {1, 2, . . . , n} \ Ĥ .

It is easy to see that Ĥc �= ∅. By the irreducibility of the set of nonzero states we know that
there exist k ∈ Ĥ , j ∈ Ĥc such that

Bkj
(
û, u2(û), . . . , un(û)

)
> 0.

On the other hand,

lim
u↑û

Bk(u, u2(u), . . . , un(u))
u – û

=
∑

i∈Ĥc

Bki
(
û, u2(û), . . . , un(û)

) · u′
i(û) > 0,

which contradicts Bk(u, u2(u), . . . , un(u)) ≥ 0 for all u ∈ [0, u∗], where u′
1(û) = 1.

Since B1(u∗, u2(u∗), . . . , un(u∗)) > B1(u∗, 0, . . . , 0) = 0, we can apply mathematical induc-
tion to prove that the solution of (3.1) can be uniquely extended to [0, q1). Now, we claim
that

uk(q1) = lim
u↑q1

uk(u) = qk , k ≥ 2.
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Indeed, since Bk(u, u2(u), . . . , un(u)) > 0 (k ≥ 1) for all u ∈ (0, q1), it can be easily seen that
uk(u) ∈ (0, qk) (k ≥ 2) for all u ∈ (0, q1) and therefore, uk(q1) ∈ (0, qk] for all k ≥ 2. If uk(q1) <
qk for some k ≥ 2, denote

M =
{

k ≥ 2; uk(q1) < qk
}

, Mc = {1, 2, . . . , n} \ M.

It follows from the irreducibility of the set of nonzero states we know that there exists
j ∈ Mc such that

lim
u↑q1

Bj
(
u, u2(u), . . . , un(u)

)
= Bj

(
q1, u2(q1), . . . , un(q1)

)
< 0,

which contradicts Bj(u, u2(u), . . . , un(u)) > 0 for all u ∈ (0, q1). The proof is complete. �

Corollary 3.1 Suppose that G(1) is positively regular, {Bi(u); 1 ≤ i ≤ n} is nonsingular. If
B1(0) > 0, B2(0) > 0, then the system of equations

⎧
⎨

⎩

u′
k(u) = Bk (u1,u,...,un)

B2(u1,u,...,un) , k �= 2,

uk|u=0 = 0, k �= 2
(3.3)

has the same solution as (3.1).

Proof By Theorem 3.1, we know that (3.3) has a unique solution. For convenience, we
denote the solutions to (3.3) by (u1(u2), u3(u2), . . . , un(u2)). Since u′

1(u2) > 0 for all u2 ∈
[0, q2), we know that the function u1(u2) (u2 ∈ [0, q2)) has an inverse function u2 = f2(u1),
(u1 ∈ [0, q1)) satisfying df2

du1
= 1/u′

1. Let uk = fk(u1) = uk(f2(u1)) (u1 ∈ [0, q1]) for k ≥ 3. It can
be easily seen that uk = fk(u1) (k ≥ 2) is the solution to (3.1). �

By the irreducibility of Zn
++, Theorem 3.1, and Corollary 3.1, we can assume that B1(0) > 0

without loss of generality and let (u2(u), . . . , un(u))(u ∈ [0, q1]) denote the unique solution
to (3.1).

Before stating our main result in this section, we first provide two useful lemmas.

Lemma 3.1 Let (p̃ij(t) : i, j ∈ Zn
+) be the Feller minimal Q̃-function, where Q̃ is an absorbing

nTBI Q-matrix. Then, for any i ∈ Zn
+,

∫ ∞

0
p̃ik(t) dt < ∞, k �= 0 (3.4)

and thus

lim
t→∞ p̃ik(t) = 0, i ∈ Zn

+, k �= 0. (3.5)

Moreover, for any i ∈ Zn
++ and u ∈ [0, 1)n, we have

∑

k �=0

(∫ ∞

0
p̃ik(t) dt

)

· uk < ∞. (3.6)
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Proof By the construction of Q̃, all the states in Zn
++ are transient. Hence, (3.4) and (3.5)

hold.
We now prove (3.6). For this purpose, we shall consider two different cases separately.
First, consider the case ρ(1) > 0. By Lemma 2.1(ii), (2.1) has a root q ∈ (0, 1)n. Let ũ ∈

∏n
i=1(qi, 1). We claim that there exists ū ∈ ∏n

i=1[ũi, 1) such that

Bi(ū) < 0, ∀i = 1, 2, . . . , n. (3.7)

Indeed, let H1 = {i : Bi(ũ) > 0}. By Li and Wang [10] we know that H1 �= {1, 2, . . . , n} since
ρ(1) > 0. If H1 = ∅, then Bi(ũ1, . . . , ũn) ≤ 0 (∀i = 1, . . . , n). If H1 �= ∅, then by Lemma 2.2, we
know that there exists u(1) ∈ ∏n

i=1[ũi, 1) such that Bi(u(1)
1 , . . . , u(1)

n ) = 0 for all i ∈ H1. Let

H2 =
{

i : Bi
(

u(1)) > 0
}

,

then H2 ⊂ {1, 2, . . . , n}\H1. It is obvious that H1 ∪H2 �= {1, 2, . . . , n}. If H2 = ∅, then Bi(u(1)) ≤
0 (∀i = 1, . . . , n). If H2 �= ∅, then by Lemma 2.2, we know that there exists u(2) ∈ ∏n

i=1[u(1)
i , 1)

such that Bi(u(2)) = 0 for all i ∈ H1 ∪ H2. By repeatedly using the same argument and not-
ing {1, 2, . . . , n} is a finite set, we can obtain H1, H2, . . . , Hm such that Hm+1 = ∅ and hence
Bi(u(m)) ≤ 0 (∀i = 1, . . . , n). It is obvious that H1 ∪ · · · ∪ Hm �= {1, 2, . . . , n}, i.e., Bi(u(m)) < 0
for all i ∈ {1, . . . , n} \ H1 ∪ · · · ∪ Hm. By the irreducibility of Zn

++, we can see that (3.7) holds
for ū smaller than (if necessary) but closing to u(m).

By (2.2) we know that

∂F̃i(t, ū)
∂t

= I(ū)
∑

j∈Zn
++

p̃ij(t)ūj +
n∑

k=1

Bk(ū)
∂F̃i(t, ū)

∂uk
,

which implies (3.6), where F̃i(t, ū) =
∑

j∈Zn
+

p̃ij(t)ūj .
Next, consider the case that ρ(1) ≤ 0. Let ũ ∈ (0, 1)n. By Theorem 3.1, there exists v ∈

(ũ1, 1) such that (v, u2(v), . . . , un(v)) ∈ ∏n
i=1(ũi, 1) and hence by (2.2) and Theorem 3.1 we

have

1 ≥ I
(
v, u2(v), . . . , un(v)

)
Gi(T , v) + B1

(
v, u2(v), . . . , un(v)

) · ∂Gi(T , v)
∂v

,

where Gi(T , v) =
∑

j∈Zn
++

(
∫ T

0 p̃ij(t) dt)vj1 uj2
2 (v) · · ·ujn

n (v). Equation (3.6) can be obtained im-
mediately from the above inequality. The proof is complete. �

For any i �= 0, denote Gi(v) = Gi(∞, v). From Lemma 3.1, Gi(v) is well defined at least for
v ∈ [0, 1).

Theorem 3.2 For any i �= 0, ai0 = 1 if and only if ρ(1) ≤ 0 and J = +∞ where

J :=
∫ 1

0

1
B1(y, u2(y), . . . , un(y))

· e
∫ y

0
I(x,u2(x),...,un(x))

B1(x,u2(x),...,un(x)) dx dy. (3.8)

More specifically,
(i) If ρ(1) ≤ 0 and J = +∞, then ai0 = 1 (i �= 0).



Li and Wang Boundary Value Problems          (2024) 2024:1 Page 10 of 16

(ii) If ρ(1) ≤ 0 and J < +∞, then

ai0 =

∫ 1
0

yi1 ui2
2 (y)···uin

n (y)
B1(y,u2(y),...,un(y)) · e

∫ y
0

I(x,u2(x),...,un(x))
B1(x,u2(x),...,un(x)) dx dy

∫ 1
0

1
B1(y,u2(y),...,un(y)) · e

∫ y
0

I(x,u2(x),...,un(x))
B1(x,u2(x),...,un(x)) dx dy

< 1. (3.9)

(iii) If 0 < ρ(1) ≤ +∞ and thus equation (2.1) possesses a smallest nonnegative root q =
(q1, u2(q1), . . . , un(q1)) ∈ (0, 1)n, then

ai0 =

∫ q1
0

yi1 ui2
2 (y)···uin

n (y)
B1(y,u2(y),...,un(y)) · e

∫ y
0

I(x,u2(x),...,un(x))
B1(x,u2(x),...,un(x)) dx dy

∫ q1
0

1
B1(y,u2(y),...,un(y)) · e

∫ y
0

I(x,u2(x),...,un(x))
B1(x,u2(x),...,un(x)) dx dy

<
n∏

k=1

qik
k < 1, i �= 0.

Proof Integrating the equality (2.2) with respect to t ∈ [0,∞) and using Theorem 3.1, we
have that for any v ∈ [0, 1) and i �= 0,

ai0 – vi1 ui2
2 (v) · · ·uin

n (v)

= B1
(
v, u2(v), . . . , un(v)

) · G′
i(v) + I

(
v, u2(v), . . . , un(v)

) · Gi(v), (3.10)

where Gi(v) < +∞. First, consider the case ρ(1, . . . , 1) ≤ 0. Solving the ordinary differential
equation (3.10) for v ∈ [0, 1) immediately yields

Gi(v) · e
∫ v

0
I(x,u2(x),...,un(x))

B1(x,u2(x),...,un(x)) dx

=
∫ v

0

ai0 – yi1 ui2
2 (y) · · ·uin

n (y)
B1(y, u2(y), . . . , un(y))

· e
∫ y

0
I(x,u2(x),...,un(x))

B1(x,u2(x),...,un(x)) dx dy, (3.11)

which implies that if J = +∞, then ai0 = 1. Indeed, if ai0 < 1, then by letting v ↑ 1 in (3.11)
we see that the right-hand side of (3.11) tends to –∞, while the left-hand side is always
nonnegative, which is a contradiction. Hence, (i) is proven.

Now, we turn to (ii). First, note that J < +∞ implies
∫ 1

0
I(x,u2(x),...,un(x))

B1(x,u2(x),...,un(x)) dx = –∞. Since
the left-hand side of (3.11) is always nonnegative so is the right-hand side. It follows that

ai0 ≥ J–1 ·∫ 1
0

yi1 ui2
2 (y)···uin

n (y)
B1(y,u2(y),...,un(y)) ·e

∫ y
0

I(x,u2(x),...,un(x))
B1(x,u2(x),...,un(x)) dx dy. Therefore, in order to prove (ii), we only

need to show that

ai0 ≤ J–1 ·
∫ 1

0

yi1 ui2
2 (y) · · ·uin

n (y)
B1(y, u2(y), . . . , un(y))

· e
∫ y

0
I(x,u2(x),...,un(x))

B1(x,u2(x),...,un(x)) dx dy.

Take x∗
j = J–1 · ∫ 1

0
yj1 uj2

2 (y)···ujn
n (y)

B1(y,u2(y),...,un(y)) · e
∫ y

0
I(x,u2(x),...,un(x))

B1(x,u2(x),...,un(x)) dx dy (j �= 0), then for any i �= 0,

∑

j �=0

qijx∗
j + qi0

= J–1 ·
∫ 1

0

∑
j∈Zn

+
qij · yj1 uj2

2 (y) · · ·ujn
n (y)

B1(y, u2(y), . . . , un(y))
· e

∫ y
0

I(x,u2(x),...,un(x))
B1(x,u2(x),...,un(x)) dx dy

= J–1 ·
∫ 1

0

∞∑

k=1

ikyi1 ui2
2 (y) · · ·uik –1

k (y)u′
k(y) · · ·ujn

n (y) · e
∫ y

0
I(x,u2(x),...,un(x))

B1(x,u2(x),...,un(x)) dx dy
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+ J–1 ·
∫ 1

0

yj1 uj2
2 (y) · · ·ujn

n (y)I(y, u2(y), . . . , un(y))
B1(y, u2(y), . . . , un(y))

· e
∫ y

0
I(x,u2(x),...,un(x))

B1(x,u2(x),...,un(x)) dx dy

= 0.

Here, the last equality follows from the integration by parts. Hence, (x∗
j : j �= 0) is a solution

of the equation

∑

j �=0

qijx∗
j + qi0 = 0, 0 ≤ x∗

j ≤ 1, i �= 0.

By Lemma 3.2 in Li and Chen [9], we then have ai0 ≤ x∗
i (i �= 0) since ai0 is the minimal

solution of the above equation. (ii) is proved.
Finally, we consider (iii). Suppose that ρ(1) > 0. By Lemma 2.1, we know that equation

(2.1) has a root (q1, u2(q1), . . . , un(q1)) ∈ (0, 1)n and Gi(v) < ∞ for all v ∈ [0, q1]. Similarly as
in the above, we only need to show that

ai0 ≤ lim
v↑q1

[∫ v

0

1
B1(y, u2(y), . . . , un(y))

· e
∫ y

0
I(x,u2(x),...,un(x))

B1(x,u2(x),...,un(x)) dx dy
]–1

·
∫ v

0

yj1 uj2
2 (y) · · ·ujn

n (y)
B1(y, u2(y), . . . , un(y))

· e
∫ y

0
I(x,u2(x),...,un(x))

B1(x,u2(x),...,un(x)) dx dy.

By Lemma 2.1 we know that
∫ q1

0
I(x,u2(x),...,un(x))

B1(x,u2(x),...,un(x)) dx = –∞ and

∫ y

0

I(x, u2(x), . . . , un(x))
B1(x, u2(x), . . . , un(x))

dx ≤
∫ y

0

I(q1, q2, . . . , qn)
B1(x, q2, . . . , qn)

dx ≤ C ln
q1 – y

q1

for y ∈ [0, q1), where C is a positive constant. Hence, the integral
∫ q1

0
1

B1(y,u2(y),...,un(y)) ·
e
∫ y

0
I(x,u2(x),...,un(x))

B1(x,u2(x),...,un(x)) dx dy, denoted by D, is convergent. Now, by letting

y∗
j = D–1 ·

∫ q1

0

1
B1(y, u2(y), . . . , un(y))

· e
∫ y

0
I(x,u2(x),...,un(x))

B1(x,u2(x),...,un(x)) dx dy, j �= 0,

we may prove similarly as above that (y∗
j : j �= 0) is a solution of the equation

∑

j �=0

qijxi + qi0 = 0, 0 ≤ xj ≤ 1, i �= 0.

Again, by Lemma 3.2 in Li and Chen [9], we have ai0 ≤ y∗
i (i �= 0), which proves the first

equality in (3.5). The last two assertions in (3.5) are obvious. The proof is complete. �

By Theorem 3.2, we see that when immigration occurs then the condition ρ(1) ≤ 0 (i.e.,
the death rate is not less than the mean birth rate) is no longer sufficient for the process
to be finally extinct. A further condition J = ∞, which reflects the effect of immigration,
is necessary to guarantee the final extinction.

Having obtained the extinction probability, we are now in a position to consider the
extinction time. We shall use Ei[τ0] to denote the mean extinction time when the process
starts at state i �= 0.
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Theorem 3.3 Suppose that ρ(1) ≤ 0 and J = ∞, where J is given in (3.8) and thus the
extinction probability ai0 = 1 (i �= 0). Then, for any i �= 0, Ei[τ0] < ∞ if and only if

∫ 1

0

1 – yu2(y) · · ·un(y) – I(y, u2(y), . . . , un(y))
B1(y, u2(y), . . . , un(y))

dy < ∞ (3.12)

and in which case, Ei[τ0] is given by

Ei[τ0] =
∫ 1

0

1 – yi1 ui2
2 (y) · · ·uin

n (y)
B1(y, u2(y), . . . , un(y))

· e–
∫ 1

y
I(x,u2(x),...,un(x))

B1(x,u2(x),...,un(x)) dx dy. (3.13)

Proof It follows from (3.11) that

∑

j �=0

(∫ ∞

0
pij(t) dt

)

· uj1 uj2
2 (u) · · ·ujn

n (u)

=
∫ u

0

1 – yi1 ui2
2 (y) · · ·uin

n (y)
B1(y, u2(y), . . . , un(y))

· e–
∫ u

y
I(x,u2(x),...,un(x))

B1(x,u2(x),...,un(x)) dx dy.

Letting u ↑ 1, using the honesty condition and applying the Monotone Convergence The-
orem then yields

Ei[τ0] =
∫ ∞

0

(
1 – pi0(t)

)
dt

=
∑

j∈Zn
++

∫ ∞

0
pij(t) dt

=
∫ 1

0

1 – yi1 ui2
2 (y) · · ·uin

n (y)
B1(y, u2(y), . . . , un(y))

· e–
∫ 1

y
I(x,u2(x),...,un(x))

B1(x,u2(x),...,un(x)) dx dy.

Thus, (3.13) is proved. Finally, it is fairly easy to show that the expression in (3.13) is finite
if and only if (3.12) holds. �

4 Recurrence Property
In this section we consider the recurrence property of nTMBPI in the case that β �= 0
and thus 0 is no longer an absorbing state. We shall assume that the nTBI Q-matrix Q is
regular.

It is well known that the nTMBPI is recurrent if and only if the extinction probability of
the related absorbing nTMBPI (i.e., β = 0) equals 1. Therefore, by Theorem 3.2 we have
the following result.

Theorem 4.1 The nTMBPI is recurrent if and only if ρ(1) ≤ 0 and J = +∞, where J is given
in (3.8).

Now, we consider the positive recurrence of nTMBPI.

Theorem 4.2 The nTMBPI is positive recurrent (i.e., ergodic) if and only if ρ(1) ≤ 0 and

∫ 1

0

–I(y, u2(y), . . . , un(y)) – R(y, u2(y), . . . , un(y))
B1(y, u2(y), . . . , un(y))

dy < ∞. (4.1)
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Moreover, if ρ(1) < 0 and
∑n

j=1(Ij(1) + Rj(1)) < ∞, then the process is exponentially er-
godic.

Proof Denote R̃(x) := R(x, u2(x), . . . , un(x)), Ĩ(x) := I(x, u2(x), . . . , un(x)), and B̃k(x) :=
Bk(x, u2(x), . . . , un(x)) (k = 1, . . . , n).

Suppose that ρ(1) ≤ 0 and (4.1) holds. By Chen [5], in order to prove the positive recur-
rence, we only need to show that the equation

⎧
⎨

⎩

∑
j∈Zn

+
qijyj ≤ –1, i �= 0,

∑
j �=0 q0jyj < ∞

has a finite nonnegative solution. By the irreducibility property and the fact that ρ(1) ≤ 0,
we may obtain from (4.1) that

∫ 1

0

1 – yi1 ui2
2 (y) · · ·uin

n (y)
B̃1(y)

· e
∫ y

0
Ĩ(x)

B̃1(x)
dx

dy < ∞, i ∈ Zn
+.

Indeed, since β > 0, it is easy to see that there exists a positive constant L such that 1 –
yu2(y) · · ·un(y) ≤ L · R̃(y). Hence,

∫ 1

0

1 – yj1 uj2
2 (y) · · ·ujn

n (y)
B̃1(y)

dy < ∞

for any j ∈ Zn
+. Now, let

yj = e
–

∫ 1
0

Ĩ(x)
B̃1(x)

dx ·
∫ 1

0

1 – yj1 uj2
2 (y) · · ·ujn

n (y)
B̃1(y)

· e
∫ y

0
Ĩ(x)

B̃1(x)
dx

dy, j ∈ Zn
+,

then 0 ≤ yj < ∞ (j ∈ Zn
+) and it can be checked that

∑
j∈Zn

+
qijyj = –1 (i �= 0) and

∑

j �=0

q0jyj ≤ e
–

∫ 1
0

Ĩ(x)
B̃1(x)

dx ·
∫ 1

0

–R̃(y)
B̃1(y)

dy < ∞.

Therefore, the nTMBPI is positive recurrent.
Conversely, suppose that the process is positive recurrent and thus possesses an equi-

librium distribution (πj : j ∈ Zn
+). Letting t → ∞ in (2.2) and using the dominated conver-

gence theorem yields

R̃(s)π0 + Ĩ(s)
∑

j �=0

πjsj1 uj2
2 (s) · · ·ujn

n (s)

+
n∑

k=1

B̃k(s)
∑

j �=0

πjjksj1 uj2
2 (s) · · ·ujk –1

k (s) · · ·ujn
n (s) = 0 (4.2)

for s ∈ [0, 1).
Since R̃(s) < 0 and Ĩ(s) < 0 for all s ∈ [0, 1), by (4.2) and the proof of Theorem 3.1, we

know that ρ(1) ≤ 0. Denote

π (s) =
∑

j∈Zn
+

πjsj1 uj2
2 (s) · · ·ujn

n (s).
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It follows from (4.2) that

π (s) = π0

[

1 +
∫ s

0

–R̃(y)
B̃1(y)

· e
–

∫ s
y

Ĩ(x)
B̃1(x)

dx
dy

]

, s ∈ [0, 1). (4.3)

Since
∫ s

0
–R̃(y)
B̃1(y) ·e

∫ y
0

Ĩ(x)
B̃1(x)

dx
dy ≥ ∫ 1

2
0

–R̃(y)
B̃1(y) ·e

∫ y
0

Ĩ(x)
B̃1(x)

dx
dy > 0 for s ≥ 1

2 , we must have
∫ 1

0
–Ĩ(x)
B̃1(x) dx <

∞. Hence,

lim
s↑1

∫ s

0

–R̃(y)
B̃1(y)

≤ lim
s↑1

∫ s
0

–R̃(y)
B̃1(y) · e

∫ y
0

Ĩ(x)
B̃1(x)

dx
dy

e
∫ s

0
Ĩ(x)

B̃1(x)
dx

< ∞.

Hence, (4.1) holds. The first part is proved.
Now, suppose that ρ(1) < 0 and

∑n
j=1(Ij(1) + Rj(1)) < ∞. We prove that the nTBIP is

exponentially ergodic. Since ρ(1) has a positive eigenvector (x1, . . . , xn), let

C1 :=

( n∑

j=1

Ij(1)

)

∨
( n∑

j=1

Rj(1)

)

· max{x1, . . . , xn} > 0, C2 := –ρ(1) > 0

and fi =
∑n

k=1 ikxk (i ∈ Zn
+). We can see that for any i ∈ Zn

+,

∑

j∈Zn
+

qij(fj – fi)

=
n∑

k=1

ik

n∑

l=1

Bkl(1, . . . , 1)xl +
n∑

l=1

[
δ0iRl(1) + (1 – δ0i)Il(1)

]
.

≤ C1 – C2fi.

By Corollary 4.49 of Chen [5], the process is exponentially ergodic. The proof is com-
plete. �

Theorem 4.3 Suppose that the nTMBPI is positive recurrent. Then, its equilibrium distri-
bution (πj : j ∈ Zn

+) is given by

π (s) = π0

[

1 +
∫ s

0

–R(y, u2(y), . . . , un(y))
B1(y, u2(y), . . . , un(y))

· e–
∫ s

y
I(x,u2(x),...,un(x))

B1(x,u2(x),...,un(x)) dx dy
]

, s ∈ [0, 1), (4.4)

where π (s) =
∑

j∈Zn
+
πjsj1 uj2

2 (s) · · ·ujn
n (s).

Proof (4.4) follows directly from the proof of Theorem 4.2 (see (4.3)). �

The following conclusion follows immediately from Theorem 3.3.

Theorem 4.4 The nTMBPI is never strongly ergodic.

Finally, we give an example to illustrate our results.
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Example 4.1 Consider a two-type Markov branching–immigration process with B1(u, v) =
p – u + (1 – p)v2, B2(u, v) = p – v + (1 – p)u2, I(u, v) = α(uv – 1), and R(u, v) = β(uv – 1), where
α > 0, β ≥ 0 and p ∈ (0, 1).

It is easy to see that ρ(1, 1) = 1 – 2p. Moreover, the solution of (3.1) is v(u) = u and the
smallest nonnegative solution of (2.1) is q1 = q2 = min(1, p

1–p ).
(i) For the case β = 0, by Theorem 3.1,

ai0 =

∫ q1
0

yi1+i2
p–y+(1–p)y2 · e

∫ y
0

α(x2–1)
p–x+(1–p)x2 dx

dy
∫ q1

0
1

p–y+(1–p)y2 · e
∫ y

0
α(x2–1)

p–x+(1–p)x2 dx
dy

,

which is equal to 1 if and only if p > 1
2 or that p = 1

2 and α ≤ 1
4 . Furthermore, if p = 1

2 and
α ≤ 1

4 , then Ee1 [τ0] = +∞. While if p > 1
2 , then

Ee1 [τ0] =
∫ 1

0

1
p – (1 – p)y

· e
∫ 1

y
α(1+x)

p–(1–p)x dx dy

= (2p – 1)
– α

(1–p)2
∫ 1

0

[
p – (1 – p)y

] α

(1–p)2
–1

e– α(1–y)
1–p dy.

(ii) For the case β > 0, by Theorem 4.2, the process is positive recurrent if and only if
p > 1

2 .
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