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Abstract
We consider dynamics of a semilinear heat equation on time-varying domains with
lower regular forcing term. Instead of requiring the forcing term f (·) to satisfy∫ t
–∞ eλs‖f (s)‖2

L2
ds <∞ for all t ∈R, we show that the solutions of a semilinear heat

equation on time-varying domains are continuous with respect to initial data in H1

topology and the usual (L2, L2) pullback Dλ-attractor indeed can attract in the
H1-norm, provided that

∫ t
–∞ eλs‖f (s)‖2

H–1(Os)
ds <∞ and f ∈ L2loc(R, L

2(Os)).
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1 Introduction
Let O be a nonempty bounded open subset of RN with C2 boundary ∂O, and let r = r(y, t)
be a vector function

r ∈ C1(O ×R;RN)
(1.1)

such that

r(·, t) : O →Ot is a C2-diffeomorphism for all t ∈R. (1.2)

We consider the following initial boundary value problem for a semilinear parabolic
equation:

⎧
⎪⎪⎨

⎪⎪⎩

ut – �u + g(u) = f (t) in Qτ ,

u = 0 on �τ ,

u(τ , x) = uτ (x), x ∈Oτ ,

(1.3)

where τ ∈ R, uτ : Oτ → R, Qτ ,T :=
⋃

t∈(τ ,T) Ot × {t} for all T > τ , Qτ :=
⋃

t∈(τ ,+∞) Ot × {t},
�τ ,T :=

⋃
t∈(τ ,T) ∂Ot ×{t}, �τ :=

⋃
t∈(τ ,+∞) ∂Ot ×{t}, and f : Qτ →R are given. We assume
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that g ∈ C1(R,R) is a given function for which there exist nonnegative constants α1, α2, β ,
l, and p ≥ 2 such that

–β + α1|s|p ≤ g(s)s ≤ β + α2|s|p, g ′(s) ≥ –l ∀s ∈R, (1.4)

and, moreover, g satisfies the Lipschitz condition: there exists a positive constant c0 such
that

∣
∣g(u) – g(v)

∣
∣ ≤ c0

(
1 + |u|p–2 + |v|p–2) · |u – v| ∀u, v ∈R. (1.5)

About the diffeomorphism r(·, ·), as in Límacoet al. [6] and Kloedenet al. [5], we assume
that the function r̄ = r̄(x, t), where r̄(·, t) = r–1(·, t) denotes the inverse of r(·, t), satisfies

r̄ ∈ C2,1(Q̄τ ,T ;RN)
for all τ < T . (1.6)

The reaction–diffusion equation with nonlinear term g(·) satisfying assumptions (1.4)
is one of the classical example models in the theory of infinite-dimensional dynamical
systems, especially regarding to the theory of attractors; e.g., see the classical monographs
in this field like [1, 8, 11].

About the dynamics of reaction–diffusion equation (1.3)–(1.4), the known results
mainly concentrate in the L2 phase space; e.g., see [8, 11] for the fixed domain case (i.e.,
r(·, t) ≡ Id) and Kloeden et al. [5, 13] for time-varying domain case; and the correspond-
ing mathematical analysis is standard to some extent. When we try to improve the corre-
sponding results to a more regular phase space, say H1, some essential difficulties arise,
for example, the continuity with respect to the initial data and asymptotical compactness
in H1 topology. Indeed, even in the autonomous case, for any space dimension N and
any growth power p ≥ 2 (comes from (1.4)), the question about the continuity of solution
with respect to initial data in H1 remained open until 2008; see Robinson [8]. In 2008, for
the autonomous case of (1.3) and with the same assumption (1.4) about the nonlinearity,
Trujillo and Wang [12] used the method of differentiating the equation with respect to t to
get the bounded estimate for ‖tut‖L2 for t ∈ [0, T] and then obtained the uniform bound-
edness of tu(t) in L∞(0, T ; H2) and, finally, obtained the continuity in H1 for any space
dimension N and any growth power p ≥ 2 (to our knowledge, this is the first result). Later,
Cao et al. [2] obtained such continuity for nonautonomous case by establishing some new
a priori estimates for the difference of solutions near the initial time; see also [3, 13] for
further discussion in this direction.

Note that to obtain the continuity with respect to the initial data and existence of attrac-
tors in the H1 topology, to our knowledge, the known results always required the force
term to belong to L2; e.g., see [2, 3, 12] for autonomous and stochastic case; and in [13], to
obtain similar results as in [2] in the nonautonomous case, they required f (·) to satisfy

∫ t

–∞
eλs∥∥f (s)

∥
∥2

L2 ds < ∞ for all t ∈ R (1.7)

for some proper positive constant λ. On the other hand, it is well-known that when we
consider system (1.3)–(1.4) in H1, it is natural to require f (·) ∈ H–1 only.
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The main aim of this paper is to establish the same continuity with respect to the initial
data in the H1 topology and H1-attraction as that in [2, 3, 12, 13] and relax the assumption
on the forcing term. To include the nonautonomous case, we consider systems (1.3)–(1.4)
defined on a time-varying domain. Note that a semilinear heat equation on a time-varying
domain is intrinsically nonautonomous even if the terms in the equation do not depend
explicitly on time.

Assumption I r and r̄ satisfy assumptions (1.1), (1.2), and (1.6); ∂O is C2 and N ≤ 2p/(p –
2), or ∂O is Cj with j ≥ 2 integer such that j ≥ N(p – 2)/2p; g(·) satisfies (1.4), and f ∈
L2

loc(R; H–1(Ot)).

Under Assumption I, the existence and uniqueness of strong solution and weak solution
of (1.3) (see [5, 6] for the corresponding definition of solutions) were obtained by Kloeden
et al. [5] and then defined the nonautonomous process U(t, τ ) : L2(Oτ ) → L2(Ot), –∞ <
τ ≤ t < ∞ by U(t, τ )uτ := u(t; τ , uτ ) = u(t). Moreover, if we assume further that r satisfies

r ∈ Cb
(
Ō ×R;RN)

(1.8)

and f satisfies

∫ t

–∞
eλs∥∥f (s)

∥
∥2

H–1(Os) ds < ∞ for all t ∈R, (1.9)

where λ := minv∈H1
0 (	),v�=0

‖∇v‖2
(L2(	))N

‖v‖2
L2(	)

is the first eigenvalue of –� on H1
0 (	) with 	 :=

⋃
t∈ROt , then the process U(t, τ ) has an (L2, L2) pullback attractor ˆA = {A (t) : t ∈ R};

see [5] for more detail.
Our main result is the following theorem.

Theorem 1.1 Let Assumption I, (1.5), and (1.8)–(1.9) hold. If the forcing term f ∈
L2

loc(R, L2(Ot)), then the process U(t, τ ) is continuous with respect to the initial data in
the H1 topology; more precisely, for all τ ∈ R and t > τ , if unτ ∈ L2(Oτ ) satisfy unτ → u0τ

in L2(Oτ ) as n → ∞, then

U(t, τ )unτ → U(t, τ )u0τ in H1
0 (Ot) as n → ∞. (1.10)

Moreover, the (L2, L2) pullback attractor ˆA = {A (t) : t ∈ R} obtained in [5] can pullback
attract in the topology of H1, i.e., for all t ∈R and D̂ = {D(t) : t ∈R} ∈ D ,

distH1
0 (Ot )

(
U(t, τ )D(τ ),A (t)

) → 0 as τ → –∞. (1.11)

As mentioned previously, after the work [2], although (1.3) is defined on a time-varying
domain, the continuity in (1.10) and attraction (1.11) is more or less expectable, in this pa-
per, we give rigorous proofs about how to justify the approximation that is necessary due
to relaxing the assumption on the forcing term. Note also that here we only additionally
assume that f ∈ L2

loc(R, L2(Ot)), but not (1.7), which was required in [3, 7, 9, 13] etc. for
obtaining the boundedness in Lp and H1. However, in the nonautonomous case, the ques-
tion whether we can remove further the additional condition f ∈ L2

loc(R, L2(Ot)) remains
open.
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2 Preliminaries
2.1 Functional spaces
We first recall some functional spaces and notations.

For a fixed finite time interval [τ , T], let (Xt ,‖ · ‖Xt ) (t ∈ [τ , T]) be a family of Ba-
nach spaces such that Xt ⊂ L1

loc(Ot) for all t ∈ [τ , T]. For any 1 ≤ q ≤ ∞, we denote by
Lq(τ , T ; Xt) the vector space of all functions u ∈ L1

loc(Qτ ,T ) such that u(t) = u(·, t) ∈ Xt for
a.e. t ∈ (τ , T) and the function ‖u(·)‖X· defined by t �→ ‖u(t)‖Xt belongs to Lq(τ , T).

On Lq(τ , T ; Xt), we consider the norm given by

‖u‖Lq(τ ,T ;Xt ) :=
∥
∥
∥
∥u(·)∥∥X·

∥
∥

Lq(τ ,T).

2.2 Definitions of solutions
For the readers’ convenience, in this subsection, we recall the definition of different solu-
tions of equation (1.3); see Límaco et al. [6] and Kloeden et al. [5] for more detail.

For each T > τ , consider the auxiliary problem

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t – �u + g(u) = f (t) in Qτ ,T ,

u = 0 on �τ ,T ,

u(τ , x) = uτ (x), x ∈Oτ ,

(2.1)

where τ ∈R and uτ : Oτ → R.

Definition 2.1 (Strong solution) A function u = u(x, t) defined in Qτ ,T is said to be a strong
solution of problem (2.1) if

u ∈ L2(τ , T ; H2(Ot)
) ∩ C

(
[τ , T]; H1

0 (Ot)
) ∩ L∞(

τ , T ; Lq(Ot)
)
, u′ ∈ L2(τ , T ; L2(Ot)

)
,

and the three equations in (2.1) are satisfied almost everywhere in their corresponding
domains.

Denote

Uτ ,T :=
{
ϕ ∈ L2(τ , T ; H1

0 (Ot)
) ∩ Lq(τ , T ; Lq(Ot)

)
: ϕ′ ∈ L2(τ , T ; L2(Ot)

)
,

ϕ(τ ) = ϕ(T) = 0
}

.

Definition 2.2 Let uτ ∈ L2(Oτ ), f ∈ L2(τ , T ; H–1(Ot)), and –∞ < τ ≤ T < ∞. We say that
a function u is a weak solution of (2.1) if

(1) u ∈ C([τ , T]; L2(Ot)) ∩ L2(τ , T ; H1
0 (Ot)) ∩ Lq(τ , T ; Lq(Ot)) with u(τ ) = uτ ;

(2) there exists a sequence of regular data uτm ∈ H1
0 (Oτ ) ∩ Lq(Oτ ) and

fm ∈ L2(τ , T ; L2(Ot), m = 1, 2, . . . , such that

uτm → uτ in L2(Oτ ), fm → f in L2(τ , T ; H–1(Ot)
)
,

and

um → u in C
(
[τ , T]; L2(Ot)

)
,
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where um is the unique strong solution of (2.1) corresponding to (uτm, fm);
(3) for all ϕ ∈ Uτ ,T ,

∫ T

τ

∫

Ot

u(x, t)ϕ′(x, t) dx dt +
∫ T

τ

∫

Ot

∇xu · ∇xϕ dx dt

= –
∫ T

τ

∫

Ot

g
(
u(x, t)

)
ϕ(x, t) dx dt +

∫ T

τ

∫

Ot

f (x, t)ϕ(x, t) dx dt.

Definition 2.3 (Weak solution) A function u :
⋃

t∈[τ ,∞) Ot × {t} → R is called a weak
solution of (1.3) if for any T > τ , the restriction of u on

⋃
t∈[τ ,T] Ot ×{t} is a weak solution

of (2.1).

2.3 Preliminary lemmas
For later application, in the following, we collect some results for obtaining higher-order
integrability, which can be proved by the standard methods; see [5, 10] for the detailed
proofs.

Lemma 2.4 If u ∈ L2(τ , T ; H1
0 (Ot)) ∩ L∞(Qτ ,t) and u′ ∈ L2(τ , T ; L2(Ot)), then for any k ∈

[0,∞),

|u|k · u ∈ L2(τ , T ; H1
0 (Ot)

) ∩ L∞(Qτ ,t), (2.2)

and the following energy equality is satisfied:

∥
∥u(t2)

∥
∥k+2

Lk+2(Ot2 ) –
∥
∥u(t1)

∥
∥k+2

Lk+2(Ot1 )

= (k + 2)
∫ t2

t1

(
u′(t),

∣
∣u(t)

∣
∣k · u(t)

)
t dt ∀τ ≤ t1 ≤ t2 ≤ T . (2.3)

Lemma 2.5 For any k > 0 and any φ ∈ H1
0 (Os) ∩ L∞(Os) for some s ∈ R, we the following

equality:

∫

Os

∇φ · ∇(|φ|kφ)
dx = (k + 1)

(
2

k + 2

)2 ∫

Os

∣
∣∇|φ| k+2

2
∣
∣2 dx, (2.4)

where · stands for the usual inner product in R
N .

Lemma 2.6 Let f ∈ L2
loc(R; L2(Os)) satisfy (1.9). Then, for each T ∈ R, there is a family

{fm} ⊂ L∞
loc(Q–∞,T ) such that

for any (fixed) τ ∈ (–∞, T), fm → f in L2(τ , T ; L2(Os)
)

(2.5)

and for any t ∈ (–∞, T),

∫ t

–∞
eλs∥∥fm(s)

∥
∥2

L2(Os) ds ≤ 2
∫ t

–∞
eλs∥∥f (s)

∥
∥2

L2(Os) ds +
1
4

for all m = 1, 2, . . . . (2.6)

Recall that Q–∞,T =
⋃

t∈(–∞,T) Ot × {t} and the family {fm} may depend on T .
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In order the test function |u|k ·u to make sense, we also recall the following L∞-estimate
on the nice initial data, which can be obtained by applying the standard Stampacchia’s
truncation method; see [10] for a detailed proof.

Lemma 2.7 (L∞-estimate) Let Assumption I be satisfied. Then for any –∞ < τ ≤ T < ∞
and any initial data (uτ , f ) ∈ (H1

0 (Oτ ) ∩ L∞(Oτ ), L∞(Qτ ,T )), the unique strong solution u of
(2.1) belongs to L∞(Qτ ,T ).

3 Higher-order integrability
Along the ideas in [2], as the preliminaries, in this section, we obtain some higher-order
integrability of the difference of two weak solutions near the initial time, which was firstly
established in [2] for the (autonomous and fixed domain) stochastic case of (1.3), and later,
similar results were obtained in [13] for (1.3)–(1.4) in the stochastic case (in time-varying
case, but the forcing term was required to satisfy (1.7)).

3.1 A priori estimates for approximation solutions
To make our proof rigorous, we will use the approximation techniques.

For any (fixed) T ∈R, throughout this section, we choose (we can do this by Lemma 2.6)
and fix a family {fm} ⊂ L∞

loc(Q–∞,T ) such that

the family {fm} satisfying conditions (2.5)–(2.6) in Lemma 2.6. (3.1)

Then, for any τ < T and any uτ , vτ ∈ L2(Oτ ), according to the definition of a weak solu-
tion, we know that there are two sequences {(uτm, fm)} and {(vτm, fm)} satisfying

uτm, vτm ∈ H1
0 (Oτ ) ∩ L∞(Oτ ) and fm ∈ L∞(Qτ ,T ) (3.2)

such that

uτm → uτ , vτm → vτ in L2(Oτ ) and

fm → f in L2(τ , T ; L2(Ot)
)

as m → ∞
(3.3)

and

um → u and vm → v in C0([τ , T]; L2(Ot)
)
, (3.4)

where um and vm are the unique strong solution of (1.3) corresponding to the regular data
(uτm, fm) and (vτm, fm), respectively.

Without loss of generality, by (3.3) we can require that

‖uτm‖2
τ ≤ ‖uτ‖2

τ + 1 and ‖vτm‖2
τ ≤ ‖vτ‖2

τ + 1 for all m = 1, 2, . . . , (3.5)

where and hereafter, ‖ · ‖s denotes the usual norm of L2(Os) (s ∈R).
Denote

wm(t) = um(t) – vm(t) for any τ ≤ t ≤ T . (3.6)
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Then wm(t) (m = 1, 2, . . .) is the unique strong solution of the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂wm
∂t – �wm + g(um) – g(vm) = 0 in Qτ ,T ,

wm = 0 on �τ ,T ,

wm(τ , x) = uτm – vτm, x ∈Oτ ,

(3.7)

that is, wm ∈ L2(τ , T ; H2(Ot))∩C([τ , T]; H1
0 (Ot))∩L∞(τ , T ; Lq(Ot)), w′

m ∈ L2(τ , T ; L2(Ot)),
and the three equations in (3.7) are satisfied almost everywhere in their corresponding
domains.

The main purpose of this subsection is to prove the following uniform (with respect to
m) a priori estimates of wm defined in (3.6).

Theorem 3.1 Let Assumption I hold. Then, for any τ ≤ T and any k = 1, 2, . . . , there exists
a positive constant Mk = M(T – τ , k, N , l,‖uτ‖τ ,‖vτ‖τ ), such that for all m = 1, 2, . . . ,

(t – τ )
N

N–2
∥
∥(t – τ )bk wm(t)

∥
∥2( N

N–2 )k

L2( N
N–2 )k (Ot )

≤ Mk for all t ∈ [τ , T] (Ak)

and

∫ T

τ

(∫

Ot

∣
∣(t – τ )bk+1 · wm(t)

∣
∣2( N

N–2 )k+1
dx

) N–2
N

dt ≤ Mk , (Bk)

where wm(t) = um(t) – vm(t) = U(t, τ )uτm – U(t, τ )vτm,

b1 = 1 +
1
2

, b2 = 1 +
1
2

+ 1, and bk+1 = bk +
1 + N

N–2

2( N
N–2 )k+1

for k = 2, 3, . . . , (3.8)

and all constants Mk (k = 1, 2, . . .) are independent of m.

Proof By Lemma 2.7 we know that um, vm ∈ L∞(Qτ ,T ) for each m = 1, 2, . . . , and so

wm = um – vm ∈ C
(
[τ , T]; H1

0 (Ot)
) ∩ L∞(Qτ ,T ),

and for any 0 ≤ θ < ∞,

|wm|θ · wm ∈ L2(τ , T ; H1
0 (Ot)

) ∩ L∞(Qτ ,T ).

Consequently, we can multiply (3.7) by |wm|θ · wm for all θ ∈ [0,∞).
In the following, we will separate our proof into two steps.
Step 1 k = 1
At first, multiplying (3.7) by wm, from the definition of a strong solution and (1.4), ap-

plying Lemmas 2.4 and 2.5, we obtain that

1
2

d
dt

‖wm‖2
t +

∫

Ot

∣
∣∇wm(t)

∣
∣2 dx = –

∫

Ot

(
g(um) – g(vm)

)
wm dx

≤ l
∥
∥wm(t)

∥
∥2

t a.e. t ∈ (τ , T)
(3.9)
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(recall that ‖ · ‖s denotes the L2(Os)-norm), which implies that

∥
∥wm(t)

∥
∥2

t ≤ e2l(t–τ )∥∥wm(τ )
∥
∥2

τ
, (3.10)

and then

∫ T

τ

∥
∥∇wm(t)

∥
∥2

t dt ≤ l
∫ T

τ

∥
∥wm(s)

∥
∥2

s ds +
1
2
∥
∥wm(τ )

∥
∥2

τ

≤ 1
2
(
e2l(T–τ ) + 1

)∥∥wm(τ )
∥
∥2

τ
. (3.11)

Consequently, combining with the embedding

(∫

Os

|v| 2N
N–2 dx

) N–2
N ≤ cN ,τ ,T

∫

Os

|∇v|2 dx, ∀v ∈ H1(Os) ∀s ∈ [τ , T], (3.12)

we can deduce that

∫ T

τ

(∫

Ot

∣
∣(t – τ )b1 wm(t)

∣
∣

2N
N–2 dx

) N–2
N

dt

≤ (T – τ )2b1
cN ,τ ,T

2
(
e2l(T–τ ) + 1

)∥∥wm(τ )
∥
∥2

τ
. (3.13)

Note that here the embedding constant cN ,τ ,T in (3.12) depends only on the domain
⋃

s∈[τ ,T] Os.
Secondly, multiplying (3.7) by |wm| 2N

N–2 –2 · wm, and similarly to (3.9), we have that

1
2

(
N – 2

N

)
d
dt

∥
∥wm(t)

∥
∥

2N
N–2

L
2N

N–2 (Ot )
+

2N
N–2 – 1
( N

N–2 )2

∫

Ot

∣
∣∇∣

∣wm(t)
∣
∣( N

N–2 )∣∣2 dx

≤ l
∥
∥wm(t)

∥
∥

2N
N–2

L
2N

N–2 (Ot )
for a.e. t ∈ (τ , T).

To simplify the calculations, we denote by c, ci (i = 1, 2, . . .) the constants that depend only
on N , T – τ , k, and l and may vary from line to line. Then the above inequality can be
written as

d
dt

∥
∥wm(t)

∥
∥

2N
N–2

L
2N

N–2 (Ot )
+ c1

∫

Ot

∣
∣∇∣

∣wm(t)
∣
∣

N
N–2

∣
∣2 dx ≤ c2

∥
∥wm(t)

∥
∥

2N
N–2

L
2N

N–2 (Ot )
, (3.14)

and by multiplying both sides with (t – τ )
3N

N–2 we obtain that

d
dt

∥
∥(t – τ )b1 wt(t)

∥
∥

2N
N–2

L
2N

N–2 (Ot )
+ c1

∫

Ot

∣
∣∇∣

∣(t – τ )b1 wm(t)
∣
∣

N
N–2

∣
∣2 dx

≤ c2
∥
∥(t – τ )b1 wm(t)

∥
∥

2N
N–2

L
2N

N–2 (Ot )
+ c3(t – τ )

3N
N–2 –1∥∥wm(t)

∥
∥

2N
N–2

L
2N

N–2 (Ot )

≤ c
(

1 +
1

t – τ

)
∥
∥(t – τ )b1 wm(t)

∥
∥

2N
N–2

L
2N

N–2 (Ot )
.

(3.15)

Recall that b1 = 1 + 1
2 was defined in (3.2).
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One direct result of (3.15) is that

(t – τ )
d
dt

∥
∥(t – τ )b1 wm(t)

∥
∥

2N
N–2

L
2N

N–2 (Ot )
≤ c

∥
∥(t – τ )b1 wm(t)

∥
∥

2N
N–2

L
2N

N–2 (Ot )
,

and so

(t – τ )
d
dt

∥
∥(t – τ )b1 wm(t)

∥
∥2

L
2N

N–2 (Ot )
≤ c

N – 2
N

∥
∥(t – τ )b1 wm(t)

∥
∥2

L
2N

N–2 (Ot )
. (3.16)

Consequently, for any t ∈ [τ , T], integrating (3.16) over [τ , t], we obtain that

(t – τ )
∥
∥(t – τ )b1 wm(t)

∥
∥2

L
2N

N–2 (Ot )
≤

(

c
N – 2

N
+ 1

)∫ T

τ

∥
∥(s – τ )b1 wm(s)

∥
∥2

L
2N

N–2 (Os)
ds

≤ c
∥
∥wm(τ )

∥
∥2

τ
(by (3.13)),

and hence

(t – τ )
N

N–2
∥
∥(t – τ )b1 wm(t)

∥
∥

2N
N–2

L
2N

N–2 (Ot )
≤ c

∥
∥wm(τ )

∥
∥

2N
N–2
τ

for all t ∈ [τ , T]. (3.17)

Then, multiplying (3.15) by (t – τ )
2N

N–2 , we obtain that for a.e. t ∈ (τ , T),

(t – τ )
2N

N–2
d
dt

∥
∥(t – τ )b1 wm(t)

∥
∥

2N
N–2

L
2N

N–2 (Ot )
+ c1

∫

Ot

∣
∣∇∣

∣(t – τ )b1+1wm(t)
∣
∣

N
N–2

∣
∣2 dx

≤ c(t – τ )
N+2
N–2

∥
∥(t – τ )b1 wm(t)

∥
∥

2N
N–2

L
2N

N–2 (Ot )

≤ c(t – τ )
2

N–2
∥
∥wm(τ )

∥
∥

2N
N–2
τ

(by (3.17)).

Integrating this inequality over [τ , T] with respect to t, we obtain that

∫ T

τ

∫

Ot

∣
∣∇∣

∣(t – τ )b2 wm(t)
∣
∣

N
N–2

∣
∣2 dx dt ≤ c

∥
∥wm(τ )

∥
∥

2N
N–2
τ

, (3.18)

where we have used (3.17). Consequently, applying embedding (3.12) again, we can deduce
that

∫ T

0

(∫

	

∣
∣(t – τ )b2 wm(t)

∣
∣2( N

N–2 )2
dx

) N–2
N

dt ≤ cN ,τ ,T c
∥
∥wm(τ )

∥
∥

2N
N–2
τ

. (3.19)

Therefore, noticing (3.3) and (3.5), from (3.17) and (3.19) we know that there is a positive
constant M1, which depends only on N , τ , T , l, ‖uτ‖τ , ‖vτ‖τ , such that (A1) and (B1) hold.

Step 2 Assuming that (Ak) and (Bk) hold for k ≥ 1, we will show that (Ak+1) and (Bk+1)
hold.

Multiplying (3.7) by |wm|2( N
N–2 )k+1–2 · wm, using (1.4), and applying Lemmas 2.4 and 2.5,

we obtain that

d
dt

∥
∥wm(t)

∥
∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(Ot )
+ c

∫

Ot

∣
∣∇∣

∣wm(t)
∣
∣( N

N–2 )k+1 ∣
∣2 dx

≤ c1
∥
∥wm(t)

∥
∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(Ot )
for a.e. t ∈ (τ , T).

(3.20)
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Multiplying both sides of (3.20) by (t – τ )2( N
N–2 )k+1·bk+1 , we deduce that

d
dt

(
(t – τ )2( N

N–2 )k+1·bk+1‖wm‖2( N
N–2 )k+1

L2( N
N–2 )k+1

(Ot )

)
+ c

∫

Ot

∣
∣∇∣

∣(t – τ )bk+1 · wm(t)
∣
∣( N

N–2 )k+1 ∣
∣2 dx

≤ c1
∥
∥(t – τ )bk+1 · wm(t)

∥
∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(Ot )

+ c2(t – τ )2( N
N–2 )k+1·bk+1–1∥∥wm(t)

∥
∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(Ot )
,

i.e.,

d
dt

∥
∥(t – τ )bk+1 · wm(t)

∥
∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(Ot )
+ c

∫

Ot

∣
∣∇∣

∣(t – τ )bk+1 · wm(t)
∣
∣( N

N–2 )k+1 ∣
∣2 dx

≤
(

c1 +
c2

t – τ

)∥
∥(t – τ )bk+1 · wm(t)

∥
∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(Ot )
.

(3.21)

At first, from (3.21) we have

(t – τ )
d
dt

∥
∥(t – τ )bk+1 · wm(t)

∥
∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(Ot )

≤ c
∥
∥(t – τ )bk+1 · wm(t)

∥
∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(Ot )
, (3.22)

and so

(t – τ )
d
dt

∥
∥(t – τ )bk+1 · wm(t)

∥
∥2( N

N–2 )k

L2( N
N–2 )k+1

(Ot )

≤ c
N – 2

N
∥
∥(t – τ )bk+1 · wm(t)

∥
∥2( N

N–2 )k

L2( N
N–2 )k+1

(Ot )
. (3.23)

Integrating (3.23) over [τ , t] and applying (Bk), we deduce that

(t – τ )
∥
∥(t – τ )bk+1 · wm(t)

∥
∥2( N

N–2 )k

L2( N
N–2 )k+1

(Ot )

≤
(

c
N – 2

N
+ 1

)∫ T

τ

∥
∥(s – τ )bk+1 · wm(s)

∥
∥2( N

N–2 )k

L2( N
N–2 )k+1

(Os)
ds

≤
(

c
N – 2

N
+ 1

)

Mk for all t ∈ [τ , T],

which implies that

(t – τ )
N

N–2
∥
∥(t – τ )bk+1 · wm(t)

∥
∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(Ot )

≤
[(

c
N – 2

N
+ 1

)

Mk

] N
N–2

for all t ∈ [τ , T].

(3.24)
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In the following, after obtained (3.24), we will return to (3.21) to deduce (Bk+1). Multi-
plying both sides of (3.21) by (t – τ )1+ N

N–2 , we obtain that

(t – τ )1+ N
N–2

d
dt

∥
∥(t – τ )bk+1 · wm(t)

∥
∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(Ot )

+ c
∫

Ot

∣
∣∇∣

∣(t – τ )
bk+1+

1+ N
N–2

2( N
N–2 )k+1 · wm(t)

∣
∣( N

N–2 )k+1 ∣
∣2 dx

≤ c3(t – τ )
N

N–2
∥
∥(t – τ )bk+1 · wm(t)

∥
∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(Ot )
.

(3.25)

Then from (3.24) and the definition of bk+2 we obtain that

(t – τ )1+ N
N–2

d
dt

∥
∥(t – τ )bk+1 · wm(t)

∥
∥2( N

N–2 )k+1

L2( N
N–2 )k+1

(Ot )

+ c
∫

Ot

∣
∣∇∣

∣(t – τ )bk+2 · wm(t)
∣
∣( N

N–2 )k+1 ∣
∣2 dx

≤ c3

[(

c
N – 2

N
+ 1

)

Mk

] N
N–2

for all t ∈ [τ , T].

(3.26)

Integrating this inequality over [τ , T] and using (3.24) again, we deduce that

∫ T

τ

∫

Ot

∣
∣∇∣

∣(t – τ )bk+2 · wm(t)
∣
∣( N

N–2 )k+1 ∣
∣2 dx dt ≤ c4

[(

c
N – 2

N
+ 1

)

Mk

] N
N–2

. (3.27)

Consequently, using of the embedding inequality (3.12) again, we obtain that

∫ T

τ

(∫

	

∣
∣(t – τ )bk+2 · wm(t)

∣
∣2( N

N–2 )k+2
dx

) N–2
N

dt ≤ c5

[(

c
N – 2

N
+ 1

)

Mk

] N
N–2

. (3.28)

Therefore by setting

Mk+1 = (1 + c5)
[(

c
N – 2

N
+ 1

)

Mk

] N
N–2

,

(3.24) and (3.28) imply that (Ak+1) and (Bk+1) hold, respectively. �

3.2 Higher-order integrability near the initial time
Based on the a priori estimate in Theorem 3.1 for the approximation solutions, we can
obtain the following higher-order integrability near the initial time:

Theorem 3.2 Let Assumption I hold, and let uτ , vτ ∈ L2(Oτ ). Then for any T ≥ τ and
k = 1, 2, . . . , there exists a positive constant Mk = M(T – τ , k, N , l,‖uτ‖τ ,‖vτ‖τ ) such that

(t – τ )
N

N–2
∥
∥(t – τ )bk w(t)

∥
∥2( N

N–2 )k

L2( N
N–2 )k (Ot )

≤ Mk for all t ∈ [τ , T],

where w(t) = U(t, τ )uτ – U(t, τ )vτ , and

b1 = 1 +
1
2

, b2 = 1 +
1
2

+ 1 and bk+1 = bk +
1 + N

N–2

2( N
N–2 )k+1

for k = 2, 3, . . . .
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Proof For any (fixed) τ ∈R and T ≥ τ , choose two sequences (uτm, fm) and (vτm, fm) satis-
fying all conditions (3.1)–(3.5).

Then from Theorem 3.1 we have that for any k = 1, 2, . . . , there exists a positive constant
Mk = M(T – τ , k, N , l,‖uτ‖τ ,‖vτ‖τ ) such that

(t – τ )
N

N–2
∥
∥(t – τ )bk

(
um(t) – vm(t)

)∥∥2( N
N–2 )k

L2( N
N–2 )k (Ot )

≤ Mk for all t ∈ [τ , T], (3.29)

where um and vm are the unique strong solutions of (1.3) corresponding to the regular data
(uτm, fm) and (vτm, fm) on the interval [τ , T], respectively.

From (3.4) we know that for each t ∈ [τ , T], there are two subsequences {umj (t)} ⊂
{um(t)} and {vmj (t)} ⊂ {vm(t)} satisfying

umj (t) → u(t) = U(t, τ )uτ and vmj (t) → v(t) = U(t, τ )vτ a.e. on Ot as j → ∞,

where the subindex mj may depend on t.
Hence, since estimate (3.29) is independent of m, we can finish our proof by applying

the Fatou lemma:

(t – τ )
N

N–2
∥
∥(t – τ )bk

(
u(t) – v(t)

)∥∥2( N
N–2 )k

L2( N
N–2 )k (Ot )

= (t – τ )
N

N–2

∫

Ot

lim inf
j→∞

∣
∣(t – τ )bk

(
umj (t) – vmj (t)

)∣
∣2( N

N–2 )k
dx

≤ lim inf
j→∞ (t – τ )

N
N–2

∫

Ot

∣
∣(t – τ )bk

(
umj (t) – vmj (t)

)∣∣2( N
N–2 )k

dx

≤ Mk . �

4 Proof of Theorem 1.1
We start with the following a priori estimates.

Lemma 4.1 Let Assumption I hold, and let f ∈ L2
loc(R, L2(Ot)). Then for all τ ∈R and uτ ∈

L2(Oτ ), the corresponding weak solution u(t) = U(t, τ )uτ (t ≥ τ ) of equation (1.3) satisfies
the following estimates: for any T > τ ,

∫

Os

∣
∣u(s)

∣
∣p dx ≤ M for all s ∈

[

τ +
T – τ

2
, T

]

, and

∫ T

τ+T
2

∫

Os

∣
∣u(s)

∣
∣2p–2 dx ds ≤ M

(4.1)

with constant M depending only on T – τ , |⋃s∈[τ ,T] Os|, λτT ,
∫ T
τ

‖f (s)‖2
L2(Os) ds, and ‖uτ‖τ ,

where λτT is the first eigenvalue of –� on H1
0 (

⋃
s∈[τ ,T] Os).

Note that since we only assume that f ∈ L2
loc(R, L2(Ot)), we cannot obtain the uniform

boundedness of the solutions in the Lp sense as that in [3, 9, 13], i.e., our constant M
above depends on the time t – τ . However, we will show further that such boundedness is
sufficient for Theorem 1.1.
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Proof Since the results of the lemma are more or less standard, we restrict ourselves by
only formal derivation of estimate (4.1), which can be easily justified using, e.g., the meth-
ods as in Sect. 3: first, deduce the a priori estimates for approximation solutions and then
obtain (4.1) by Fatou’s lemma.

First, multiplying (1.3) by u and integrating with respect to x ∈Ot , we have that

1
2

d
dt

‖u‖2
t +

∫

Ot

∣
∣∇u(t)

∣
∣2 dx +

∫

Ot

g(u)u dx ≤ ∥
∥f (t)

∥
∥

t

∥
∥u(t)

∥
∥

t for a.e. t ∈ (τ , T); (4.2)

recall that ‖ · ‖t denotes the L2(Ot)-norm; Then using (1.4) and Cauchy’s inequality, we
obtain that

d
dt

‖u‖2
t + 2λτT

∥
∥u(t)

∥
∥2

t + 2α1

∫ t

τ

∫

Os

∣
∣u(s)

∣
∣p dx ds – 2β|Ot|

≤ 1
2λτT

∫ t

τ

∥
∥f (s)

∥
∥2

s ds + 2λτT
∥
∥u(t)

∥
∥2

t for all t ∈ [τ , T]

(recall that λτT is the first eigenvalue of –� on H1
0 (

⋃
s∈[τ ,T] Os)), which implies that

∥
∥u(t)

∥
∥2

t + 2α1

∫ t

τ

∫

Os

∣
∣u(s)

∣
∣p dx ds

≤ 1
2λτT

∫ t

τ

∥
∥f (s)

∥
∥2

s ds + 2β

∣
∣
∣
∣

⋃

s∈[τ ,T]

Os

∣
∣
∣
∣ + ‖uτ‖2

τ for all t ∈ [τ , T].
(4.3)

Secondly, multiplying in (1.3) by |u|p–2 ·u and integrating with respect to x ∈Ot , we have
that

1
p

d
dt

∫

Ot

∣
∣u(t)

∣
∣p dx + α1

∫

Ot

∣
∣u(t)

∣
∣2p–2 dx

≤ β

∫

Ot

∣
∣u(t)

∣
∣p–2 dx +

∥
∥f (t)

∥
∥

L2(Ot )

∥
∥u(t)

∥
∥p–1

L2p–2(Ot ) a.e. t ∈ (τ , T),

where we have used Lemmas 2.4 and 2.5 and (1.4). Consequently, using Cauchy’s inequal-
ity, we have that

d
dt

∫

Ot

∣
∣u(t)

∣
∣p dx + c1

∫

Ot

∣
∣u(t)

∣
∣2p–2 dx

≤ c2 + c3
∥
∥f (t)

∥
∥2

L2(Ot ) for a.e. t ∈ (τ , T),
(4.4)

where the constants c1, c2, c3 depend only on β , α1, and p.
Now from (4.3) we know that there is t0 ∈ [τ , τ+T

2 ] such that

u(t0) ∈ Lp(Ot0 ) (4.5)

and

∥
∥u(t0)

∥
∥p

Lp(Ot0 ) ≤ 1
α1(T – τ )

(
1

2λτT

∫ T

τ

∥
∥f (s)

∥
∥2

s ds + 2β

∣
∣
∣
∣

⋃

s∈[τ ,T]

Os

∣
∣
∣
∣ + ‖uτ‖2

τ

)

. (4.6)
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Therefore, for any t ∈ [ T+τ
2 , T], integrating (4.4) with respect to time from t0 to t, we de-

duce that

∥
∥u(t)

∥
∥p

Lp(Ot ) + c1

∫ t

t0

∫

Os

∣
∣u(s)

∣
∣2p–2 dx ds

≤ c2(t – t0) + c3

∫ t

t0

∥
∥f (s)

∥
∥2

L2(Os) ds +
∥
∥u(t0)

∥
∥p

Lp(Ot0 ),
(4.7)

which, combined with (4.6) and (4.3), immediately implies (4.1). �

Now we are ready to prove our main results.

Proof of Theorem 1.1 It suffices to prove the following claim: For any uτ , vτ ∈ L2(Oτ ), we
have the following estimate for t > τ :

∥
∥U(t, τ )uτ – U(t, τ )vτ

∥
∥2

H1
0 (Ot ) ≤ c1‖uτ – vτ‖2

τ + c2‖uτ – vτ‖2θ
τ , (4.8)

where the constants ci > 0 and θ ∈ (0, 1) depend only on t – τ , ‖uτ‖τ , and ‖vτ‖τ .
Indeed, the H1-continuity (1.10) immediately follows from (4.8).
To see the H1-pullback attraction (1.11), for each t ∈ R, we denote by B(t) the 1-

neighborhood of A (t) with respect to the L2(Ot)-norm. Then B(t) is bounded in L2(Ot),
and by (4.8) there are two positive constants c′

i > 0 and θ ∈ (0, 1) that depend only on t and
‖B(t)‖t such that, for all uτ , vτ ∈ B(t – 1),

∥
∥U(t, t – 1)uτ – U(t, t – 1)vτ

∥
∥2

H1
0 (Ot ) ≤ c′

1‖uτ – vτ‖2
τ + c′

2‖uτ – vτ‖2θ
τ . (4.9)

Now by the definition of the (L2, L2) pullback Dλ-attractor A , for any ε > 0 and any D̂ =
{D(t) : t ∈R} ∈ D , there is a time τ1(< t – 1), which depends only on t, ε, and D̂, such that

distL2(Ot–1)
(
U(t – 1, τ )D(τ ),A (t – 1)

) ≤ ε for all τ ≤ τ1 (4.10)

and

U(t – 1, τ )D(τ ) ⊂ B(t – 1) for all τ ≤ τ1. (4.11)

Then from (4.9)–(4.11) we have that for τ ≤ τ1,

dist2
H1

0 (Ot )

(
U(t, τ )D(τ ),A (t)

)

= dist2
H1

0 (Ot )

(
U(t, t – 1)U(t – 1, τ )D(τ ), U(t, t – 1)A (t – 1)

)

≤ c′
1 dist2

L2(Ot–1)
(
U(t – 1, τ )D(τ ),A (t – 1)

)

+ c′
2 dist2θ

L2(Ot–1)

(
U(t – 1, τ )D(τ ),A (t – 1)

)
(by (4.9))

≤ c′
1ε

2 + c′
2ε

2θ (by (4.10)).

Consequently, we obtain the H1-pullback attraction (1.11) by the arbitrariness of ε and D̂.
In the following, we give the proof of the above claim. To make our proof rigorous, as in

Sect. 3, we will prove the claim firstly for approximation solutions and then take the limit.



Hong et al. Boundary Value Problems          (2024) 2024:9 Page 15 of 19

Fix T such that T ≥ t > τ . Then, for the initial data uτ and vτ , take {uτm}∞m=1, {vτm}∞m=1,
and {fm}∞m=1 satisfying (3.1)–(3.5).

Denote

wm(s) = um(s) – vm(s) for τ ≤ s ≤ T . (4.12)

Then wm(s) (m = 1, 2, . . .) is the unique strong solution of (3.7).
First, multiplying (3.7) by wm and integrating with respect to x ∈Os and time, we obtain

that

∥
∥wm(s)

∥
∥2

s ≤ e2l(s–τ )∥∥wm(τ )
∥
∥2

τ
∀s ∈ [τ , T] (4.13)

and
∫ t

τ

∥
∥∇wm(s)

∥
∥2

s ds ≤ 1
2
∥
∥wm(τ )

∥
∥2

τ
+

∫ t

τ

∥
∥wm(s)

∥
∥2

s ds ∀t ∈ [τ , T], (4.14)

where we have used (1.4); recall that ‖ ·‖s denotes the usual L2(Os)-norm and the constant
l comes from (1.4).

Secondly, applying Lemma 4.1 to the initial data uτm and vτm, we obtain that there is
a constant M0, which depends only on t – τ , |⋃s∈[τ ,t] Os|, λτ t ,

∫ t
τ
‖f (s)‖2

L2(Os) ds, β , α1, p,
‖uτm‖τ , and ‖vτm‖τ , such that

∫ t

τ+t
2

∫

	

∣
∣um(s)

∣
∣2p–2 dx ds +

∫ t

τ+t
2

∫

	

∣
∣vm(s)

∣
∣2p–2 dx ds ≤ M0, (4.15)

and from (3.5) we know that M0 depends indeed only on ‖uτ‖L2(Oτ ) and ‖vτ‖L2(Oτ ) regard-
ing to the initial data.

We now multiply (3.7) by –�wm (since wm ∈ L2(τ , T ; H2(Ot))). We then have

–
∫

Os

w′
m�wm dx +

∫

Os

∣
∣�wm(s)

∣
∣2 =

∫

Os

(g(um(s) – g
(
vm(s)

)
�wm(s) dx. (4.16)

Moreover, as in Límaco, Medeiros, and Zuazua [6], we have

–
∫

Os

w′
m�wm dx =

1
2

d
ds

∫

Os

∣
∣∇wm(s)

∣
∣2 dx –

∫

�s

∣
∣∇wm(s)

∣
∣2

ψ · ns dσ , (4.17)

where ns denotes the unit outward normal vector to Os, and ψ is the velocity field
ψ = [∂sr](r̄(x, s)). Then, according to (1.1), (1.2), and (1.6), by classical trace results and
interpolation we have (e.g., see Duvaut [4]) that

∣
∣
∣
∣

∫

�s

∣
∣∇wm(s)

∣
∣2

ψ · ns dσ

∣
∣
∣
∣ ≤ cν

(∫

Os

∣
∣�wm(s)

∣
∣2 dx

)ν(∫

Os

∣
∣∇wm(s)

∣
∣2 dx

)1–ν

(4.18)

for all ν ≥ 1
2 . In particular, taking ν = 1

2 in (4.18) and using Cauchy’s inequality, we have
that

∣
∣
∣
∣

∫

�s

∣
∣∇wm(s)

∣
∣2

ψ · ns dσ

∣
∣
∣
∣
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≤ 1
4

∫

Os

∣
∣�wm(s)

∣
∣2 dx + 2c 1

2

∫

Os

∣
∣∇wm(s)

∣
∣2 dx for all s ∈ [τ , T]. (4.19)

At the same time, from (1.4) we have that
∣
∣
∣
∣

∫

Os

(
g
(
um(s)

)
– g

(
vm(s)

))
�wm(s) dx

∣
∣
∣
∣

≤ c
∫

Os

(
1 +

∣
∣um(s)

∣
∣p–2 +

∣
∣vm(s)

∣
∣p–2)∣∣wm(s)

∣
∣
∣
∣�wm(s)

∣
∣dx

≤ c
∫

Os

∣
∣wm(s)

∣
∣
∣
∣�wm(s)

∣
∣dx

+ c
∫

Os

(∣∣um(s)
∣
∣p–2 +

∣
∣vm(s)

∣
∣p–2)∣∣wm(s)

∣
∣
∣
∣�wm(s)

∣
∣dx

≤ 1
4

∫

Os

∣
∣�wm(s)

∣
∣2 dx + c

∥
∥wm(s)

∥
∥2

s

+ c
(∥
∥um(s)

∥
∥2p–4

L2p–2(Os) +
∥
∥vm(s)

∥
∥2p–4

L2p–2(Os)

)∥
∥wm(s)

∥
∥2

L2p–2(Os),

(4.20)

where, for the last inequality, we used the Hölder inequality with power p–2
2p–2 + 1

2p–2 + 1
2 = 1.

Therefore, inserting (4.17)–(4.20) into (4.16), we finally obtain that

d
ds

∫

Os

∣
∣∇wm(s)

∣
∣2 dx

≤ 4c 1
2

∫

Os

∣
∣∇wm(s)

∣
∣2 dx + 2c

∥
∥wm(s)

∥
∥2

s + 2c
(∥∥um(s)

∥
∥2p–4

L2p–2(Os)

+
∥
∥vm(s)

∥
∥2p–4

L2p–2(Os)

)∥∥wm(s)
∥
∥2

L2p–2(Os).

(4.21)

Since 2( N
N–2 )k → ∞ as k → ∞, there is k0 ∈ N such that

2
(

N
N – 2

)k0

> 2p – 2.

For this k0, by interpolation we have

‖w‖L2p–2(RN ) ≤ ‖w‖1–θ

L2( N
N–2 )k0 (RN )

· ‖w‖θ

L2(RN ),

where the power θ ∈ (0, 1) depends only on p, k0.
Hence from (4.21) we have that for a.e. s ∈ [τ , T],

d
ds

∫

Os

∣
∣∇wm(s)

∣
∣2 dx ≤ c

∫

Os

∣
∣∇wm(s)

∣
∣2 dx + c

∥
∥wm(s)

∥
∥2

s + c
(∥∥um(s)

∥
∥2p–4

L2p–2(Os)

+
∥
∥vm(s)

∥
∥2p–4

L2p–2(Os)

)∥
∥wm(s)

∥
∥1–θ

L2( N
N–2 )k0 (Os)

· ∥∥wm(s)
∥
∥θ

L2(Os).
(4.22)

In the following, we will apply Theorem 3.2 to control the terms in (4.22).
Denoting r0 = ( N

N–2 ) 2–2θ

2( N
N–2 )k0

+ (2 – 2θ )bk0 and multiplying (4.22) by (s – t+τ
2 )r0 , we obtain

that
(

s –
t + τ

2

)r0 d
ds

∥
∥∇wm(s)

∥
∥2

s
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≤ c
(

s –
t + τ

2

)r0(∥
∥∇wm(s)

∥
∥2

s +
∥
∥wm(s)

∥
∥2

s

)

+ c
(∥∥um(s)

∥
∥2p–4

L2p–2(Os) +
∥
∥vm(s)

∥
∥2p–4

L2p–2(Os)

)

· ((s – τ )
N

N–2
∥
∥(s – τ )bk0 wm(s)

∥
∥2( N

N–2 )k0

L2( N
N–2 )k0 (Os)

) 2–2θ

2( N
N–2 )k0 · ∥∥wm(s)

∥
∥2θ

s , (4.23)

where bk0 is given by (3.2) corresponding to k0.
Then applying Theorem 3.2 to the initial data uτm, vτm, times τ , t, and k0, we get that

there is a constant Mk0 , which depends only on t – τ , N , l, k0, and ‖umτ‖τ , ‖vmτ‖τ , such
that

(
(s – τ )

N
N–2

∥
∥(s – τ )bk0 wm(s)

∥
∥2( N

N–2 )k0

L2( N
N–2 )k0 (Os)

) 2–2θ

2( N
N–2 )k0 ≤ M2–2θ

k0 for all s ∈ [τ , t]; (4.24)

Noting (3.5) again, we see that Mk0 also depends only on ‖uτ‖τ and ‖vτ‖τ regarding to the
initial data.

Therefore we have the following estimate: for a.e. s ∈ [ t+τ
2 , t],

(

s –
t + τ

2

)r0 d
ds

∥
∥∇wm(s)

∥
∥2

s

≤ c
(

s –
t – τ

2

)r0(∥
∥∇wm(s)

∥
∥2

s +
∥
∥wm(s)

∥
∥2

s

)

+ cM2–2θ
k0

(∥
∥um(s)

∥
∥2p–4

L2p–2(Os) +
∥
∥vm(s)

∥
∥2p–4

L2p–2(Os)

) · ∥∥wm(s)
∥
∥2θ

s .

(4.25)

To ensure the power of (s – t+τ
2 ) to be strictly greater than 1, we may multiply both sides

by (s – t+τ
2 ) and then obtain that

(

s –
t + τ

2

)r0+1 d
ds

∥
∥∇wm(s)

∥
∥2

s

≤ c
(

s –
t + τ

2

)r0+1(∥
∥∇wm(s)

∥
∥2

s +
∥
∥wm(s)

∥
∥2

s

)

+ c
(

s –
t + τ

2

)

M2–2θ
k0

(∥∥um(s)
∥
∥2p–4

L2p–2(Os) +
∥
∥vm(s)

∥
∥2p–4

L2p–2(Os)

) · ∥∥wm(s)
∥
∥2θ

s .

(4.26)

Integrating (4.26) from τ+t
2 to t, we obtain that

(
t – τ

2

)1+r0∥
∥∇wm(t)

∥
∥2

≤ (1 + r0)
(

t – τ

2

)r0 ∫ t

τ+t
2

∥
∥∇wm(s)

∥
∥2 ds

+ c
(

t – τ

2

)r0+1 ∫ t

τ+t
2

(∥
∥∇wm(s)

∥
∥2

s +
∥
∥wm(s)

∥
∥2

s

)
ds (4.27)

+ c
t – τ

2
M2–2θ

k0

∫ t

τ+t
2

(∥∥um(s)
∥
∥2p–4

L2p–2(Os) +
∥
∥vm(s)

∥
∥2p–4

L2p–2(Os)

) · ∥∥wm(s)
∥
∥2θ

s ds

:= I1 + I2 + I3.
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From (4.13) and (4.14) we have that

I1 + I2

≤
(

t – τ

2

)r0((

1 + r0 + c
t – τ

2

)(
1
2

+
1
2l

e2l(t–τ )
)

+ c
t – τ

2
1
2l

e2l(t–τ )
)

× ∥
∥wm(τ )

∥
∥2

τ

≤ cr0,t–τ ,l
∥
∥wm(τ )

∥
∥2

τ
.

(4.28)

For I3, using the Hölder inequality and (4.15), we have that

I3 ≤ c
t – τ

2
M2–2θ

k0 2M
2p–4
2p–2
0

(∫ t

τ+t
2

∥
∥wm(s)

∥
∥2θ (p–1)

s ds
) 2

2p–2

≤ cMk0 ,p,M0,t–τ ,θ

(∫ t

τ+t
2

e2l(s–τ )θ (p–1) ds
) 2

2p–2 ∥
∥wm(τ )

∥
∥2θ

τ
(by (4.13))

≤ cMk0 ,p,M0,t–τ ,θ ,l
∥
∥wm(τ )

∥
∥2θ

τ
.

(4.29)

Putting (4.28) and (4.29) into (4.27), we finally obtain that

∥
∥∇wm(t)

∥
∥2 ≤ cr0,t–τ ,l

∥
∥wm(τ )

∥
∥2

τ
+ cr0,Mk0 ,p,M0,t–τ ,θ ,l

∥
∥wm(τ )

∥
∥2θ

τ
, (4.30)

and all the constants contained in the above inequality depend only on ‖uτ‖τ , ‖vτ‖τ about
initial data, and, consequently, they are independent of m.

From (4.30) we know that {wm(t)}∞m=1 is bounded in H1
0 (Ot), and therefore there is a

subsequence {wmj (t)}∞j=1 such that

wmj (t) → χ weakly in H1
0 (Ot) as j → ∞. (4.31)

On the other hand, from (3.4) we know that

wmj (t) → u(t) – v(t) in L2(Ot) as j → ∞.

Hence

u(t) – v(t) = χ ∈ H1
0 (Ot),

and using (4.30), (4.31), and (3.3), we deduce that

∥
∥∇(

u(t) – v(t)
)∥
∥2

t ≤ lim inf
j→∞

∥
∥∇wmj (t)

∥
∥2

t

≤ cr0,t–τ ,l‖uτ – vτ‖2
τ + cr0,Mk0 ,p,M0,t–τ ,θ ,l‖uτ – vτ‖2θ

τ .

This finishes the proof of the claim and thus the proof of the theorem. �
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