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Abstract
This work deals with the spectral element discretization of the time-dependent
Stokes problem in two- and three-dimensional domains. The boundary condition is
defined on the normal component of the velocity and the tangential components of
the vorticity. The discretization related to the time variable is processed by a Backward
Euler method. We prove through a detailed numerical analysis the well-posedness of
the full discrete problem.
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1 Introduction
In this article we are interested in the discretization of the nonstationary Stokes problem
by the spectral element method in two or three dimensions. Boundary conditions are pro-
posed, in dimension 2, on the normal component of the velocity and on the vorticity. In
dimension 3, the boundary conditions are on the normal component of the velocity and
on the tangential components of the vector-field vorticity.

Among other examples of this type of boundary conditions, we can cite: a fluid on each
side of a membrane, water in a crack in a rigid casting medium, and the coupling of several
turbulent fluids. These nonstandard boundary conditions for the Stokes problem were
first proposed in [1, 2] (see also [3] and [4]). The new formulation is proposed with three
unknowns, vorticity, velocity, and pressure. This formulation is best adapted to this type
of boundary conditions even though it is expensive in terms of implementation. We cite
[5] for the extension to simply connected three-dimensional domains that concerns the
stationary problem and [6] for the time-dependent problem. We also cite the article [7]
for the processing of multiconnected domains.

We can refer to article [2] for the discretization of this formulation by the finite-element
method. It was extended to the case of spectral methods in [5] for the stationary problem
and in [6, 8] for the nonstationnairy problem. The discrete spectral spaces are polynomial
spaces defined by analogy to the finite-element spaces introduced by Nedelec in [9]. We
carry out a conforming and nonoverlapping partition of the domain by rectangles for di-
mension 2 and by a rectangular parallelepiped in dimension 3. We use the spectral element
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method for the discretization of this problem. We assume that the discrete solution is a
polynomial of degree N on each subdomain. We enforced the continuity of the solution
at the interfaces to have a conforming method. Then, the discrete problem is obtained by
the Galerkin method with numerical integration.

The numerical analysis of the discrete problem is based on the standard properties of
the spectral element method [10]. We begin by demonstrating that the time semidiscrete
problem discretized by the implicit Euler scheme is well-posed. We then show that the full
problem discretized by the spectral element method admits a unique solution.

The outline of the paper is as follows:
• In Sect. 2, we present the continuous problem and the new formulation of the

time-dependent Stokes problem.
• Section 3 deals with the analysis of the time semidiscrete problem.
• The analysis of the spectral element discretization is carried out in Sect. 4.

2 The continuous problem
We consider � a bounded and simply connected domain of Rd , d = 2, d = 3, and ∂� is
its connected Lipschitz continuous boundary. The generic point in � is x = (x, y) or x =
(x, y, z) according to the dimension. We introduce n as the unit outward vector to � on
∂� and [0, T] an interval of R such that T is a positive constant. The nonstationary Stokes
problem is:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v
∂t (x, t) – ν�v(x, t) + ∇p(x, t) = f(x, t) in � × [0, T],

div v(x, t) = 0 in � × [0, T],

v(x, t) . n(x) = 0 on ∂� × [0, T],

γ (curl v)(x, t) = 0 on ∂� × [0, T],

v(x, 0) = v0 in �,

(1)

where f is a data function, ν > 0 is the viscosity, the unknown v is the velocity of the fluid
and p is its pressure. The operator γ represents the tangential boundary defined as:

• For d = 2: when v = (vx, vy), curl v = ∂xvy – ∂yvx, then γ (curl v) is the trace on ∂� of the
scalar function curl v.

• For d = 3: when v = (vx, vy, vz), curl v = (∂yvz – ∂zvy, ∂zvx – ∂xvy, ∂xvy – ∂yvx), then
γ (curl v) = curl v × n on the boundary ∂� where × represents the vectorial
cross-product.

We define the vorticity � = curl v as a new unknown and by using the property

–�v = curl(curl v) – ∇(div v),

we show that the system (1) is equivalent to:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v
∂t (x, t) + νcurl� (x, t) + ∇p(x, t) = f(x, t) in � × [0, T],

div v(x, t) = 0 in � × [0, T],

� (x, t) = curl v(x, t) in � × [0, T],

v(x, t) . n(x) = 0 on ∂� × [0, T],

γ (� )(x, t) = 0 on ∂� × [0, T],

v(x, 0) = v0 in �.

(2)
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Let (·,·) be the L2(�) scalar product. We consider L2
0(�) the space of functions in L2(�)

that have a null integral on � and D(�) the space of indefinitely differentiable functions
with a compact support in �.

In the case when the domain � is multiply connected the conditions

curl v = 0, div v = 0 in �, and v · n = 0 on ∂�,

are not enough to prove the uniqueness of the velocity, see [11]. An explicit example was
given in [12, Chap. 3]. Let ϒi, 1 ≤ i ≤ I be open connected curves or surfaces called “cuts”
that satisfy:

• ϒi, 1 ≤ i ≤ I is included in � and ∂ϒi is included in ∂�;
• ϒi ∩ ϒj = ∅, 1 ≤ i �= j ≤ I ;
• �� = �/(

⋃I
1 ϒi) is a simply connected domain.

The further conditions that we need for the uniqueness of the velocity are, for 1 ≤ i ≤ I

v · n = 0 on ϒi.

To prove the well-posedness of problem (2), we need to define the following spaces:

H(div,�) =
{

u ∈ (
L2(�)

)d; div u ∈ L2(�)
}

,

defined with the norm:

‖u‖H(div,�) =
(‖u‖2

L2(�)d + ‖div u‖2
L2(�)

) 1
2 .

The normal trace operator u −→ u.n is defined from H(div,�) into H– 1
2 (∂�), such that

for any function κ ∈ H1(�):

〈u.n,κ〉 =
∫

�

div u(x)κ(x) dx +
∫

�

u(x).∇κ(x) dx,

where 〈·, ·〉 is the duality product between H– 1
2 (∂�) and H 1

2 (∂�), see [11, Chap I, Sect. 2].
Then, the kernel of the normal trace operator in H(div,�) is the space:

H0(div,�) =
{

u ∈ H(div,�); u.n = 0 on ∂�
}

.

Let

H(curl,�) =
{

u ∈ L2(�)d; curl u ∈ L2(�)
d(d–1)

2
}

,

defined with the norm:

‖u‖H(curl,�) =
(‖u‖2

L2(�)d + ‖curl u‖2

L2(�)
d(d–1)

2

) 1
2 .

For d = 3, the tangential trace operator u × n belongs to H– 1
2 (∂�)3 such that ∀μ ∈

H(curl,�),

〈u × n,μ〉 =
∫

�

u(x).curlμ(x) dx –
∫

�

curl u(x).μ(x) dx.
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Then, the kernel of the tangential operator in H(curl,�) is:

H0(curl,�) =
{

u ∈ H(curl,�); u × n = 0 on ∂�
}

.

We remark that the spaces H(curl,�) and H0(curl,�) coincide, respectively, with the
spaces H1(�) and H1

0 (�) if d = 2.
We introduce the space:

K(�) =
{

v ∈ H0(div,�), v · n = 0 on 
i, 1 ≤ i ≤ I
}

as the space of the velocity. Then, we consider the following variational formulation:
If f belongs to the space L2(0, T ; L2(�)d), find (� , v, p) ∈ L2(0, T ; H0(curl,�)) × L2(0, T ;
K(�)) × L2(0, T ; L2

0(�)) such that

⎧
⎪⎪⎨

⎪⎪⎩

∀w ∈K(�), ( ∂v
∂t , w) + a(� , v; w) + b(w, p) = (f , w),

∀q ∈ L2
0(�), b(v, q) = 0,

∀ϑ ∈ H0(curl,�), c(� , v;ϑ) = 0,

(3)

where the bilinear forms a(·, ·; ·), b(, ·, ) and c(·, ·; ·) are defined as follows:

a(� , v; w) = ν

∫

�

curl (� )(x, t).w(x) dx, b(v, q) = –
∫

�

div v(x, t)q(x) dx and

c(� , v;ϑ) =
∫

�

� (x, t).ϑ(x) dx –
∫

�

v(x, t).curlϑ(x) dx.

See [11, 13, 14], for the proof of the equivalence of system (3) with system (2). To show the
well-posedness of problem (3), we need to define the following kernels: the kernel of the
bilinear form b(·, ·)

V =
{
ϕ ∈ K(�);∀q ∈ L2

0(�), b(ϕ, q) = 0
}

=
{
ϕ ∈ K(�); divϕ = 0

}
,

and the kernel of the bilinear form c(., .; .)

U =
{

(ϑ ,ϕ) ∈ H0(curl,�) ×V;∀ψ ∈ H0(curl,�), c(ϑ ,ϕ;ψ) = 0
}

=
{

(ϑ ,ϕ) ∈ H0(curl,�) ×V;ϑ = curlϕ
}

.

Then, (� , v) is the solution of the following reduced problem: Find (� , v) ∈ L2(0, T ;U)
such that

∀w ∈V,
(

∂v
∂t

, w
)

+ a(� , v; w) = (f , w). (4)

The arguments to prove the well-posedness of problem (4) are exactly the same as in [5,
Lem 2.3], and in [15, Chap III, Thm 1.1].
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Proposition 1 For f ∈ L2(0, T ; L2(�)d) and v0 ∈ K(�), problem (4) has a unique solution
(� , v) ∈ L2(0, T ;U), which satisfies:

‖�‖2

L∞(0,T ;L2(�)
d(d–1)

2 )
+ ‖v‖2

L∞(0,T ;L2(�)d)

≤ c
(‖v0‖2

L2(�)d + ‖f‖2
L2(0,T ;L2(�)d

)
,

where c > 0 and depend only on � and T .

We recall the following inf-sup condition on bilinear form b(·, ·) see [11, Chap I, Lem 4.1]
for its proof. There exists a constant δ > 0 such that:

∀q ∈ L2
0(�), sup

ϕ∈K(�)

b(ϕ, q)
‖ϕ‖H(div,�)

≥ δ‖q‖L2(�). (5)

Based on the inf-sup (5) and the arguments in [16, 17] we conclude the following theorem
proved in [18, 19].

Proposition 2 If data f belongs to L2(0, T ; L2(�)d) and v0 belongs to K(�), problem (3)
has a unique solution (� , v, p) in L2(0, T ; H0(curl,�)) × L2(0, T ;K(�)) × L2(0, T ; L2

0(�)),
such that:

‖�‖2

L∞(0,T ;L2(�)
d(d–1)

2 )
+ ‖v‖2

L∞(0,T ;L2(�)d) + ‖p‖2
L2(0,T ;L2

0(�))

≤ c
(‖v0‖2

L2(�)d + ‖f‖2
L2(0,T ;L2(�)d)

)
.

3 The time semidiscrete problem
In this section, we use the implicit Euler method for the dicretization of the derivative
in time of the problem (3). We partition the interval [0, T] in subintervals [tj–1, tj], for
1 ≤ j ≤ J , J > 0 integer such that 0 = t0 < t1 < · · · < tJ = T . Let τj = tj – tj–1, τ = (τ1, τ2, . . . , τj)
and |τ | = max1≤j≤J τj.

If the data functions (f , v0) ∈ L2(0, t; L2(�)d)×K(�), the discrete time problem using the
Euler implicit scheme is:

Find (� j)1≤j≤J ∈ (H0(curl,�))J+1, (vj)1≤j≤J ∈ (K(�))J+1 and (pj)1≤j≤J ∈ (L2
0(�))J such that:

v0 = v0 in � (6)

and for all 1 ≤ j ≤ J , f j = f(., tj),

⎧
⎪⎪⎨

⎪⎪⎩

∀w ∈K(�), (vj, w) + τja(� j, vj; w) + τjb(w, pj) = (vj–1, w) + τj(f j, w),

∀q ∈ L2
0(�), b(vj, q) = 0,

∀ϑ ∈ H0(curl,�), c(� j, vj;ϑ) = 0.

(7)

Then, we conclude that the couple (� j, vj) ∈U is a solution of the following problem:

∀w ∈V,
(
vj, w

)
+ τja

(
� j, vj; w

)
=

(
vj–1, w

)
+ τj

(
f j, w

)
. (8)
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We define the bilinear form A(·, ·; ·) and the the linear continuous functional L(.) by

A
(
� j, vj; w

)
=

(
vj, w

)
+ τja

(
� j, vj; w

)
and L(w) =

(
vj–1, w

)
+ τj

(
f j, w

)
.

Based on the positivity and the inf-sup condition of the bilinear form A(·, ·; ·) stated in the
following lemma we prove that problem (8) has a unique solution, see [6] and [11, Chap I,
Lem 4.1] for the proof.

Lemma 1 For 1 ≤ j ≤ J , A(·, ·; ·) satisfies:

∀w ∈V\{0}, sup
(� j ,vj)∈U

A
(
� j, vj; w

)
> 0

and

∀(
� j, vj) ∈U, sup

w∈V
A(� j, vj; w)
‖w‖L2(�)d

≥ β
(∥
∥� j∥∥

L2(�)
d(d–1)

2
+

∥
∥vj∥∥

L2(�)d
)
.

By combining Lemma 1 and the inf-sup condition on the bilinear form b(·, ·) stated in
(5), we conclude using arguments in [11], the well-posedness of problems (6) and (7).

4 The spectral element discrete problem
In the following, we suppose that the domain � has a partition without overlapping into
a finite number of rectangles �k for d = 2 or a rectangular parallelepiped for d = 3

� =
k=K⋃

k=1

�k , such that �k ∩ �l = ∅ for 1 ≤ k �= l ≤ K .

We remark that the set of subdomain �k verifies that the intersection of two subdomains
�̄k and �̄l, 1 ≤ k �= l ≤ K is equal to a vertex, or a hole edge for d = 2 or a hole face for
d = 3. We consider that these edges for d = 2 or a face for d = 3 are the cuts ϒi defined in
Sect. 2.

The discretization is done by the spectral element method based on the idea of Nédélec’s
cubic three-dimensional meshes [9, Sect. 2]. We consider Ppq(�) (resp., Ppqr(�)) the poly-
nomials space of degree p in the direction x and q in the direction y (resp., and r in the
direction z). These spaces are just denoted Pn(�) if p = q = r = n.

Then, in concordance with these definitions and for an integer N ≥ 2, we introduce the
local discrete spaces:

D
k
N =

⎧
⎨

⎩

PN ,N–1(�k) × PN–1,N (�k) if d = 2,

PN ,N–1,N–1(�k) × PN–1,N ,N–1(�k) × PN–1,N–1,N (�k) if d = 3,

C
k
N =

⎧
⎨

⎩

PN (�k) if d = 2,

PN–1,N ,N (�k) × PN ,N–1,N (�k) × PN ,N ,N–1(�k) if d = 3,

M
k
N = PN–1(�k).
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Then, the space of the discrete velocity in H0(div,�) is

DN =
{

vN ∈K(�); vN |�k ∈D
k
N
}

.

The space that approximates the vorticity in H0(curl,�) is defined as

CN =
{
ϕN ∈ H0(curl,�);ϕN |�k ∈C

k
N
}

.

Finally, the space in which we approximate the pressure is defined by

MN =
{

pN ∈ L2
0(�); pN |�k ∈M

k
N
}

.

Remark 1 The functions in DN have a continuous normal trace through the interface �̄k ∩
�̄l . The functions in CN have a continuous trace on the interface �̄k ∩ �̄l in dimension
d = 2 and a continuous tangent trace in dimension d = 3. Thanks to the previous choice,
our proposed discretization is completely conforming.

For ξ0 = –1 and ξN = 1, we consider the N – 1 Gauss–Lobatto nodes ξi, 1 ≤ i ≤ N – 1 on
the interval ]–1, 1[ and the N + 1 weights ρi, 0 ≤ i ≤ N . The nodes ξi, 1 ≤ i ≤ N – 1 are the
roots of L′

N , where LN is the Legendre polynomial. Hence, the Gauss–Lobatto quadrature
formula is:

∀ϕN ∈ P2N–1(–1, 1),
∫ 1

–1
ϕN (ζ ) dζ =

N∑

i=0

ϕN (ξi)ρi. (9)

We also recall the property, see [10]:

∀ϕN ∈ PN (–1, 1), ‖ϕN‖2
L2(–1,1) ≤

N∑

i=0

ϕ2
N (ξi)ρi ≤ 3‖ϕN‖2

L2(–1,1). (10)

Let Fk be the affine bijection from ]–1, 1[d into �k . Thus, based on formula (10), we in-
troduce the local discrete scalar product defined by: for the continuous functions ϕ and
ψ on �̄k :

(ϕ,ψ)k
N

=

⎧
⎨

⎩

meas(�k )
4

∑N
i=0

∑N
j=0(ϕ ◦ Fk)(ξi, ξj)(ψ ◦ Fk)(ξi, ξj)ρiρj if d = 2,

meas(�k )
8

∑N
i=0

∑N
j=0

∑N
k=0(ϕ ◦ Fk)(ξi, ξj, ξk)(ψ ◦ Fk)(ξi, ξj, ξk)ρiρjρk if d = 3.

The global scalar product is then defined on continuous functions ϕ and ψ on �̄ as:

(ϕ,ψ)N =
K∑

k=1

(ϕ,ψ)k
N .

Then, if the data function f is continuous on � × [0, T], we deduce the discrete problem
from (6), and (7). This problem is constructed by using a combination of Galerkin’s method
and numerical integration.
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For v0
N = IN (v0), and if vj–1

N is known, find (� j
N , vj

N , pj
N ) in CN ×DN ×MN such that for

1 ≤ j ≤ J ,

∀wN ∈ DN ,
(
vj

N , wN
)

N + τjν
(
curl� j

N , wN
)

N – τj
(
div wN , pj

N
)

N

=
(
vj–1

N , wN
)

N + τj
(
f j, wN

)

N ,

∀qN ∈MN ,
(
div vj

N , qN
)

N = 0,

∀ϑN ∈CN ,
(
�

j
N ,ϑN

)

N –
(
vj

N , curlϑN
)

N = 0,

(11)

where IN is the Lagrange interpolating operator with values in PN (�). We define the dis-
crete bilinear forms AN (·, ·; ·), bN (·, ·), and cN (·, ·; ·) by

AN
(
�

j
N , vj

N ; wN
)

=
(
vj

N , wN
)

N + τjν
(
curl� j

N , wN
)

N ,

bN
(
wN , pj

N
)

= –
(
div wN , pj

N
)

N and

cN
(
�

j
N , vj

N ;ϑN
)

=
(
�

j
N ,ϑN

)

N –
(
vj

N , curlϑN
)

N .

We easily prove using (10) and Cauchy–Schwarz that the bilinear forms AN (·, ·; ·), bN (·, ·),
and cN (·, ·; ·) are, respectively, continuous on the spaces (CN ×DN ) ×DN , DN ×MN , and
(CN × DN ) × CN with norms that do not depend of N . Based on the exactness of the
Gauss–Lobatto quadrature formula (9), we show that the discrete bilinear form bN (·, ·)
and the continuous form b(·, ·) are equal on DN ×MN .

To prove the well-posedness of problem (11), we begin by introducing the following
discrete kernels:

VN =
{

vN ∈DN ;∀qN ∈MN , bN (vN , qN ) = 0
}

= DN ∩V,

UN =
{

(ϑN , vN ) ∈CN ×VN ;∀χN ∈CN , cN (ϑN , vN ;χN ) = 0
}

.

This permits us to define the following reduced discrete problem:
For v0

N = IN (v0) and if vj–1
N is known, find (� j

N , vj
N ) ∈UN , such that for all 1 ≤ j ≤ J ,

∀wN ∈ VN , AN
(
�

j
N , vj

N ; wN
)

= LN (wN ), (12)

such that LN (wN ) = (vj–1
N , wN )N + τN (f j, wN )N , which is linear and continuous on VN .

Before proving the well-posedness of problem (12), we will now explore certain charac-
teristics of the curl operator. According to [11] also referenced in [20, Thm 2.1], it can be
deduced that the range of CN through the curl operator is included in DN . Additionally,
we have a related result that necessitates introducing further notation.

Let 
i denote the connected components of ∂�, with 
0 representing the boundary of
the only unbounded connected component of R3|�̄. With this setup, we are now able to
introduce the space

H1
∗ (�) =

{
η ∈ H1(�);η = 0 on 
0 and η = constant on 
i, 1 ≤ i ≤ I

}
.
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Lemma 2 the kernel of the curl operator in CN is equal to {0} for d = 2, equal to the range
of the space

ZN =
{
ζN ∈ H1

∗ (�); ζN |�k ∈ PN (�k), 1 ≤ k ≤ K
}

,

by the gradient operator for d = 3.

Proof 1 In the case of d = 2, a curl-free function ψN within CN is constant on �. Since it
vanishes on ∂�, it must be zero.

In dimension d = 3, let ψN be a curl-free function in CN . Utilizing [11, Chap. I, Thm
2.9], it follows that, given the simply connected domain �� introduced in Sect. 2, ψN is
equal on �� to the gradient of a function ξ in H1(��). This function ξ is defined up to
an additive constant. The identity ψN = grad ξ on �k implies that each ξ |�k belongs to
P(�k). Furthermore, considering the fact that ψN · n vanishes on ∂�, it can be deduced
that ψN has a zero tangential gradient on ∂�, thus being constant on each 
i.

It is also observed that ψN · n is continuous through each ϒi, leading to the conclusion
that the tangential gradient of the jump of ξ through each ϒi is zero. Consequently, the
jump of ξ is constant. As ξ is constant on each 
i, the jump of ξ through each ϒ̄i ∩ 
i is
zero, implying that the jump of ξ through each ϒi is also zero. Consequently, ξ belongs
to H1(�). Finally, subtracting its value on 
0 from ξ shows that ψN is the gradient of a
function in ZN .

Conversely, it can be easily verified that the gradients of all functions in ZN belong to
CN and are curl-free.

We are now ready to articulate and prove the central result of this section.

Proposition 3 There exists a discrete operator BN defined from the kernel VN into CN

such that

• ∀vN ∈VN , curl BN (vN ) = vN ;

• ∀ψN ∈ ZN ,
(
BN (vN ), gradψN

)

N = 0;

• ∀vN ∈VN ,
∥
∥BN (vN )

∥
∥

H(curl,�) ≤ C‖vN‖L2(�)d ; (13)

where C is a constant independent of N .

Proof 2 In the case of dimension d = 2
Consider any polynomial vN in VN . Suppose � is included in a rectangle �∗ = ]a, a′[×

]b, b′[, and let ṽN be the extension of vN , achieved by setting it to zero outside �∗. Thus, ṽN

remains divergence-free on �∗. Representing its components as ṽNx and ṽNy, we examine
the function defined on �∗ by the following integral:

φN (x, y) =
∫ y

b
ṽNx(x,ς ) dς . (14)

It can be easily verified that each φN |�k belongs to PN (�k). The continuity of φN through
each horizontal edge shared by two subdomains �k (where a horizontal edge is defined
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as an edge contained in a line y = y0) follows directly from its definition. Furthermore, as
ṽNx = vN · n is continuous through all vertical edges shared by two subdomains �k , the
same property holds for φN . Therefore, φN belongs to H(curl,�).

On the other hand, we observe that given vN is divergence-free:

(∂xφN )|�k (x, y) =
∫ y

b
(∂xṽNx)(x,ς ) dς = –

∫ y

b
(∂yṽNy)(x,ς ) dς = –ṽNy(x, y).

This equation implies that curlφN is equal to vN on �. Finally, considering that:
• ∂xφN vanishes on the horizontal edges of � and on �∗|�̄;
• ∂yφN vanishes on the vertical edges of � and also on �∗|�̄;
• φN is zero at the point (a, b), it follows that φN is zero on 
0 and equal to a constant ci

on each 
i. Then, due to the condition vN · n = 0 on ϒi, all these constants are
determined to be zero. Therefore, φN belongs to CN and satisfies curlφN = vN on �.
According to Lemma 2, the restriction of this φN to � coincides with BN (vN ).
Moreover, estimate (13) follows from a simple Poincaré–Friedrichs inequality applied
to (14).

In the case of dimension d = 3
The construction of function φN is done in four steps.
1- Similar to the case in dimension d = 2, we assume that � is contained in a rectangu-

lar parallelepiped �∗ = ]a, a′[× ]b, b′[× ]c, c′[, and we extend vN to �∗ to ṽN by setting it
to zero outside �. Denoting its components as ṽNx, ṽNy, and ṽNz, we begin by defining a
function φ

�
N = (φ�

Nx,φ�
Ny,φ�

Nz) by:

φ
�
Nx(x, y, z) =

∫ z

c
ṽNy(x, y,ς ) dς , φ

�
Ny(x, y, z) = –

∫ z

c
ṽNx(x, y,ς ) dς ,

φ
�
Nz = 0.

(15)

The first two components of φ
�
N |�k are elements of PN–1,N ,N (�k) and PN ,N–1,N (�k), respec-

tively, indicating that φ
�
N |�k belongs to C

k
N . This function verifies the property where the

first two components of its curl are equal to ṽNx and ṽNy. Additionally, given that vN is a
member of VN and is divergence-free, it follows that φ

�
N satisfies

(
∂xφ

�
Ny – ∂yφ

�
Nx

)
(x, y, z) = –

∫ z

c
(∂xṽNx + ∂yṽNy)(x, y,ς ) dς

=
∫ z

c
∂zṽNz(x, y,ς ) dς = vNz(x, y, z).

Hence, curlφ�
N is equal to vN on each �k . Furthermore, the continuity of φ

�
Nx through

each face of two �k contained in a plane y = y0 and z = z0 follows from its definition and
the property of vN . Similarly, φ

�
Ny is continuous through each face of two �k contained

in a plane x = x0 and z = z0, demonstrating that φ
�
N belongs to H(cu,�). Additionally, the

following inequality can be readily derived from (15):

∥
∥φ

�
N
∥
∥

H(curl,�) ≤ C‖vN‖L2(�)3 . (16)

2- Observing that ∂� is within the union of a finite number of planes, we designate
γj, 1 ≤ j ≤ J as the connected components of the intersections of ∂� with these planes.
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For each γj, depending on whether it is contained in a plane x = x0, y = y0, or z = z0, we
establish

hj
Ny(y, z) = –

∫ z

c
ṽNx(x0, y,ς ) dς , hj

Nz(y, z) = 0, or

hj
Nx(x, z) = –

∫ z

c
ṽNy(x, y0,ς ) dς , hj

Nz(x, z) = 0, or

hj
Nx(x, y) = –

∫ z0

c
ṽNy(x, y,ς ) dς , hj

Ny(x, y) = –
∫ z0

c
ṽNx(x, y,ς ) dς .

We note that the vector hj
N with these components is tangential to γj. Its restriction to

each intersection γj ∩ ∂�k , having a positive measure in γj, belongs to PN–1,N (γj ∩ ∂�k) ×
PN ,N–1(γj ∩ ∂�k), using the appropriate notation for these new spaces. Moreover, the two-
dimensional curl of these functions hj

N is zero on each γj (specifically, ∂zhj
Ny vanishes on

the faces contained in a plane x = x0, ∂zhj
Nx vanishes on the faces contained in a plane

y = y0, and (∂xhj
Ny –∂yhj

Nx)(x, y) = vNz(x, y, z0) also vanishes on the faces contained in a plane
z = z0). Additionally, the tangential components of hj

N and hl
N on each edge shared by γj

and γl are equal.
As ∂�|⋃I

i=1 ∂ϒi is simply connected, it follows from [21, Prop. 3.1], that there exists
a function χN in H1(∂�|⋃I

i=1 ∂ϒi), vanishing at a corner of 
0, such that the tangential
gradient of the restriction of χN to each γj is equal to hj

N . Furthermore, the following
estimate can be derived from [21, Prop. 4.7], (a more comprehensive proof would involve
complex notation, refer to [21] for more details):

‖χN‖
H

1
2 (∂�|⋃I

i=1 ∂ϒi)
≤ ∥

∥φ
�
N × n

∥
∥

H– 1
2 (∂�)

. (17)

Note that the restriction of χN to each γj ∩ �̄k , with a positive measure, belongs to PN (γj ∩
�̄k), and the jump of χN through each ∂ϒi is constant.

3- We recall, according to [22, Chap. II, Thm 4.1], the existence of a lifting operator Lk

from PN (�) into PN (�k) if γ is a face of �k contained in ∂�. For any θN in PN (�), the
trace of Lk(θN ) is such that it:

• Equals θN on γ ;
• Is zero on the opposite face to γ ;
• Also, when θN is zero on an edge of γ , it is zero on the face that shares this edge

with γ .
This operator is applied iteratively on the �k values, and on the faces γ of �k that are

contained in ∂�. At each step, we subtract the traces of the new function χN from the
remaining traces on �l . where l > k and �l shares a face or an edge with �k (for details,
refer to [22, Chap. II]). This process leads to the existence of a κN in H1(��) such that
φ

�
N – gradκN belongs to CN (here, grad denotes the gradient on ��). Moreover, as per [22,

Chap. II, Thm 4.1], this function satisfies

‖gradκN‖L2(�)3 ≤ C‖χN‖
H

1
2 (∂�|⋃I

i=1 ∂ϒi)
.

Hence, from (16) and (17) we conclude that

‖gradκN‖L2(�)3 ≤ C‖vN‖L2(�)3 . (18)
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Ultimately, by combining the Lax–Milgram Lemma with (10) and a generalized Poincaré–
Friedrichs inequality, it can be deduced that there exists a unique κ̄N in ZN satisfying,

∀ηN ∈ ZN , (grad κ̄N , gradηN )N =
(
φ

�
N – gradκN , gradηN

)

N .

Additionally, this function fulfills

‖grad κ̄N‖L2(�)3 ≤ C
(∥
∥φ

�
N
∥
∥

L2(�)3 + ‖gradκN‖L2(�)3
)
. (19)

The selection of κ̄N ensures that the function φ
�
N – gradκN – grad κ̄N is equal to BN (vN ).

Therefore, the desired estimate follows from (16), (18), and (19).

Now, from proposition 3 we are able to prove the well-posedness of the reduced discrete
problem (12). We begin by establishing the analogs of Lemma 1 for the discrete bilinear
form AN (·, ·; ·) (see [20, Thm 2.1] and [23] for similar results in the finite-element method).

Lemma 3 For 1 ≤ j ≤ J , the form AN (·, ·; ·) satisfies

∀wN ∈VN \ {0}, sup
(� j

N ,vj
N )∈UN

AN
(
�

j
N , vj

N ; wN
)

> 0.

Proof 3 Let wN ∈VN such that for all (� j
N , vj

N ) ∈ UN ,

AN
(
�

j
N , vj

N ; wN
)

= 0. (20)

We consider BN (wN ) = ψN , and we examine the problem:
Find κN ∈VN such that

∀μN ∈VN , (κN ,μN )N =
(
ψN , BN (μN )

)

N . (21)

As the two norms ‖ · ‖L2(�)3 and ‖ · ‖H(div,�) are equivalent on VN thanks to (9), we show
that the form (·, ·)N is elliptic and (ψN , BN (μN ))N is continuous considering the variable
μN . Thus, by using the Lax–Milgram Lemma, we conclude that problem (21) has a unique
solution κN ∈VN , which satisfies, for any ϕN ∈CN ,

(κN , curlϕN )N =
(
ψN , BN (curlϕN )

)

N .

If BN (curlϕN ) = ϕN + gradαN , for αN ∈ H1
0 (�) ∩ PN (�) we conclude that:

(κN , curlϕN )N = (ψN ,ϕN )N .

By considering �N = ψN and wN = κN , (20) is equivalent to

‖ψN‖2
L2(�)3 + τjν‖curlψN‖2

L2(�)3 = 0.

This allows us to conclude that wN = 0.
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The following lemma addresses the inf-sup condition satisfied by the bilinear form
AN (·, ·; ·).

Lemma 4 For 1 ≤ j ≤ J , there exists a positive constant δ independent of N and j such that:
∀(� j

N , vj
N ) ∈UN ,

sup
wN ∈VN

AN (� j
N , vj

N ; wN )
‖wN‖L2(�)d

≥ δ
(∥
∥�

j
N
∥
∥

H(curl,�) +
∥
∥vj

N
∥
∥

L2(�)d
)
. (22)

Proof 4 For (� j
N , vj

N ) ∈UN and if wN = vj
N + curl� j

N we have

AN
(
�

j
N , vj

N ; wN
) ≥ ∥

∥vj
N
∥
∥2

L2(�)d + τjν
∥
∥�

j
N
∥
∥2

H(curl,�). (23)

By combining (23) and the fact that

‖wN‖L2(�)d ≤ √
2
(∥
∥�

j
N
∥
∥2

H(curl,�) +
∥
∥vj

N
∥
∥2

L2(�)d
) 1

2 ,

we conclude the desired inf-sup condition (22).

The subsequent result directly follows from Lemmas 3 and 4, as documented in [11,
Chap. I, Lemma 4.1].

Proposition 4 If data f belongs to L2(0, T ; L2(�)d) and v0 belongs to K(�), problem (12)
admits a unique solution (� j

N , vj
N ) in UN , such that, for 1 ≤ j ≤ J ,

∥
∥vj

N
∥
∥2

L2(�)d ≤
(

∥
∥v0

N
∥
∥2

L2(�)d +
3dc
2ν

j∑

j=1

τj
∥
∥IN

(
f j)∥∥2

L2(�)d

)

, (24)

where c > 0 independent of N and j.

Proof 5 Let wN = vj
N in (12), then:

(
vj

N – vj–1
N , vj

N
)

N + ντj
(
curl� j

N , vj
N
)

N = τj
(
IN

(
f j), vj

N
)

N .

Hence, by (10) and the Cauchy–Schwarz inequality, we have:

(
vj

N – vj–1
N , vj

N
)

+ ντj
(
curl� j

N , vj
N
) ≤ 3dτj

∥
∥IN

(
f j)∥∥

L2(�)d

∥
∥vj

N
∥
∥

L2(�)d .

Hereafter, we integrate by parts and we use the identity

a(a – b) =
1
2

a2 –
1
2

b2 +
1
2

(a – b)2,

we obtain

1
2
∥
∥vj

N
∥
∥2

L2(�)d –
1
2
∥
∥vj–1

N
∥
∥2

L2(�)d +
1
2
∥
∥vj

N – vj–1
N

∥
∥2

L2(�)d

+ ντj
∥
∥curl vj

N
∥
∥2

L2(�)
d(d–1)

2
≤ 3dτj

∥
∥IN

(
f j)∥∥

L2(�)d

∥
∥vj

N
∥
∥

L2(�)d .
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Using Young’s inequality and the following result proved in [12, Cor 3.16]:

∀ϕ ∈V; ‖ϕ‖L2(�)d ≤ c‖curlϕ‖
L2(�)

d(d–1)
2

, (25)

we conclude that

1
2
∥
∥vj

N
∥
∥2

L2(�)d –
1
2
∥
∥vj–1

N
∥
∥2

L2(�)d +
ντj

c
∥
∥vj

N
∥
∥2

L2(�)d ≤ 3dτj

(ε‖IN (f j)‖2
L2(�)d

2
+

‖vj
N‖2

L2(�)d

2ε

)

,

where c is the positive constant obtained in inequality (25).
Finally, if ε = 3dc

2ν
and we sum up over j, we obtain the desired result (24).

To proceed the well-posedness of problem (11), we establish an inf-sup condition of
the form bN (·, ·). This condition is based on the Boland and Nicolaides argument [24]
and necessitates a standard finite-element result, which involves the Nédélec operator [9].
However, the situation is simpler in this context as the constant can depend on the size of
the �k (provided that the ϒj are the union of faces of the subdomains). The first proof of
this result can be found in [25].

Lemma 5 There exists a positive constant β� independent of N such that the form bN (·, ·)
satisfies the following inf-sup condition:

∀qN ∈ MN , sup
vN ∈DN

bN (vN , qN )
‖vN‖H(div,�)

≥ β�‖qN‖L2(�). (26)

Proof 6 It is worth noting that the forms b(·, ·) and bN (·, ·) coincide on DN × MN , and
thus, we proceed with the form b(·, ·). Any qN in MN can be expressed as the expansion

qN = q̃N + q̄N such that q̄N |�k =
1

mes(�k)

∫

�k

qN (x) dx.

Subsequently, each q̃N |�k belongs to M
k
N ∩ L2

0(�k). Employing a suitable mapping that
transforms the reference domain ]–1, 1[d onto �k , it can be deduced from [5, Lemma 3.9],
that there exists a function vk

N in D
k
N ∩ H0(div,�k) such that

div
(
vk

N
)

= –q̃N |�k and
∥
∥vk

N
∥
∥

H(div,�k ) ≤ β–1
k ‖q̃N‖L2(�k ),

where βk is a constant dependent just on �k . Therefore, we define the function ṽN such
that each ṽN |ωk is equal to vk

N for 1 ≤ k ≤ K . We observe that, as the ϒj are the union of
faces of some �k , ṽN · n vanishes on ϒj, indicating that ṽN belongs to DN . On the other
hand, as q̄N belongs to L2

0(�) and is constant on each �k , it therefore belongs to M1. Then,
from [25], we deduce the existence of a function v̄ in D1 such that

div(v̄) = –q̄N |�k and ‖v̄‖H(div,�) ≤ β–1
� ‖q̄N‖L2(�).

Thanks to the Boland and Nicolaides argument, we have vN = ṽN +μv̄, where μ is a positive
integer. It can be verified, through an integration by parts on each �k , that b(ṽN , qN ) is
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equal to zero. Therefore, with the chosen ṽN and v̄ we obtain that

b(vN , qN ) ≥ ‖q̃N‖L2(�) + μ‖q̄N‖L2(�) – μ‖v̄‖H(div,�)‖q̃N‖L2(�).

Thus, we have

b(vN , qN ) ≥ ‖q̃N‖2
L2(�) + μ‖q̄N‖2

L2(�) – μβ–1
� ‖q̄N‖L2(�)‖q̃N‖L2(�)

≥ 1
2
‖q̃N‖2

L2(�) + μ

(

1 –
μ

2β2
�

)

‖q̄N‖2
L2(�).

If μ = β2
� then we obtain

b(vN , qN ) ≥ 1
2

min
(
1,β2

�

)(‖q̃N‖2
L2(�) + ‖q̄N‖2

L2(�)
)
. (27)

We also know that

‖vN‖H(div,�)‖ ≤
(

max
1≤k≤K

β–1
k

)
‖q̃N‖L2(�) + β�‖q̄N‖L2(�). (28)

Then, if we combine the two inequalities (27), (28) with the following orthogonality prop-
erty

‖qN‖2
L2(�) = ‖q̃N‖2

L2(�) + ‖q̄N‖2
L2(�),

we conclude the desired inf-sub condition (26).

The proof of the ultimate theorem follows standard procedures, as detailed in [11,
Chap. I, Lemma 4.1].

Theorem 4.1 If data f belongs to L2(0, T ; L2(�)d) and v0 belongs to K(�), problem (11)
has a unique solution (� j

N , vj
N , pj

N ) in CN ×DN ×MN .

5 Conclusion
This work concerns the numerical analysis of the implicit Euler scheme in time and the
spectral element discretization in space of the time-dependent Stokes problem with non-
standard boundary conditions. The proof of the well-posedness of the spectral full discrete
problem is more technical, especially for the treatment of multiply connected domains.
The numerical implementation of this results will be the subject of a forthcoming study.
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