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Abstract
In this current research, we focus on the domain of tempered fractional integrals,
establishing a novel identity that serves as the cornerstone of our study. This identity
paves the way for the Milne-type inequalities, which are explored through the
framework of differentiable convex mappings inclusive of tempered fractional
integrals. The significance of these mappings in the realm of fractional calculus is
underscored by their ability to extend classical concepts into more complex,
fractional dimensions. In addition, by using the Hölder inequality and power-mean
inequality, we acquire some new Milne-type inequalities. Moreover, the practicality
and theoretical relevance of our findings are further demonstrated through the
application of specific cases derived from the theorems.
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1 Introduction and preliminaries
Nowadays many scientists are focusing on fractional calculus and studying the theory of
inequalities. The studies of fractional calculus have become the most popular field of re-
search in physics, engineering, and mathematics. Most of the well-known mathematicians
like Euler, Fourier, Laplace, Lacroix, Leibnitz, Abel, etc., were attracted to fractional calcu-
lus. Recently, tremendous research has been done on fractional calculus. The researchers
who have contributed directly and indirectly to the development of fractional calculus
are N. H. Abel (1823–1826), J. Liouville (1832–1873), G. F. B. Riemann (1847), H. Holm-
gren (1865–1867), A. K. Grunwald (1867–1872), A. V. Letnikov (1868–1872), H. Lau-
rent (1884), P. A. Nekrassov (1888), A. Kurg (1889), J. Hadamard (1892), O. Heaviside
(1892–1912), G. H. Hardy and J. E. Littlewood (1917–1928), H. Weyl (1917), Buss (1929),
P. Levy (1923), A. Marchaud (1927), H.T. Davis (1924–1927), Goldman (1949), K. Old-
ham and J. Spanier (1974), L. Debnath (1992), K. S. Miller and B. Ross (1993), R. Gorenflo
and F. Mainardi (2000), I. Podlubny (2003), and many more. While integer orders provide
models that are suitable for nature in classical analysis, fractional computation in which
arbitrary orders are examined enables us to obtain more realistic approaches. Moreover,
the application of arithmetic carried out in classical analysis is very important in fractional
analysis in terms of obtaining more realistic results in the solution of many problems. More
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general results are obtained with different approaches and operators in fractional calcu-
lus. Fractional integral operators have provided solutions to integrals in many studies.
In the literature, many integral operators such as Riemann–Liouville, Hadamard, Katu-
gompola, and tempered differential integral operators are considered. The most widely
used of them is the Riemann–Liouville integral. There is a lot of research on these in-
tegrals. Tempered fractional integral operators generalizing Riemann–Liouville integrals
are given in papers [12, 16]. In the literature, the theory of inequalities is an important
area of mathematics. There are a lot of studies on the well-known Hermite–Hadamard
inequality. Many researchers have studied the Hermite–Hadamard-type and related in-
equalities such as trapezoid and midpoint type. Also, a lot of researchers focused on
Simpson-, Newton-, and Milne-type inequalities and contributed to science. Many re-
searchers have contributed to the refinement and generalization of these integral inequal-
ities. Sarikaya et al. [19] established Hermite–Hadamard-type inequalities via Riemann–
Liouville fractional integrals. Sarikaya and Yildirim acquired some new inequalities of
Hermite–Hadamard and midpoint type with the help of the Riemann–Liouville frac-
tional integrals via differentiable convex functions in [18]. Khan et al. [1] established some
new versions of Hermite–Hadamard-type inequalities for Riemann–Liouville and con-
formable fractional integrals. The authors of [15] proved several Simpson-type inequal-
ities involving Riemann–Liouville fractional integrals and in the case of general convex
functions. See references [5, 21], and the references therein, for further information con-
cerning Simpson-type inequalities and several properties of Riemann–Liouville fractional
integrals as well as those of various fractional integral operators. In the paper [9], Djenaoui
and Meftah proved several new estimates of Milne’s quadrature rule for functions whose
first derivative is s-convex. Budak et al. [6] acquired fractional versions of Milne-type in-
equalities by utilizing differentiable convex functions. Ali et al. [2] gave error bounds via
one of the open Newton–Cotes formulas, namely Milne’s formula for differentiable convex
functions in fractional and classical calculus. Alomari and Liu [3] established error esti-
mates for Milne’s rule for mappings of bounded variation and for absolutely continuous
mappings.

Before giving Milne-type inequalities, let us give the following preliminary information.
Simpson-type inequalities are inequalities that are created from Simpson’s rules:

i. Simpson’s quadrature formula (Simpson’s 1/3 rule) is formulated as follows:

∫ μ

η

F(κ) dκ ≈ μ – η

6

[
F(η) + 4F

(
η + μ

2

)
+ F(μ)

]
. (1.1)

ii. Simpson’s second formula or Newton–Cotes quadrature formula (Simpson’s 3/8 rule
(cf. [8])) is formulated as follows:

∫ μ

η

F(κ) dκ ≈ μ – η

8

[
F(η) + 3F

(
2η + μ

3

)
+ 3F

(
η + 2μ

3

)
+ F(μ)

]
. (1.2)

Formulae (1.1) and (1.2) are satisfied for any function F with a continuous fourth deriva-
tive on [η,μ].

The most popular Newton–Cotes quadrature involving three points is Simpson-type
inequality and formulated as follows:
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Theorem 1 Let F : [η,μ] → R be a four times continuously differentiable function on
(η,μ), and let ‖F(4)‖∞ = sup

κ∈(η,μ)
|F(4)(κ)| < ∞. Then, one has the following inequality:

∣∣∣∣1
6

[
F(η) + 4F

(
η + μ

2

)
+ F(μ)

]
–

1
μ – η

∫ μ

η

F(κ) dκ

∣∣∣∣ ≤ 1
2880

∥∥F(4)∥∥∞(μ – η)4.

One of the classical closed-type quadrature rules is the Simpson 3/8 rule based on the
Simpson 3/8 inequality as follows:

Theorem 2 ([8]) If F : [η,μ] → R is a four times continuously differentiable function on
(η,μ), and ‖F(4)‖∞ = sup

κ∈(η,μ)
|F(4)(κ)| < ∞, then one has the inequality

∣∣∣∣1
8

[
F(η) + 3F

(
2η + μ

3

)
+ 3F

(
η + 2μ

3

)
+ F(μ)

]
–

1
μ – η

∫ μ

η

F(κ) dκ

∣∣∣∣
≤ 1

6480
∥∥F(4)∥∥∞(μ – η)4.

In terms of Newton–Cotes formulas, Milne’s formula, which is of open type, is parallel
to Simpson’s formula, which is of closed type, since they hold under the same conditions.

Theorem 3 ([4]) Suppose that F : [η,μ] → R is a four times continuously differentiable
mapping on (η,μ), and let ‖F(4)‖∞ = sup

κ∈(η,μ)
|F(4)(κ)| < ∞. Then, one has the inequality

∣∣∣∣1
3

[
2F(η) – F

(
η + μ

2

)
+ 2F(μ)

]
–

1
μ – η

∫ μ

η

F(κ) dκ

∣∣∣∣ ≤ 7(μ – η)4

23040
∥∥F(4)∥∥∞. (1.3)

In this research, we will establish a fractional version of the left-hand side of (1.3) and
will consider several new bounds by using various mapping classes. Recall that the gamma
function, incomplete gamma function, λ-incomplete gamma function are respectively de-
fined by

�(α) :=
∫ ∞

0
δα–1e–δ dδ,

� (α,κ) :=
∫ κ

0
δα–1e–δ dδ,

and

�λ(α,κ) :=
∫ κ

0
δα–1e–λδ dδ.

Here, 0 < α < ∞ and λ ≥ 0.
We list some properties of the λ-incomplete gamma function as follows:

Remark 1 ([14]) For the real numbers α > 0, κ ,λ ≥ 0, and η < μ, we readily have

i. �λ(μ–η)(α, 1) =
∫ 1

0 δα–1e–λ(μ–η)δ dδ = 1
(μ–η)α �λ (α, 1),

ii.
∫ 1

0 �λ(μ–η)(α,κ) dκ = �λ(α,μ–η)
(μ–η)α – �λ(α+1,μ–η)

(μ–η)α+1 .
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Recall also that the Riemann–Liouville integrals of order α > 0 are given by

Jα
η+F(κ) =

1
�(α)

∫ κ

η

(κ – δ)α–1
F(δ) dδ, κ > η, (1.4)

and

Jα
μ–F(κ) =

1
�(α)

∫ μ

κ

(δ – κ)α–1
F(δ) dδ, κ < μ, (1.5)

for F ∈ L1[η,μ]. See [10, 11] for details and unexplained subjects. Note that the Riemann–
Liouville integrals become classical integrals when α = 1.

We shall now present the fundamental definitions and new notations of tempered frac-
tional operators.

Definition 1 ([12, 16]) The fractional tempered integral operators are given as follows:

J (α,λ)
η+ F(κ) =

1
�(α)

∫ κ

η

(κ – δ)α–1e–λ(κ–δ)
F(δ) dδ, κ ∈ [η,μ], (1.6)

and

J (α,λ)
μ– F(κ) =

1
�(α)

∫ μ

κ

(δ – κ)α–1e–λ(δ–κ)
F(δ) dδ, κ ∈ [η,μ]. (1.7)

Here, F ∈ L1[η,μ], α > 0, and λ ≥ 0.

If we choose λ = 0, then the fractional integrals in (1.6) and (1.7) coincide with the
Riemann–Liouville fractional integrals in (1.4) and (1.5), respectively.

It can be said that the inequalities obtained with the help of tempered fractional integral
operators generalize the inequalities established through the Riemann–Liouville integral
operators. The descriptions of fractional integration with weak singular and exponential
kernels were firstly reported in Buschman’s earlier work [7]. For more research on the
different cases of tempered fractional integrals, see the books [13, 17, 20]. In the paper
[14], Mohammed et al. acquired several Hermite–Hadamard-type inequalities with the
help of the tempered fractional integrals by employing convex functions, which cover the
previously published results such as Riemann and Riemann–Liouville fractional integrals.

Inspired by the ongoing studies, we acquire the tempered fractional version of Milne’s
formula-type inequalities via differentiable convex mappings. The main advantage of these
inequalities is that they can be converted into Riemann–Liouville fractional Milne-type
inequalities for λ = 0. If we choose α = 1 in the inequalities, the result is reduced to classi-
cal Milne-type inequalities. The basic definitions of fractional calculus and other relevant
research in this discipline are given in the above-mentioned references. We will prove an
integral equality in Sect. 2 that is critical in establishing the primary results of the present
paper. Furthermore, it will prove some Milne-type inequalities for the case of differentiable
convex mappings, including tempered fractional integrals. By using the special cases of the
established results, we will then present several important inequalities. In Sect. 3, we will
suggest several ideas about the inequalities of Milne via further directions of research.
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2 Main results
In this section, we first obtain an identity by using tempered fractional integrals. Then,
using this identity, we obtain new Milne-type inequalities with the help of tempered frac-
tional integrals.

Lemma 1 Let us consider that F : [η,μ] → R is an absolutely continuous function (η,μ)
such that F′ ∈ L1[η,μ]. Then, the following equality holds:

1
3

[
2F

(
η + 3μ

4

)
– F

(
η + μ

2

)
+ 2F

(
3η + μ

4

)]
(2.1)

–
�(α)

2 �λ (α,μ – η)
[
J (α,λ)

μ– F(η) + J (α,λ)
η+ F(μ)

]

=
(μ – η)α+1

2 �λ (α,μ – η)

4∑
i=1

Ii.

Here,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

I1 =
∫ 1

4
0 �λ(μ–η)(α, δ)[F′(δμ + (1 – δ)η) – F′(δη + (1 – δ)μ)] dδ,

I2 =
∫ 1

2
1
4
{�λ(μ–η)(α, δ) – 2

3 �λ(μ–η) (α, 1)}[F′(δμ + (1 – δ)η) – F′(δη + (1 – δ)μ)] dδ,

I3 =
∫ 3

4
1
2
{�λ(μ–η)(α, δ) – 1

3 �λ(μ–η) (α, 1)}[F′(δμ + (1 – δ)η) – F′(δη + (1 – δ)μ)] dδ,

I4 =
∫ 1

3
4
{�λ(μ–η)(α, δ) – �λ(μ–η)(α, 1)}[F′(δμ + (1 – δ)η) – F′(δη + (1 – δ)μ)] dδ.

Proof Using integration by parts, we get

I1 =
∫ 1

4

0
�λ(μ–η)(α, δ)

[
F

′(δμ + (1 – δ)η
)

– F
′(δη + (1 – δ)μ

)]
dδ (2.2)

=
1

μ – η
�λ(μ–η) (α, δ)

[
F
(
δμ + (1 – δ)η

)
+ F

(
δη + (1 – δ)μ

)]| 1
4
0

–
1

μ – η

∫ 1
4

0
δα–1e–λ(μ–η)δ[

F
(
δμ + (1 – δ)η

)
+ F

(
δη + (1 – δ)μ

)]
dδ

=
1

μ – η
�λ(μ–η)

(
α,

1
4

)[
F

(
η + 3μ

4

)
+ F

(
3η + μ

4

)]

–
1

μ – η

∫ 1
4

0
δα–1e–λ(μ–η)δ[

F
(
δμ + (1 – δ)η

)
+ F

(
δη + (1 – δ)μ

)]
dδ.

Then, arguing similarly as above, we readily obtain

I2 =
2

μ – η

{
�λ(μ–η)

(
α,

1
2

)
–

2
3
�λ(μ–η) (α, 1)

}
F

(
η + μ

2

)
(2.3)

–
1

μ – η

{
�λ(μ–η)

(
α,

1
4

)
–

2
3
�λ(μ–η) (α, 1)

}[
F

(
η + 3μ

4

)
+ F

(
3η + μ

4

)]

–
1

μ – η

∫ 1
2

1
4

δα–1e–λ(μ–η)δ[
F
(
δμ + (1 – δ)η

)
+ F

(
δη + (1 – δ)μ

)]
dδ,

I3 =
1

μ – η

{
�λ(μ–η)

(
α,

3
4

)
–

1
3
�λ(μ–η) (α, 1)

}[
F

(
η + 3μ

4

)
+ F

(
3η + μ

4

)]
(2.4)
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–
2

μ – η

{
�λ(μ–η)

(
α,

1
2

)
–

1
3
�λ(μ–η) (α, 1)

}
F

(
η + μ

2

)

–
1

μ – η

∫ 3
4

1
2

δα–1e–λ(μ–η)δ[
F
(
δμ + (1 – δ)η

)
+ F

(
δη + (1 – δ)μ

)]
dδ,

and

I4 = –
1

μ – η

{
�λ(μ–η)

(
α,

3
4

)
– �λ(μ–η)(α, 1)

}[
F

(
η + 3μ

4

)
+ F

(
3η + μ

4

)]
(2.5)

–
1

μ – η

∫ 1

3
4

δα–1e–λ(μ–η)δ[
F
(
δμ + (1 – δ)η

)
+ F

(
δη + (1 – δ)μ

)]
dδ.

If we add equations (2.2) to (2.5), then we have

4∑
i=1

Ii =
2 �λ (α,μ – η)

3(μ – η)α+1

[
2F

(
η + 3μ

4

)
– F

(
η + μ

2

)
+ 2F

(
3η + μ

4

)]
(2.6)

–
1

μ – η

∫ 1

0
δα–1e–λ(μ–η)δ[

F
(
δμ + (1 – δ)η

)
+ F

(
δη + (1 – δ)μ

)]
dδ.

With the help of the change of the variable κ = δμ + (1 – δ)η and κ = δη + (1 – δ)μ for
δ ∈ [0, 1], respectively, equality (2.6) can be rewritten as follows:

4∑
i=1

Ii =
2 �λ (α,μ – η)

3(μ – η)α+1

[
2F

(
η + 3μ

4

)
– F

(
η + μ

2

)
+ 2F

(
3η + μ

4

)]
(2.7)

–
�(α)

(μ – η)α+1

[
J (α,λ)

μ– F(η) + J (α,λ)
η+ F(μ)

]
.

Multiplying both sides of (2.7) by (μ–η)α+1

2�λ(α,μ–η) , the equality (2.1) is obtained. �

Theorem 4 If the assumptions of Lemma 1 hold and the function |F′| is convex on [η,μ],
then we have the following corrected Euler–Maclaurin-type inequality:

∣∣∣∣1
3

[
2F

(
η + 3μ

4

)
– F

(
η + μ

2

)
+ 2F

(
3η + μ

4

)]
(2.8)

–
�(α)

2 �λ (α,μ – η)
[
J (α,λ)

μ– F(η) + J (α,λ)
η+ F(μ)

]∣∣∣∣

≤ (μ – η)α+1

2 �λ (α,μ – η)
(
�1(α,λ) + �2(α,λ) + �3(α,λ) + �4(α,λ)

)[∣∣F′(η)
∣∣ +

∣∣F′(μ)
∣∣].

Here,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�1(α,λ) =
∫ 1

4
0 |�λ(μ–η) (α, δ)|dδ,

�2(α,λ) =
∫ 1

2
1
4

|�λ(μ–η) (α, δ) – 2
3 �λ(μ–η) (α, 1)|dδ,

�3(α,λ) =
∫ 3

4
1
2

|�λ(μ–η) (α, δ) – 1
3 �λ(μ–η) (α, 1)|dδ,

�4(α,λ) =
∫ 1

3
4
|�λ(μ–η) (α, δ) – �λ(μ–η)(α, 1)|dδ.
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Proof Let us take the modulus in Lemma 1. Then, we reality have

∣∣∣∣1
3

[
2F

(
η + 3μ

4

)
– F

(
η + μ

2

)
+ 2F

(
3η + μ

4

)]
(2.9)

–
�(α)

2 �λ (α,μ – η)
[
J (α,λ)

μ– F(η) + J (α,λ)
η+ F(μ)

]∣∣∣∣

≤ (μ – η)α+1

2 �λ (α,μ – η)

[∫ 1
4

0

∣∣�λ(μ–η)(α, δ)
∣∣∣∣F′(δμ + (1 – δ)η

)
– F

′(δη + (1 – δ)μ
)∣∣dδ

+
∫ 1

2

1
4

∣∣∣∣�λ(μ–η)(α, δ) –
2
3
�λ(μ–η) (α, 1)

∣∣∣∣
∣∣F′(δμ + (1 – δ)η

)
– F

′(δη + (1 – δ)μ
)∣∣dδ

+
∫ 3

4

1
2

∣∣∣∣�λ(μ–η)(α, δ) –
1
3
�λ(μ–η) (α, 1)

∣∣∣∣
∣∣F′(δμ + (1 – δ)η

)
– F

′(δη + (1 – δ)μ
)∣∣dδ

+
∫ 1

3
4

∣∣�λ(μ–η)(α, δ) – �λ(μ–η)(α, 1)
∣∣∣∣F′(δμ + (1 – δ)η

)
– F

′(δη + (1 – δ)μ
)∣∣dδ

]
.

It is assumed that |F′| is convex. Thus,

∣∣∣∣1
3

[
2F

(
η + 3μ

4

)
– F

(
η + μ

2

)
+ 2F

(
3η + μ

4

)]

–
�(α)

2 �λ (α,μ – η)
[
J (α,λ)

μ– F(η) + J (α,λ)
η+ F(μ)

]∣∣∣∣

≤ (μ – η)α+1

2 �λ (α,μ – η)

[∫ 1
4

0

∣∣�λ(μ–η)(α, δ)
∣∣[δ∣∣F′(μ)

∣∣ + (1 – δ)
∣∣F′(η)

∣∣

+ δ
∣∣F′(η)

∣∣ + (1 – δ)
∣∣F′(μ)

∣∣]dδ

+
∫ 1

2

1
4

∣∣∣∣�λ(μ–η)(α, δ) –
2
3
�λ(μ–η) (α, 1)

∣∣∣∣
[
δ
∣∣F′(μ)

∣∣ + (1 – δ)
∣∣F′(η)

∣∣

+ δ
∣∣F′(η)

∣∣ + (1 – δ)
∣∣F′(μ)

∣∣]dδ

+
∫ 3

4

1
2

∣∣∣∣�λ(μ–η)(α, δ) –
1
3
�λ(μ–η) (α, 1)

∣∣∣∣
[
δ
∣∣F′(μ)

∣∣ + (1 – δ)
∣∣F′(η)

∣∣

+ δ
∣∣F′(η)

∣∣ + (1 – δ)
∣∣F′(μ)

∣∣]dδ

+
∫ 1

3
4

∣∣�λ(μ–η)(α, δ) – �λ(μ–η)(α, 1)
∣∣[δ∣∣F′(μ)

∣∣ + (1 – δ)
∣∣F′(η)

∣∣

+ δ
∣∣F′(η)

∣∣ + (1 – δ)
∣∣F′(μ)

∣∣]dδ

]

=
(μ – η)α+1

2 �λ (α,μ – η)
(
�1(α) + �2(α) + �3(α) + �4(α)

)[∣∣F′(η)
∣∣ +

∣∣F′(μ)
∣∣].

This finishes the proof of Theorem 4. �



Hezenci et al. Boundary Value Problems         (2024) 2024:12 Page 8 of 15

Remark 2 Let us consider λ = 0 in Theorem 4. Then, the following Milne-type inequality
holds:

∣∣∣∣1
3

[
2F

(
η + 3μ

4

)
– F

(
η + μ

2

)
+ 2F

(
3η + μ

4

)]
–

�(α + 1)
2(μ – η)α

[
Jα
μ–F(η) + Jα

η+F(μ)
]∣∣∣∣

≤ α(μ – η)
2

(
�1(α, 0) + �2(α, 0) + �3(α, 0) + �4(α, 0)

)[∣∣F′(η)
∣∣ +

∣∣F′(μ)
∣∣],

which is given by Ali et al. [2, Theorem 1].

Remark 3 If we assign λ = 0 and α = 1 in Theorem 4, then we get the Milne-type inequality

∣∣∣∣1
3

[
2F

(
η + 3μ

4

)
– F

(
η + μ

2

)
+ 2F

(
3η + μ

4

)]
–

1
μ – η

∫ μ

η

F(δ) dδ

∣∣∣∣

≤ 5(μ – η)
48

[∣∣F′(η)
∣∣ +

∣∣F′(μ)
∣∣],

which is given by Ali et al. [2, Corollary 1]. This inequality helps us find an error bound of
Milne’s rule.

Theorem 5 Suppose that the assumptions of Lemma 1 hold and the function |F′|q, q > 1 is
convex on [η,μ]. Then, the following Milne-type inequality holds:

∣∣∣∣1
3

[
2F

(
η + 3μ

4

)
– F

(
η + μ

2

)
+ 2F

(
3η + μ

4

)]

–
�(α)

2 �λ (α,μ – η)
[
J (α,λ)

μ– F(η) + J (α,λ)
η+ F(μ)

]∣∣∣∣

≤ (μ – η)α+1

2 �λ (α,μ – η)

{(
ϕ

p
1 (α,λ) + ϕ

p
4 (α,λ)

)[(
7|F′(η)|q + |F′(μ)|q

32

) 1
q

+
( |F′(η)|q + 7|F′(μ)|q

32

) 1
q
]

+
(
ϕ

p
2 (α,λ) + ϕ

p
3 (α,λ)

)[(
3|F′(η)|q + 5|F′(μ)|q

32

) 1
q

+
(

5|F′(η)|q + 3|F′(μ)|q
32

) 1
q
]}

,

where 1
p + 1

q = 1 and

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕ
p
1 (α,λ) = (

∫ 1
4

0 |�λ(μ–η) (α, δ)|p dδ)
1
p ,

ϕ
p
2 (α,λ) = (

∫ 1
2

1
4

|�λ(μ–η) (α, δ) – 2
3 �λ(μ–η) (α, 1)|p dδ)

1
p ,

ϕ
p
3 (α,λ) = (

∫ 3
4

1
2

|�λ(μ–η) (α, δ) – 1
3 �λ(μ–η) (α, 1)|p dδ)

1
p ,

ϕ
p
4 (α,λ) = (

∫ 1
3
4
|�λ(μ–η) (α, δ) – �λ(μ–η)(α, 1)|p dδ)

1
p .

Proof If we apply Hölder inequality in (2.9), then

∣∣∣∣1
3

[
2F

(
η + 3μ

4

)
– F

(
η + μ

2

)
+ 2F

(
3η + μ

4

)]
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–
�(α)

2 �λ (α,μ – η)
[
J (α,λ)

μ– F(η) + J (α,λ)
η+ F(μ)

]∣∣∣∣

≤ (μ – η)α+1

2 �λ (α,μ – η)

{(∫ 1
4

0

∣∣�λ(μ–η)(α, δ)
∣∣p dδ

) 1
p
[(∫ 1

4

0

∣∣F′(δμ + (1 – δ)η
)∣∣q dδ

) 1
q

+
(∫ 1

4

0

∣∣F′(δη + (1 – δ)μ
)∣∣q dδ

) 1
q
]

+
(∫ 1

2

1
4

∣∣∣∣�λ(μ–η)(α, δ) –
2
3
�λ(μ–η) (α, 1)

∣∣∣∣
p

dδ

) 1
p

×
[(∫ 1

2

1
4

∣∣F′(δμ + (1 – δ)η
)∣∣q dδ

) 1
q

+
(∫ 1

2

1
4

∣∣F′(δη + (1 – δ)μ
)∣∣q dδ

) 1
q
]

+
(∫ 3

4

1
2

∣∣∣∣�λ(μ–η)(α, δ) –
1
3
�λ(μ–η) (α, 1)

∣∣∣∣
p

dδ

) 1
p
[(∫ 3

4

1
2

∣∣F′(δμ + (1 – δ)η
)∣∣q dδ

) 1
q

+
(∫ 3

4

1
2

∣∣F′(δη + (1 – δ)μ
)∣∣q dδ

) 1
q
]

+
(∫ 1

3
4

∣∣�λ(μ–η)(α, δ) – �λ(μ–η)(α, 1)
∣∣p dδ

) 1
p

×
[(∫ 1

3
4

∣∣F′(δμ + (1 – δ)η
)∣∣q dδ

) 1
q

+
(∫ 1

3
4

∣∣F′(δη + (1 – δ)μ
)∣∣q dδ

) 1
q
]}

.

By using the convexity of |F′|q, we readily get

∣∣∣∣1
3

[
2F

(
η + 3μ

4

)
– F

(
η + μ

2

)
+ 2F

(
3η + μ

4

)]

–
�(α)

2 �λ (α,μ – η)
[
J (α,λ)

μ– F(η) + J (α,λ)
η+ F(μ)

]∣∣∣∣

≤ (μ – η)α+1

2 �λ (α,μ – η)

{(∫ 1
4

0

∣∣�λ(μ–η)(α, δ)
∣∣p dδ

) 1
p

×
[(∫ 1

4

0
δ
∣∣F′(μ)

∣∣q + (1 – δ)
∣∣F′(η)

∣∣q dδ

) 1
q

+
(∫ 1

4

0
δ
∣∣F′(η)

∣∣q + (1 – δ)
∣∣F′(μ)

∣∣q dδ

) 1
q
]

+
(∫ 1

2

1
4

∣∣∣∣�λ(μ–η)(α, δ) –
2
3
�λ(μ–η) (α, 1)

∣∣∣∣
p

dδ

) 1
p

×
[(∫ 1

2

1
4

δ
∣∣F′(μ)

∣∣q + (1 – δ)
∣∣F′(η)

∣∣q dδ

) 1
q

+
(∫ 1

2

1
4

δ
∣∣F′(η)

∣∣q + (1 – δ)
∣∣F′(μ)

∣∣q dδ

) 1
q
]

+
(∫ 3

4

1
2

∣∣∣∣�λ(μ–η)(α, δ) –
1
3
�λ(μ–η) (α, 1)

∣∣∣∣
p

dδ

) 1
p

×
[(∫ 3

4

1
2

δ
∣∣F′(μ)

∣∣q + (1 – δ)
∣∣F′(η)

∣∣q dδ

) 1
q
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+
(∫ 3

4

1
2

δ
∣∣F′(η)

∣∣q + (1 – δ)
∣∣F′(μ)

∣∣q dδ

) 1
q
]

+
(∫ 1

3
4

∣∣�λ(μ–η)(α, δ) – �λ(μ–η)(α, 1)
∣∣p dδ

) 1
p

×
[(∫ 1

3
4

δ
∣∣F′(μ)

∣∣q + (1 – δ)
∣∣F′(η)

∣∣q dδ

) 1
q

+
(∫ 1

3
4

δ
∣∣F′(η)

∣∣q + (1 – δ)
∣∣F′(μ)

∣∣q dδ

) 1
q
]}

=
(μ – η)α+1

2 �λ (α,μ – η)

{((∫ 1
4

0

∣∣�λ(μ–η)(α, δ)
∣∣p dδ

) 1
p

+
(∫ 1

3
4

∣∣�λ(μ–η)(α, δ) – �λ(μ–η)(α, 1)
∣∣p dδ

) 1
p
)

×
[(

7|F′(η)|q + |F′(μ)|q
32

) 1
q

+
( |F′(η)|q + 7|F′(μ)|q

32

) 1
q
]

+
((∫ 1

2

1
4

∣∣∣∣�λ(μ–η)(α, δ) –
2
3
�λ(μ–η) (α, 1)

∣∣∣∣
p

dδ

) 1
p

+
(∫ 3

4

1
2

∣∣∣∣�λ(μ–η)(α, δ) –
1
3
�λ(μ–η) (α, 1)

∣∣∣∣
p

dδ

) 1
p
)

×
[(

3|F′(η)|q + 5|F′(μ)|q
32

) 1
q

+
(

5|F′(η)|q + 3|F′(μ)|q
32

) 1
q
]}

,

which completes the proof of Theorem 5. �

Remark 4 Let us consider λ = 0 in Theorem 4. Then, the following Milne-type inequality
holds:

∣∣∣∣1
3

[
2F

(
η + 3μ

4

)
– F

(
η + μ

2

)
+ 2F

(
3η + μ

4

)]
–

�(α + 1)
2(μ – η)α

[
Jα
μ–F(η) + Jα

η+F(μ)
]∣∣∣∣

≤ α(μ – η)
2

{(
ϕ

p
1 (α, 0) + ϕ

p
4 (α, 0)

)[(
7|F′(η)|q + |F′(μ)|q

32

) 1
q

+
( |F′(η)|q + 7|F′(μ)|q

32

) 1
q
]

+
(
ϕ

p
2 (α, 0) + ϕ

p
3 (α, 0)

)[(
3|F′(η)|q + 5|F′(μ)|q

32

) 1
q

+
(

5|F′(η)|q + 3|F′(μ)|q
32

) 1
q
]}

,

which is given by Ali et al. [2, Theorem 2].

Remark 5 If we choose λ = 0 and α = 1 in Theorem 5, then we obtain the following Milne-
type inequality:

∣∣∣∣1
3

[
2F

(
η + 3μ

4

)
– F

(
η + μ

2

)
+ 2F

(
3η + μ

4

)]
–

1
μ – η

∫ μ

η

F(δ) dδ

∣∣∣∣
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≤ (μ – η)
[(

1
(p + 1)4p+1

) 1
p
[(

7|F′(η)|q + |F′(μ)|q
32

) 1
q

+
( |F′(η)|q + 7|F′(μ)|q

32

) 1
q
]

+
(

5p+1

12p+1(p + 1)
–

1
6p+1(p + 1)

) 1
p
[(

3|F′(η)|q + 5|F′(μ)|q
32

) 1
q

+
(

5|F′(η)|q + 3|F′(μ)|q
32

) 1
q
]]

,

which is presented by Ali et al. [2, Corollary 2]. This inequality helps us find an error bound
of Milne’s rule.

Theorem 6 Assume that the assumptions of Lemma 1 are valid. Assume also that the
function |F′|q, q ≥ 1 is convex on [η,μ]. Then, the following Milne-type inequality holds:

∣∣∣∣1
3

[
2F

(
η + 3μ

4

)
– F

(
η + μ

2

)
+ 2F

(
3η + μ

4

)]

–
�(α)

2 �λ (α,μ – η)
[
J (α,λ)

μ– F(η) + J (α,λ)
η+ F(μ)

]∣∣∣∣

≤ (μ – η)α+1

2 �λ (α,μ – η)
{(

�1(α,λ)
)1– 1

q
[(

�5(α,λ)
∣∣F′(μ)

∣∣q

+
(
�1(α,λ) – �5(α,λ)

)∣∣F′(η)
∣∣q) 1

q

+
(
�5(α,λ)

∣∣F′(η)
∣∣q +

(
�1(α,λ) – �5(α,λ)

)∣∣F′(μ)
∣∣q) 1

q
]

+
(
�2(α,λ)

)1– 1
q
[(

�6(α,λ)
∣∣F′(μ)

∣∣q +
(
�2(α,λ) – �6(α,λ)

)∣∣F′(η)
∣∣q) 1

q

+
(
�6(α,λ)

∣∣F′(η)
∣∣q +

(
�2(α,λ) – �6(α,λ)

)∣∣F′(μ)
∣∣q) 1

q
]

+
(
�3(α,λ)

)1– 1
q
[(

�7(α,λ)
∣∣F′(μ)

∣∣q +
(
�3(α,λ) – �7(α,λ)

)∣∣F′(η)
∣∣q) 1

q

+
(
�7(α,λ)

∣∣F′(η)
∣∣q +

(
�3(α,λ) – �7(α,λ)

)∣∣F′(μ)
∣∣q) 1

q
]

+
(
�4(α,λ)

)1– 1
q
[(

�8(α,λ)
∣∣F′(μ)

∣∣q +
(
�4(α,λ) – �8(α,λ)

)∣∣F′(η)
∣∣q) 1

q

+
(
�8(α,λ)

∣∣F′(η)
∣∣q +

(
�4(α,λ) – �8(α,λ)

)∣∣F′(μ)
∣∣q) 1

q
]}

.

Here, �1(α,λ), �2(α,λ), �3(α,λ), and �4(α,λ) are defined in Theorem 4 and

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�5(α,λ) =
∫ 1

4
0 δ|�λ(μ–η) (α, δ)|dδ,

�6(α,λ) =
∫ 1

2
1
4

δ|�λ(μ–η) (α, δ) – 2
3 �λ(μ–η) (α, 1)|dδ,

�7(α,λ) =
∫ 3

4
1
2

δ|�λ(μ–η) (α, δ) – 1
3 �λ(μ–η) (α, 1)|dδ,

�8(α,λ) =
∫ 1

3
4
δ|�λ(μ–η) (α, δ) – �λ(μ–η)(α, 1)|dδ.

Proof Let us first apply the power-mean inequality in (2.9). Then, we get
∣∣∣∣1
3

[
2F

(
η + 3μ

4

)
– F

(
η + μ

2

)
+ 2F

(
3η + μ

4

)]

–
�(α)

2 �λ (α,μ – η)
[
J (α,λ)

μ– F(η) + J (α,λ)
η+ F(μ)

]∣∣∣∣
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≤ (μ – η)α+1

2 �λ (α,μ – η)

{(∫ 1
4

0

∣∣�λ(μ–η)(α, δ)
∣∣dδ

)1– 1
q

×
(∫ 1

4

0

∣∣�λ(μ–η)(α, δ)
∣∣∣∣F′(δμ + (1 – δ)η

)∣∣q dδ

) 1
q

+
(∫ 1

4

0

∣∣�λ(μ–η)(α, δ)
∣∣dδ

)1– 1
q
(∫ 1

4

0

∣∣�λ(μ–η)(α, δ)
∣∣∣∣F′(δη + (1 – δ)μ

)∣∣q dδ

) 1
q

+
(∫ 1

2

1
4

∣∣∣∣�λ(μ–η)(α, δ) –
2
3
�λ(μ–η) (α, 1)

∣∣∣∣dδ

)1– 1
q

×
(∫ 1

2

1
4

∣∣∣∣�λ(μ–η)(α, δ) –
2
3
�λ(μ–η) (α, 1)

∣∣∣∣
∣∣F′(δμ + (1 – δ)η

)∣∣q dδ

) 1
q

+
(∫ 1

2

1
4

∣∣∣∣�λ(μ–η)(α, δ) –
2
3
�λ(μ–η) (α, 1)

∣∣∣∣dδ

)1– 1
q

×
(∫ 1

2

1
4

∣∣∣∣�λ(μ–η)(α, δ) –
2
3
�λ(μ–η) (α, 1)

∣∣∣∣
∣∣F′(δη + (1 – δ)μ

)∣∣q dδ

) 1
q

+
(∫ 3

4

1
2

∣∣∣∣�λ(μ–η)(α, δ) –
1
3
�λ(μ–η) (α, 1)

∣∣∣∣dδ

)1– 1
q

×
(∫ 3

4

1
2

∣∣∣∣�λ(μ–η)(α, δ) –
1
3
�λ(μ–η) (α, 1)

∣∣∣∣
∣∣F′(δμ + (1 – δ)η

)∣∣q dδ

) 1
q

+
(∫ 3

4

1
2

∣∣∣∣�λ(μ–η)(α, δ) –
1
3
�λ(μ–η) (α, 1)

∣∣∣∣dδ

)1– 1
q

×
(∫ 3

4

1
2

∣∣∣∣�λ(μ–η)(α, δ) –
1
3
�λ(μ–η) (α, 1)

∣∣∣∣
∣∣F′(δη + (1 – δ)μ

)∣∣q dδ

) 1
q

+
(∫ 1

3
4

∣∣�λ(μ–η)(α, δ) – �λ(μ–η)(α, 1)
∣∣dδ

)1– 1
q

×
(∫ 1

3
4

∣∣�λ(μ–η)(α, δ) – �λ(μ–η)(α, 1)
∣∣∣∣F′(δμ + (1 – δ)η

)∣∣q dδ

) 1
q

+
(∫ 1

3
4

∣∣�λ(μ–η)(α, δ) – �λ(μ–η)(α, 1)
∣∣dδ

)1– 1
q

×
(∫ 1

3
4

∣∣�λ(μ–η)(α, δ) – �λ(μ–η)(α, 1)
∣∣∣∣F′(δη + (1 – δ)μ

)∣∣q dδ

) 1
q
}

.

Using the fact that |F′|q is convex, it follows that

∣∣∣∣1
3

[
2F

(
η + 3μ

4

)
– F

(
η + μ

2

)
+ 2F

(
3η + μ

4

)]

–
�(α)

2 �λ (α,μ – η)
[
J (α,λ)

μ– F(η) + J (α,λ)
η+ F(μ)

]∣∣∣∣

≤ (μ – η)α+1

2 �λ (α,μ – η)

{(∫ 1
4

0

∣∣�λ(μ–η)(α, δ)
∣∣dδ

)1– 1
q
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×
[(∫ 1

4

0

∣∣�λ(μ–η)(α, δ)
∣∣[δ∣∣F′(μ)

∣∣q + (1 – δ)
∣∣F′(η)

∣∣q]dδ

) 1
q

+
(∫ 1

4

0

∣∣�λ(μ–η)(α, δ)
∣∣[δ∣∣F′(η)

∣∣q + (1 – δ)
∣∣F′(μ)

∣∣q]dδ

) 1
q
]

+
(∫ 1

2

1
4

∣∣∣∣�λ(μ–η)(α, δ) –
2
3
�λ(μ–η) (α, 1)

∣∣∣∣dδ

)1– 1
q

×
[(∫ 1

2

1
4

∣∣∣∣�λ(μ–η)(α, δ) –
2
3
�λ(μ–η) (α, 1)

∣∣∣∣
[
δ
∣∣F′(μ)

∣∣q + (1 – δ)
∣∣F′(η)

∣∣q]dδ

) 1
q

+
(∫ 1

2

1
4

∣∣∣∣�λ(μ–η)(α, δ) –
2
3
�λ(μ–η) (α, 1)

∣∣∣∣
[
δ
∣∣F′(η)

∣∣q + (1 – δ)
∣∣F′(μ)

∣∣q]dδ

) 1
q
]

+
(∫ 3

4

1
2

∣∣∣∣�λ(μ–η)(α, δ) –
1
3
�λ(μ–η) (α, 1)

∣∣∣∣dδ

)1– 1
q

×
[(∫ 3

4

1
2

∣∣∣∣�λ(μ–η)(α, δ) –
1
3
�λ(μ–η) (α, 1)

∣∣∣∣
[
δ
∣∣F′(μ)

∣∣q + (1 – δ)
∣∣F′(η)

∣∣q]dδ

) 1
q

+
(∫ 3

4

1
2

∣∣∣∣�λ(μ–η)(α, δ) –
1
3
�λ(μ–η) (α, 1)

∣∣∣∣
[
δ
∣∣F′(η)

∣∣q + (1 – δ)
∣∣F′(μ)

∣∣q]dδ

) 1
q
]

+
(∫ 1

3
4

∣∣�λ(μ–η)(α, δ) – �λ(μ–η)(α, 1)
∣∣dδ

)1– 1
q

×
[(∫ 1

3
4

∣∣�λ(μ–η)(α, δ) – �λ(μ–η)(α, 1)
∣∣[δ∣∣F′(μ)

∣∣q + (1 – δ)
∣∣F′(η)

∣∣q]dδ

) 1
q

+
(∫ 1

3
4

∣∣�λ(μ–η)(α, δ) – �λ(μ–η)(α, 1)
∣∣[δ∣∣F′(η)

∣∣q + (1 – δ)
∣∣F′(μ)

∣∣q]dδ

) 1
q
]}

.

Finally, we obtain the desired result of Theorem 6. �

Corollary 1 Consider λ = 0 in Theorem 6. Then, the following Milne-type inequality holds:

∣∣∣∣1
3

[
2F

(
η + 3μ

4

)
– F

(
η + μ

2

)
+ 2F

(
3η + μ

4

)]
–

�(α + 1)
2(μ – η)α

[
Jα
μ–F(η) + Jα

η+F(μ)
]∣∣∣∣

≤ α(μ – η)
2

{(
�1(α, 0)

)1– 1
q
[(

�5(α, 0)
∣∣F′(μ)

∣∣q +
(
�1(α, 0) – �5(α, 0)

)∣∣F′(η)
∣∣q) 1

q

+
(
�5(α, 0)

∣∣F′(η)
∣∣q +

(
�1(α, 0) – �5(α, 0)

)∣∣F′(μ)
∣∣q) 1

q
]

+
(
�2(α, 0)

)1– 1
q
[(

�6(α, 0)
∣∣F′(μ)

∣∣q +
(
�2(α, 0) – �6(α, 0)

)∣∣F′(η)
∣∣q) 1

q

+
(
�6(α, 0)

∣∣F′(η)
∣∣q +

(
�2(α, 0) – �6(α, 0)

)∣∣F′(μ)
∣∣q) 1

q
]

+
(
�3(α, 0)

)1– 1
q
[(

�7(α, 0)
∣∣F′(μ)

∣∣q +
(
�3(α, 0) – �7(α, 0)

)∣∣F′(η)
∣∣q) 1

q

+
(
�7(α, 0)

∣∣F′(η)
∣∣q +

(
�3(α, 0) – �7(α, 0)

)∣∣F′(μ)
∣∣q) 1

q
]

+
(
�4(α, 0)

)1– 1
q
[(

�8(α, 0)
∣∣F′(μ)

∣∣q +
(
�4(α, 0) – �8(α, 0)

)∣∣F′(η)
∣∣q) 1

q
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+
(
�8(α, 0)

∣∣F′(η)
∣∣q +

(
�4(α, 0) – �8(α, 0)

)∣∣F′(μ)
∣∣q) 1

q
]}

.

Corollary 2 Let us consider λ = 0 and α = 1 in Theorem 6. Then, the following Milne-type
inequality holds:

∣∣∣∣1
3

[
2F

(
η + 3μ

4

)
– F

(
η + μ

2

)
+ 2F

(
3η + μ

4

)]
–

1
μ – η

∫ μ

η

F(δ) dδ

∣∣∣∣

≤ (μ – η)
{

1
32

[( |F′(μ)|q + 5|F′(η)|q
6

) 1
q

+
( |F′(η)|q + 5|F′(μ)|q

6

) 1
q
]

+
7

96

[(
5|F′(μ)|q + 9|F′(η)|q

14

) 1
q

+
(

5|F′(η)|q + 9|F′(μ)|q
14

) 1
q
]}

.

This inequality helps us find an error bound of Milne’s rule.

3 Summary and concluding remarks
In the current investigation, several new versions of Milne-type inequalities were pre-
sented with the help of the differentiable convex mappings by utilizing tempered fractional
integrals. What is more, Milne-type inequalities were established by taking advantage of
the convexity, as well as Hölder and the power mean inequalities. Also, previous and new
results were presented by using special cases of the obtained theorems.

In future work, the ideas and techniques via our results related to Milne-type inequalities
by tempered fractional integrals may open new ways for researchers in this field. More-
over, readers can generalize our results by utilizing a different convex function classes or
another type of fractional integral operator. Moreover, one can obtain Milne-type inequal-
ities by tempered fractional integrals for convex functions by utilizing quantum integrals.

Funding
There is no funding.

Data Availability
No datasets were generated or analysed during the current study.

Declarations

Competing interests
The authors declare no competing interests.

Author contributions
The research contributions were as follows: F.H. and H.B. jointly contributed to the research conception and design, and
F.H. was responsible for drafting the introduction and methodology sections, while H.B. focused on data collection and
analysis. H.K. and U.B. collaborated on the literature review and results interpretation, with H.K. firstly responsible for the
literature review and U.B. for results interpretation. H.K. and F.H. worked together on the discussion section, and U.B. and
H.B. contributed valuable insights and revisions throughout the manuscript. All authors read and approved the final
version of the manuscript.

Received: 29 November 2023 Accepted: 30 December 2023

References
1. Adil Khan, M., Iqbal, A., Suleman, M., Chu, Y.M.: Hermite–Hadamard type inequalities for fractional integrals via Green’s

function. J. Inequal. Appl. 2018(1), Article ID 161 (2018)
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