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1 Introduction
Recently, fractional differential equation modeling has led to significant development in
several fields due to the important results obtained, see [6, 13], as well as some basic the-
ory of fractional differential equations have been given in [17] This is due to the fact that
fractional differential equations have several applications in many models, for example in
physics, engineering [11], mechanics, and medicine [14], which has led to great interest
in these equations from a mathematical viewpoint, see for example [8, 9]. The authors in
[13] introduced the ψ-Hilfer fractional operator with several examples. Also in reference
[15], where the space H

α,β ,ψ
p– ([0, T],R) was constructed, which allows the study of many

fractional differential equations involving the ψ-Hilfer fractional operator.
In [16] Sousa, J.V.C et .al, they discussed the existence and nonexistence of weak solu-

tions to a nonlinear problem with a fractional p-Laplacian operator problem
⎧
⎨

⎩

H
D

α,β ,ψ
T (|Dα,β ,ψ

0+ ξ (t)|p–2
D

α,β ,ψ
0+ ξ (t)) = λ|ξ (t)|p–2ξ (t) + b(x)|ξ (t)|q–2ξ (t),

Iβ(β–1),ψ
0+ ξ (0) = Iβ(β–1),ψ

T ξ (T)
(1.1)

where 1
p < α < 1, 0 ≤ β ≤ 1, 1 < q < p – 1 < ∞, b ∈ L∞([0, T]), and λ > 0. by using the Nehari

manifolds technique and combining with fiber maps. Also, Sousa, J.V.C in [12] attacked
the bifurcation from infinity for problem (1.1).

In the reference [10], Ezati and Nyamoradi, using the genus properties of critical-point
theory, studied the existence and multiplicity of solutions of the Kirchhoff equation ψ-
Hilfer fractional operator p-Laplacian. Also, [3] A class of perturbed partial nonlinear
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systems is studied. With a Lipschitz condition of order (p – 1). The multiplicity of weak so-
lutions is proved by variational method and three critical points theorems. An illustrative
example was analyzed in order to highlight the result obtained.

In this research we are interested in studying the nonlinear system equipped with the
ψ-Hilfer operator:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H
D

αi ,βi ,ψ
T (�p(Dαi ,βI ,ψ

0+ ξi(t)))

= �χξi (t, ξ1(t), ξ2(t), . . . , ξn(t))

+
∫ T

0 k1,i(t, τ )g1,i(ξi(τ )) dτ +
∫ t

0 k2,i(t, τ )g2,i(ξi(τ )) dτ , 1 ≤ i ≤ n,

ξ
p–1
i (t) = fi(t)ξp–1

i (t) +
∫ T

0 k1,i(t, τ )g1,i(ξi(τ )) dτ

+
∫ t

0 k2,i(t, τ )g2,i(ξi(τ )) dτ , 1 ≤ i ≤ n, a.e. t ∈ J = [0, T],

ξi\∂J = 0, 1 ≤ i ≤ n,

(1.2)

where �p(s) = |s|p–2s, p > 1, � is positive parameter, fi : J → R is a continuous function
with the maximum norm ‖fi‖∞ = maxt∈[0,T] |fi(t)| = Mi, and χ : J ×R

n → R is continuous
and continuously differentiable according to ξi i.e,

χ (t, ξ1, ξ2, . . . , ξn) ∈ C(J)

and

χ (t, ., ., . . . , .) ∈ C1(
R

n),

we assume

g1,i, g2,i : R→R

are two continuous functions and satisfy the (p – 1) Lipschitz conditions, i.e,

∣
∣g1,i(ζ1) – g1,i(ζ2)

∣
∣ ≤ L′

i|ζ1 – ζ2|p–1 (1.3)

and

∣
∣g2,i(ζ1) – g2,i(ζ2)

∣
∣ ≤ M′

i|ζ1 – ζ2|p–1, 1 ≤ i ≤ n, (1.4)

for all ζ1, ζ2 ∈ R, where L′
i, M′

i > 0,
Moreover, the kernels k1,i and k2,i, where

k1,i(., .), k2,i(., .) ∈ (
C(J), J

)
, (1.5)

are bounded by the positive constants Li and Mi, respectively. We know χs the partial
derivative of χ with respect to s.

Motivated by the above works, applying the well-known three critical point theory of
Bonanno and Marano [1]. We prove the existence of at least three different weak solutions
of the nonlinear elliptic system (1.2).

Our paper is organized as follows: In Sect. 2, we present some definitions of fractional
space and its properties. In the last section, we prove our results presented in Theorem 2.
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2 Mathematical background
In this section, we present some preliminaries and lemmas that are useful for the proof of
the main results.

Definition 2.1 [7] Let 1
p < αi ≤ 1, 0 ≤ βi ≤ 1 for 1 ≤ i ≤ n, and 1 < p < ∞. The ψ-fractional

space H
αi ,βi ,ψ
p is defined by the closure of C∞

0 (J ,R)
‖.‖

H
αi ,βi ,ψ
p , with respect to the following

norm

‖ξ‖
H

αi ,βi ,ψ
p

=
(‖ξ‖p

Lp
ψ

+
∥
∥H

D
αi ,βi ,ψ
0+ ξ

∥
∥p

Lpi
ψ

)
(2.1)

for all ξ ∈ H
αi ,βi ,ψ
p , 1 ≤ i ≤ n.

Lemma 2.1 [7] If 0 < αi ≤ 1, 0 ≤ βi ≤ 1 for 1 ≤ i ≤ n, and 1 < p < ∞. For all ξ ∈
H

αi ,βi ,ψ
p (J ,R), we have

‖ξ‖Lp
ψ

≤ (ψ(T) – ψ(0))

(αi + 1)

∥
∥H

D
αi ,βi ,ψ
0+ ξ

∥
∥

Lp
ψ

. (2.2)

Moreover, if αi > 1
p and 1

p + 1
q = 1, then

‖ξ‖∞,ψ ≤ (ψ(T) – ψ(0))αi– 1
p


(αi)((αi – 1)q + 1)
1
q

∥
∥H

D
αi ,βi ,ψ
0+ ξ

∥
∥

Lp
ψ

, (2.3)

where ‖ξ‖∞,ψ = supt∈J |ξ (t)|.
From the Inequality (2.3), we also have

‖ξ‖∞,ψ ≤ (ψ(T) – ψ(0))αi– 1
p


(αi)((αi – 1)q + 1)
1
q

∥
∥H

D
αi ,βi ,ψ
0+ ξ

∥
∥
H

αi ,βi ,ψ
p

Remark 1 The defined norm in (2.1) is equivalent to

‖ξ‖αi,βi
= ‖HDαi ,βi ,ψ

0+ ξ‖Lp
ψ

, for all ξ ∈H
αi ,βi ,ψ
p , 1 ≤ i ≤ n. (2.4)

Proposition 2.2 [16] Let 0 < αi ≤ 1, 0 ≤ βi ≤ 1 for 1 ≤ i ≤ n, and 1 < p < ∞. Assume that
αi > 1

p and the sequence {ξk} converges weakly to ξ in H
αi ,βi ,ψ
p (J ,R), i.e., ξk ⇀ ξ in C(J ,R),

i.e., ‖ξk – ξ‖∞ → 0 as k → ∞.

Proposition 2.3 [16] The spaces Hαi ,βi ,ψ
p , 1 ≤ i ≤ n is compactly embedded in C(J ,R).

Proposition 2.4 [16] Let 0 < αi ≤ 1, 0 ≤ βi ≤ 1 for 1 ≤ i ≤ n, and 1 < p < ∞. The fractional
space Hαi ,βi ,ψ

p , 1 ≤ i ≤ is a reflexive and separable Banach spaces.

In this paper, we consider E = H
α1,β1,ψ
p (J ,R)×· · ·×H

αn ,βn ,ψ
p (J ,R) equipped with the norm

‖ξ‖E =
n∑

i=1

‖ξi‖αi,βi
, ξi ∈H

αi ,βi ,ψ
p , ξ = (ξ1, ξ2, . . . , ξn) ∈ E, (2.5)
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Definition 2.2 We call ξ = (ξ1, ξ2, . . . , ξn) ∈ E a weak solution to the nonlinear system (1.2)
if the following relationship holds

∫ T

0

n∑

i=1

∣
∣HD

αi ,βi ,ψ
0+ ξi(t)

∣
∣p–2H

D
αi ,βi ,ψ
0+ ξi(t).HDαi ,βi ,ψ

0+ vi(t) dt

–
n∑

i=1

∫ T

0

∫ T

0
k1,i(t, τ )g1,i

(
ξi(τ )

)
vi(t) dτ dt

–
n∑

i=1

∫ T

0

∫ t

0
k2,i(t, τ )g2,i

(
ξi(τ )

)
vi(t) dτ dt

= �

∫ T

0

n∑

i=1

χξi

(
t, ξ1(t), ξ2(t), . . . , ξn(t)

)
vi(t) dt,

(2.6)

for all v = (v1, v2, . . . , vn) ∈ E

Definition 2.3 Define the operator Gi : Hαi ,βi ,ψ
p →H

αi ,βi ,ψ
p as

Gi(ξi) =
1
p

∫ T

0
k1,i(t, τ )g1,i

(
ξi(τ )

)
ξi(t) dτ

+
1
p

∫ t

0
k2,i(t, τ )g2,i

(
ξi(τ )

)
ξi(t) dτ , 1 ≤ i ≤ n, and t ∈ J . (2.7)

On the other hand, from the System (1.2), it can be written

(
ξi(t) + θvi(t)

)p = fi(t)
(
ξi(t) + θvi(t)

)p

+
∫ T

0
k1,i(t, τ )g1,i

(
ξi(τ ) + θvi(τ )

)(
ξi(t) + θvi(t)

)
dτ

+
∫ T

0
k2,i(t, τ )g2,i

(
ξi(τ ) + θvi(τ )

)(
ξi(t) + θvi(t)

)
dτ .

(2.8)

By direct calculation of the derivative of Gi, we obtain

G ′
i
(
ξi(t)

)(
vi(t)

)

=
d

dθ

{
1
p

∫ T

0
k1,i(t, τ )g1,i

(
ξi(τ ) + θvi(τ )

)(
ξi(t) + θvi(t)

)
dτ

+
1
p

∫ T

0
k2,i(t, τ )g2,i

(
ξi(τ ) + θvi(τ )

)(
ξi(t) + θvi(t)

)
dτ

}

θ=0

=
1
p

d
dθ

{(
ξi(t) + θvi(t)

)p – fi(t)
(
ξi(t) + θvi(t)

)p}

θ=0

= ξ
p–1
i (t)vi(t) – fi(t)ξp–1

i (t)vi(t)

=
∫ T

0
k1,i(t, τ )g1,i

(
ξi(τ )

)
vi(t) dτ +

∫ t

0
k2,i(t, τ )g2,i

(
ξi(τ )

)
vi(t) dτ .

(2.9)

The following theorem, taken from [1], is the basic principle to prove our results
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Theorem 2.5 ([1], Theorem 3.6) Let E be a reflexive real Banach space; J : E → R be a
coercive, continuously Gateaux differentiable and sequentially weakly lower semicontin-
uous functional whose Gateaux derivative admits a continuous inverse on E∗. Moreover,
suppose that E : E → R be a sequentially weakly upper semicontinuous and continuously
Gateaux differentiable functional in which its Gateaux derivative is compact such that

J (0) = E(0) = 0.

We suppose that there exist r ∈R and ξ ∗ ∈ E with 0 < r < J (ξ ∗), which fulfills
(1) supξ∈J –1(]–∞,r]) E(ξ ) < r E(ξ∗)

J (ξ∗) ;
(2) For each � ∈ �� = (J (ξ∗)

E(ξ∗) , r
sup

ξ∈J –1(]–∞,r]) E(ξ ) ), the functional J – �E is coercive.

Then, for any � ∈ �� , the functional J –�E admits at least three different critical points
in E.

To prove the existence of at least three solutions for the nonlinear system (1.2), we as-
sume the following

θi = max
{

LiL′
i, MiM′

i
}

,

σ = min
1≤i≤n

{σi}, σi = 1 –
2θiT2[ψ(T) – ψ(0)]pαi–1

(
(αi))p((αi – 1)q + 1)
p
q

,

S = max
1≤i≤n

{
(ψ(T) – ψ(0))pαi–1

(
(αi))p((αi – 1)q + 1)
p
q – 2θiT2(ψ(T) – ψ(0))pαi–1

}

, (2.10)

�(c) =

{

η = (η1,η2 . . . ,ηn) ∈R
n :

1
p

n∑

i=1

η
p
i ≤ c

}

, c > 0 (2.11)

and

k = max
1≤i≤n

{
(ψ(T) – ψ(0))pαi

σ (
(αi + 1))p

}

. (2.12)

3 Main result
We now present the main results

Theorem 3.1 We consider χ : J ×R
n →R to be a function that satisfies

χ (., ξ1, ξ2, . . . , ξn) ∈ C(J), χ (t, ., . . . , .) ∈ C1(
R

n)

and

χ (t, 0, . . . , 0) = 0, for all t ∈ J .

Fix

�1 =
∑n

i=1(‖zi‖p
αi – p

∫ T
0 Gi(zi(t)) dt)

p
∫ T

0 χ (t, z1(t), . . . , zn(t)) dt
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and

�2 =
r

∫ T
0 sup(η1,η2,...,ηn)∈�(Sr) χ (t,η1,η2, . . . ,ηn) dt

.

If there exist a positive constant r and a function z(t) = (z1(t), . . . , zn(t)) such that the
following conditions are satisfied

(H0) 1
p < αi ≤ 1;

(H1) 2θiT2[ψ(T)–ψ(0)]pαi–1

(
(αi))p((αi–1)q+1)
p
q

< 1;

(H2)
∑n

i=1 ‖zi‖p
αi ≥ pr + p

∑n
i=1

∫ T
0 Gi(zi(t)) dt;

(H3) �1 < �2;
(H4) lim inf|ηi|→+∞ χ (t,(η1,η2,...,ηn))

∑n
i=1 η

p
i

< 1
pk�2

.
Then, for any � ∈ (�1,�2), nonlinear system (1.2) admits at least three different weak

solutions in E.

Proof We consider that the space E =
∏n

i=1 H
αi ,βi ,ψ
p (J ,R) equipped with the norm ‖ξ‖E

defined by (2.5). For any

ξ = (ξ1, . . . , ξn) ∈ E.

We define the functionals J and E : E →R by

J (ξ ) =
1
p

n∑

i=1

‖ξi‖p
αi,βi

–
n∑

i=1

∫ T

0
Gi

(
ξi(t)

)
dt, (3.1)

and

E(ξ ) =
∫ T

0
χ

(
t, ξ1(t), . . . , ξn(t)

)
dt. (3.2)

These functionals are well-defined Gateaux differentiable:

J ′(ξ )(v) =
∫ T

0

n∑

i=1

∣
∣HD

αi ,βi ,ψ
0+ ξi(t)

∣
∣p–2H

D
αi ,βi ,ψ
0+ ξi(t).HDαi ,βi ,ψ

0+ vi(t) dt

–
n∑

i=1

∫ T

0

∫ T

0
k1,i(t, τ )g1,i

(
ξi(τ )

)
vi(t) dτ dt

–
n∑

i=1

∫ T

0

∫ t

0
k2,i(t, τ )g2,i

(
ξi(τ )

)
vi(t) dτ dt,

and

E ′(ξ )(v) =
∫ T

0

n∑

i=1

χξi

(
t, ξ1(t), . . . , ξn(t)

)
vi(t) dt.

for all v = (v1, v2, . . . , vn) ∈ E, where J ′(ξ ) and E ′(ξ ) ∈ E∗, such that E∗ is dual space of E.
Here we prove the conditions imposed on functional J in Theorem 1.
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Since
∣
∣k1,i(t, τ )

∣
∣ ≤ Li

and
∣
∣k2,i(t, τ )

∣
∣ ≤ Mi

from (1.3), (1.4), and (1.5), we get

Gi(ξi) =
1
p

∫ T

0
k1,i(t, τ )g1,i

(
ξi(τ )

)
ξi(t) dτ

+
1
p

∫ t

0
k2,i(t, τ )g2,i

(
ξi(τ )

)
ξi(t) dτ

≤ 1
p
|ξi|p–1TLiL′

i‖ξi‖∞ +
1
p
|ξi|p–1tMiM′

i‖ξi‖∞ (3.3)

≤ 1
p

TLiL′
i‖ξi‖p

∞ +
1
p

TMiM′
i‖ξi‖p

∞

≤ 2
p
θiT‖ξi‖p

∞.

Equations (2.3), (2.4), and (3.1) imply

J (ξ ) =
1
p

n∑

i=1

‖ξi‖p
αi,βi

–
n∑

i=1

∫ T

0
Gi

(
ξi(t)

)
dt

≥ 1
p

n∑

i=1

‖ξi‖p
αi,βi

–
2
p

n∑

i=1

∫ T

0
θiT‖ξi‖p

∞,ψ dt

≥ 1
p

n∑

i=1

‖ξi‖p
αi,βi

–
2
p

n∑

i=1

θiT2‖ξi‖p
∞

≥ 1
p

n∑

i=1

‖ξi‖p
αi,βi

–
2
p

n∑

i=1

θiT2 (ψ(T) – ψ(0))pαi–1

(
(αi))p((αi – 1)q + 1)
p
q

∥
∥H

D
αi ,βi ,ψ
0+ ξi

∥
∥p

H
αi ,βi ,ψ
p

≥ 1
p

n∑

i=1

(

1 –
2θiT2[ψ(T) – ψ(0)]pαi–1

(
(αi))p((αi – 1)q + 1)
p
q

)
∥
∥H

D
αi ,βi ,ψ
0+ ξi

∥
∥p

H
αi ,βi ,ψ
p

≥ 1
p

n∑

i=1

σi
∥
∥H

D
αi ,βi ,ψ
0+ ξi

∥
∥p

H
αi ,βi ,ψ
p

≥ σ

p
‖ξ‖E .

Since σ is positive, under assumption (H1), then lim‖ξ‖X→+∞ J (ξ ) = +∞, i.e., it is coer-
cive.

Here we prove the conditions imposed on functional E in Theorem 1.
Since

E ′ : E → E∗

is a compact operator.
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If limm→+∞ ξm ⇀ ξ in E, where

ξm = (ξm,1, . . . , ξm,n),

which ensures the convergence (converges uniformly) of ξm to ξ on the interval J . There-
fore,

lim
m→+∞ supE(ξm) ≤

∫ T

0
lim

m→+∞ supχ (t, ξm,1, . . . , ξm,n) dt

=
∫ T

0
χ (t, ξ1, . . . , ξn) dt

= E(ξ ).

Hence E is sequentially weakly upper semi-continuous.
Moreover, χ (t, ., . . . , .) ∈ C1(Rn), i.e.,

lim
m→+∞χ (t, ξm,1, . . . , ξm,n) = χ (t, ξ1, . . . , ξn), t ∈ J

According to Lebesgue dominant convergence theorem, E ′(ξm) → E ′(ξ ) strongly, so E ′

is strongly continuous on E. Then, E ′ : E → E∗ is a compact operator.
Suppose that ξ0(t) = (0, . . . , 0) and ξ ∗(t) = z(t), then

J
(
ξ0(t)

)
= E

(
ξ0(t)

)
= 0

From hypothesis (H2) it follows

0 < r ≤ 1
p

n∑

i=1

‖zi‖p
αi,βi

–
n∑

i=1

∫ T

0
Gi

(
zi(t)

)
dt = J

(
ξ ∗)

Problems (2.5), (2.6), (2.10), and (2.11) give

J –1(] – ∞, r])

=
{
ξ ∈ E : J (ξ ) ≤ r

}

=

{

ξ ∈ E :
1
p

n∑

i=1

‖ξi‖p
αi,βi

–
n∑

i=1

∫ T

0
Gi

(
ξi(t)

)
dt ≤ r

}

⊆
{

ξ ∈ E :
1
p

n∑

i=1

‖ξi‖p
αi,βi

–
2
p

n∑

i=1

∫ T

0
θiT‖ξi‖p

∞ dt

}

=

{

ξ ∈ E :
n∑

i=1

(
(αi))p((αi – 1)q + 1)
p
q

p(ψ(T) – ψ(0))pαi–1 ‖ξi‖p
∞,ψ –

2
p

n∑

i=1

θiT2‖ξi‖p
∞,ψ ≤ r

}

=

{

ξ ∈ E :
n∑

i=1

(
(αi))p((αi – 1)q + 1)
p
q – 2θiT2(ψ(T) – ψ(0))pαi–1

p(ψ(T) – ψ(0))pαi–1 ‖ξi‖p
∞,ψ ≤ r

}

⊆
{

ξ ∈ E :
1

pS

n∑

i=1

‖ξi‖p
∞,ψ ≤ r

}
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⊆
{

ξ ∈ E :
1
p

n∑

i=1

|ξi|p∞,ψ ≤ rS, for all t ∈ [0, T]

}

⊆ �(Sr),

which leads to

sup
ξ∈J –1(]–∞,r])

E(ξ ) = sup
ξ∈J –1(]–∞,r])

∫ T

0
χ (t, ξ1, . . . , ξn) dt

≤ sup
η∈�(Sr)

∫ T

0
χ (t,η1, . . . ,ηn) dt

=
∫ T

0
sup

η∈�(Sr)
χ (t,η1, . . . ,ηn) dt.

By (H3), we have

supξ∈J –1(]–∞,r]) E(ξ )
r

=
supξ∈J –1(]–∞,r])

∫ T
0 χ (t, ξ1, . . . , ξn) dt
r

≤
∫ T

0 supη∈�(Sr) χ (t,η1, . . . ,ηn) dt
r

<
p
∫ T

0 χ (t, z1, . . . , zn) dt
∑n

i=1(‖zi‖p
αi ,βI

– p
∫ T

0 Gi(zi(t)) dt)
(3.4)

=
E(z(t))
J (z(t))

=
E(ξ ∗)
J (ξ ∗)

,

thus,

sup
ξ∈J –1(]–∞,r])

E(ξ ) < r
E(ξ ∗)
J (ξ ∗)

.

Hence, hypothesis (1) of Theorem 1 is fulfilled.
From assumption (h4), there are constants μ and ε ∈R that satisfy the following

μ

σ
<

∫ T
0 supη∈�(Sr) χ (t,η1, . . . ,ηn) dt

r
. (3.5)

Also

∀η ∈R
n : χ (t,η1, . . . ,ηn) ≤ μ

pkσ

n∑

i=1

|ηi|p + ε,

for t ∈ J and a fixed vector

ξ = (ξ1, ξ2, . . . , ξn) ∈ E,



Guefaifia et al. Boundary Value Problems         (2024) 2024:14 Page 10 of 12

we have

χ
(
ξ1(t), . . . , ξn(t)

) ≤ μ

pkσ

n∑

i=1

|ξi|p + ε (3.6)

for all t ∈ J . Finally, it remains to check that the functionalJ (ξ )–�E(ξ ) is coercive. Assume
� ∈ �, thus fetching into accounts (2.4), (2.12), (3.5), and (3.6), we have

J (ξ ) – �E(ξ ) =
1
p

n∑

i=1

‖ξi‖p
αi,βi

–
n∑

i=1

∫ T

0
Gi

(
ξi(t)

)
dt – �

∫ T

0
χ (t, ξ1, ξ2, . . . , ξn)

≥ 1
p

n∑

i=1

‖ξi‖p
αi,βi

–
2
p

n∑

i=1

θiT2‖ξi‖p
αi,βi

– �

∫ T

0
χ (t, ξ1, ξ2, . . . , ξn) dt

≥ 1
p

n∑

i=1

‖ξi‖p
αi,βi

–
2
p

n∑

i=1

θiT2‖ξi‖p
αi,βi

–
�μ

pkσ

∫ T

0

( n∑

i=1

|ξi|p
)

dt – �εT

≥ 1
p

n∑

i=1

‖ξi‖p
αi,βi

–
2
p

n∑

i=1

θiT2 (ψ(T) – ψ(0))pαi–1

(
(αi))p((αi – 1)q + 1)
p
q
‖ξi‖p

αi,βi

–
�μ

pkσ

n∑

i=1

(ψ(T) – ψ(0))pαi

(
(αi + 1))p ‖ξi‖p
αi,βi

– �εT

≥ 1
p

n∑

i=1

σi‖ξi‖p
αi,βi

–
�μ

pkσ

n∑

i=1

(ψ(T) – ψ(0))pαi

(
(αi + 1))p ‖ξi‖p
αi,βi

– �εT

≥ 1
p

n∑

i=1

σ‖ξi‖p
αi,βi

–
�μ

p

n∑

i=1

‖ξi‖p
αi,βi

– �εT

≥ 1
p

(

σ –
μr

∫ T
0 supη∈�(Sr) χ (t,η1, . . . ,ηn) dt

) n∑

i=1

‖ξi‖p
αi,βi

– �εT ,

from (3.5) the term

(

σ –
μr

∫ T
0 supη∈�(Sr) χ (t,η1, . . . ,ηn) dt

)

is clearly positive, thus

lim‖ξ‖E→+∞J (ξ ) – �E(ξ ) = +∞. (3.7)

This means, J – �E is coercive and thus the hypothesis (2) of Theorem 1 is also estab-
lished.
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Applying Theorem 1, the weak solutions of the nonlinear system (1.2) are exactly the
critical points of the equation

J ′(ξ ) – �E ′(ξ ) = 0.

Thus, the nonlinear system (1.2) accepts at least three critical points, which are weak so-
lutions in E for � ∈ �� , and the proof ends. �

4 Conclusion
In this work, by using variational methods introduced in the previous study on fractional
elliptic systems, we prove the existence of at least three weak solutions for an elliptic
nonlinear system with a p-Laplacian ψ-Hilfer operator, where we have based on some
published works that extend the well-known three critical point theory of Bonanno and
Marano [1]. In the next work, we will apply the same methods to the same problem with
variable exponent.
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