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Abstract
Our study is dedicated to a mixture composed of a dipolar elastic medium and a
viscous Moore–Gibson–Thompson (MGT) material. The mixed problem with initial
and boundary data, considered in this context, is approached from the perspective of
the existence of a solution to this problem as well as the uniqueness of the solution.
Considering that the mixed problem is very complex, both from the point of view of
the basic equations and that of the initial conditions and the boundary data, the
classical methods become difficult. That is why we preferred to transform it into a
problem of Cauchy type on a conveniently constructed Hilbert space. In this way, we
immediately proved both the existence and uniqueness of the solution, with
techniques from the theory of semigroups of linear operators.
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1 Introduction
In recent years, the number of studies dedicated to systems of differential equations of
MGT type has increased considerably. The researchers consider that the MGT theory
appeared, like many other nonclassical theories, in order to avoid violating the causality
principle, which happens in the classical theory. Many works on the MGT theory high-
light its practical applicability, see [1–5], while other studies address different theoretical
aspects of this theory, see [6–9]. To highlight the importance of media with a dipolar struc-
ture, it is enough to mention the works [10–12]. In other previous works, many different
aspects are addressed regarding the bodies with nonclassical structure, see [13–23].

We must specify that in our paper we are dealing with the MGT model in the context
of the Kelvin–Voigt viscoelasticity theory. It is known that the behavior of waves, from
a mechanical point of view, in the Kelvin–Voigt viscoelasticity also violates the causality
principle. That is why the theory of the viscoelastic media based on the MGT model can
be considered more appropriate than the known Kelvin–Voigt viscoelastic theory because
the aforementioned paradox can be avoided. There is a big number of specialists who
consider that this theory of the viscoelastic media based on the MGT model is among the
theories which allow thermal waves to propagate at a finite speed. Also, the viscoelastic
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effects modeled by the partial differential equations of MGT type can be an alternative for
the known theories dedicated to heat conduction.

Another aspect that we take into account in our study is that of a mixture between two
or more types of materials which interact, with the aim of obtaining another material with
superior properties compared to the separate component materials.

The proposed mixture model has concrete applicability to real, modern materials, such
as graphite, polymers, and other granular media having large molecules. Also, it applies for
animal and human bones. Considering the great number of published works dedicated to
the mixtures of different media, it can be concluded that these are very suitable for mod-
eling a great number of media in continuum mechanics [24–29]. Other similar applicable
results can be found in [30–33].

The plan of our study is as follows. First, in Sect. 2, we systematize the main equations,
initial and boundary conditions, which describe the evolution of the proposed mixture.
So, we obtain a mixed initial-boundary value problem. Also, we specify the assumptions,
conditions, and restrictions imposed on the functions we use, in order to obtain the re-
sults we proposed. In Sect. 3, the formulated mixed problem is transformed into a new
problem of the Cauchy type defined on a Hilbert space, which we build in advance using
the data of the mixed problem. Our main results, regarding the existence and uniqueness
of the solution to the Cauchy problem, are formulated and proved in Sect. 4. It should be
stated that these results are obtained based on tools provided by the theory of operator
semigroups.

2 Preliminaries
In all what follows we will use a domain D in the three-dimensional Euclidean space R3

whose boundary, denoted by ∂D, is assumed to have at least the regularity that allows the
application of the divergence theorem. Assume that D is occupied by a mixture composed
of a dipolar elastic medium and a viscous Moore–Gibson–Thompson (MGT) material.
The closure of the domain D is denoted by D̄ and D̄ = D ∪ ∂D. By convention, a vector
field v has three components vi, i = 1, 2, 3, and a tensor field w has nine components wij,
i, j = 1, 2, 3. The derivative of a function f (t, x) with respect to the time variable t is denoted
by ḟ . The derivative of the function f with respect to its space variable xi is designated by
f,i. In the case of repeating subscripts, Einstein’s summation rule is used.

If there is no possibility of confusion, specifying the dependence of a function on its
spatial or temporal arguments can be avoided. The evolution of our body is referred to in
the fixed system of Cartesian axes Oxi, i = 1, 2, 3.

For the considered mixture, a typical point has, at a moment t, the displacements of
components denoted by v = (vm) and w = (vm), m = 1, 2, 3, respectively.

For the microrotations, we will use the notation φ = (φm), m = 1, 2, 3. These three vectors
are functions which depend on time and the material point. At the initial moment, it is
supposed that the particles are in the same position.

With the help of internal variables (vm, wm,φm), the kinematic characteristics of the me-
dia, that is, the tensors of strain can be defined through the following kinematic relations:

emn =
1
2

(wn,m + wm,n),

ηmn = vn,m + εknmφk ,

μmn = φn,m.

(1)
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The components of the tensor of stress are denoted by τmn, the notation σmn is used for
the components of the couple stress tensor, defined on �.

In the case of a thermoelastic body which is homogeneous and possesses in its reference
state a point of symmetry, while the rest is considered nonisotropic, the tensors of stress
can be introduced by using the following constitutive relations [29]:

τmn =
∫ t

–∞

[
Amnkl(t – τ )ėkl(τ ) + Bmnkl(t – τ )η̇kl(τ )

]
dτ ,

σmn =
∫ t

–∞

[
Bklmn(t – τ )ėkl(τ ) + Cmnkl(t – τ )η̇kl(τ )

]
dτ ,

γmn =
∫ t

–∞

[
Dklmn(t – τ )η̇kl(τ ) + Emnkl(t – τ )μ̇kl(τ )

]
dτ ,

(2)

and for the internal body force and the internal body couple, we have:

Fm =
∫ t

–∞
aml(t – τ )

[
v̇l(τ ) – φ̇l(τ ))

]
τ ,

Gm =
∫ t

–∞
bml(t – τ )

[
ẇl(τ ) – φ̇l(τ )

]
dτ ,

pm =
∫ t

–∞
cml(t – τ )

[
v̇l(τ ) – ẇl(τ )

]
dτ .

(3)

The above constitutive tensors satisfy the symmetries:

Amnkl = Aklmn, Cmnkl = Cklmn, Emnkl = Eklmn.

Also, we suppose the following assumptions are satisfied:

Amnkl(τ , x) = Amnkl(x) +
[

1
p

A∗
mnkl(x) – Amnkl(x)

]
e– s

p ,

Bmnkl(τ , x) = Bmnkl(x), Cmnkl(τ , x) = Cmnkl(x),

Dmnkl(τ , x) = Dmnkl(x), Emnkl(τ , x) = Emnkl(x),

aml(τ , x) = aml(x), bml(τ , x) = bml(x), cml(τ , x) = cml(x),

(4)

in which the parameter p is a positive constant.
For our mixture, we have the following equations of evolution:

τmn,n + Fm = 
1v̈m,

σmn,n + pm = 
2ẅm,

γmn,n + εmnkτnk + Gm = Imnφ̈n,

(5)

where 
1 and 
2 are the mass densities of the two media of the mixture.
We will suppose that as t → –∞ the deformations vanish.



Marin et al. Boundary Value Problems         (2024) 2024:16 Page 4 of 9

Considering relations (3) and (4) and using a notation of the form ûm = um + pu̇m, we
can rewrite the evolution equations from (5) in the following form:

(
Amnklek,l + A∗

mnklėk,l + Bmnklη̂kl
)

,n – aml(vl + pv̇l – ŵl) = 
1(p
...
vm +v̈m),

[
Bmnkl(ek,l + pėk,l) + Cmnklη̂kl

]
,n + aml(wl + pẇl – ŵl) = 
2 ¨̂wm,

[
Dmnkl(ηk,l + pėk,l) + Cmnklμ̂kl

]
,n – bml(φl + pφ̇l – ŵl)

+ εmnk
(
Amnklek,l + A∗

mnklėk,l + Bmnklη̂kl
)

= Imn(p
...
φm +φ̈m),

(6)

where the tensors amn, bmn, and cmn satisfy the following symmetry relations:

amn = anm, bmn = bnm, cmn = cnm.

In what follows, in order not to complicate the writing, we will give up the hat in the
notation.

To complete the mixed problem with initial and boundary values, in our context, we
need the initial data, which we take in their general form:

vm(0, x) = v0
m(x), v̇m(0, x) = ṽ0

m(x), v̈m(0, x) = v̆0
m(x),

φm(0, x) = φ0
m(x), φ̇m(0, x) = φ̃0

m(x), φ̈m(0, x) = φ̆0
m(x),

wm(0, x) = w0
m(x), ẇm(0, x) = w̃0

m(x), ∀x ∈ D.

(7)

Also, we must add the boundary conditions, which we will consider in their homogeneous
form:

vm(t, x) = wm(t, x) = φm(t, x) = 0, ∀(t, x) ∈ (–∞, 0] × ∂D. (8)

Now we have to systematize the restrictions that we have to impose on the functions we
work with so that we can obtain the results we proposed. These are:

(H1) The densities 
1 and 
2, and the inertia tensor Imn, are assumed to be strictly posi-
tive.

(H2) A positive constant c1 can be determined so that

Amnklxmnxkl + 2Bmnklxmnykl + Cmnklymnykl ≥ c1(xmnxmn + ymnymn), ∀xmn, ymn.

(H3) Positive constants c2, c3, and c4 can be determined so that

amnxmxn ≥ c2xmxn, bmnxmxn ≥ c3xmxn, cmnxmxn ≥ c4xmxn, ∀xm.

(H4) Two positive constants c5, c6, can be determined so that

Amnklxmnxkl ≥ pc5xmnxkl, ∀xmn,

Cmnklxmnxkl ≥ pc6xmnxkl, ∀xmn.
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Let us denote byP the mixed problem consisting of equations (6), the initial conditions (7),
the boundary conditions (8), and we suppose that the assumptions (H1), (H2), (H3), and
(H4) are satisfied.

In the next step, we will transform the problemP into an abstract Cauchy-type problem,
considered on a Hilbert space that we will define in advance.

By using the known Sobolev spaces W 1,2
0 (D) and L2(D) (see [34]), we define the space

H = W1,2
0 (D) × W1,2

0 (D) × L2(D) × W1,2
0 (D) × W1,2

0 (D) × L2(D) × W1,2
0 (D) × L2(D).

Here, the vector notations have the following meaning:

W1,2
0 (D) =

[
W 1,2

0 (D)
]3, L2(D) =

[
L2(D)

]3.

For an arbitrary element

W = (vm, ṽm, v̆m, wm, w̃m,φm, φ̃m, φ̆m)

from the space H , inspired by equations (6), we can define the operators:

A = (Am), Ã = (Ãm), Ă = (Ăm), B = (Bm), B̃ = (B̃m),

C = (Cm), C̃ = (C̃m), C̆ = (C̆m), m = 1, 2, 3,

by

Amv =
1

p
1

[
(Amnklekl),n – amlvl

]
,

Ãmṽ =
1

p
1

[(
A∗

mnklẽkl
)

,n – pamlṽl
]
,

Ămv̆ =
1
p

v̆m,

Bmw =
1

p
2

[
(Bmnklekl),n + amlvl

]
,

B̃mw̃ =
1

2

[
(pBmnklη̃kl),n – pamlṽl

]
,

Cmφ = I–1
ij

[
(Dmnklηkl),n – bmlφl

]
,

C̃mφ̃ = I–1
ij

[
(Dmnklη̃kl),n – pbmlφ̃l

]
,

C̆mφ̆ = I–1
ij

[
(pEmnklμ̆kl),n + pbmlφ̆l

]
.

(9)

Now, we can introduce on the Hilbert space H the Cauchy problem

dW
dt

= �W ,

W (0) = W 0,
(10)

in which � is a matrix operator constructed with help of the operators defined in (9).
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Also, in the notation above,

W 0 =
(
v0

m, ṽ0
m, v̆0

m, w0
m, w̃0

m,φ0
m, φ̃0

m, φ̆0
m
)
,

that is, the initial values defined in (7).
A scalar product in the Hilbert space H can be defined as follows:

〈
(vm, ṽm, v̆m, wm, w̃m,φm, φ̃m, φ̆m),

(
v∗

m, ṽ∗
m, v̆∗

m, w∗
m, w̃∗

m,φ∗
m, φ̃∗

m, φ̆∗
m
)〉

=
1
2

∫
D

{

1(pṽm + v̆m)

(
pṽ∗

m + v̆∗
m
)

+ Imn(pφ̃n + φ̆n)
(
pφ̃∗

n + φ̆∗
n
)

+ 
2wmw∗
m

+ pA∗mnrsṽm,nṽ∗
r,s + Amnrs(vm,n + pṽm,n)

(
v∗

r,s + pṽ∗
r,s

)
+ Cmnrsφm,nφ∗

r,s

+ Bmnrs
[
(vm,n + pṽm,n)φ∗

r,s + (vm,n + pṽm,n)φ∗
r,s

]

+ amn(vm + pṽm – wm)
(
v∗

n + pṽ∗
n – w∗

n
)

+ Dmnrs(wm,n + pw̃m,n)
(
w∗

r,s + pw̃∗
r,s

)

+ Emnrs
[
(wm,n + pw̃m,n)φ∗

r,s + (vm,n + pw̃m,n)φ∗
r,s

]

+ bmn(φm + pφ̃m – wm)
(
φ∗

n + pφ̃∗
n – w∗

n
)}

, (11)

where a bar on a variable is used to designate the complex conjugate of the respective
variable.

The inner form (11) induces a norm on the Hilbert space H of the following form:

∥∥(vm, ṽm, v̆m, wm, w̃m,φm, φ̃m, φ̆m)
∥∥2

=
1
2

∫
D

{

1(pṽm + v̆m)(pṽm + v̆m) + Imn(pφ̃n + φ̆n)(pφ̃n + φ̆n) + 
2wmwm

+ pA∗mnrsṽm,nṽr,s + Amnrs(vm,n + pṽm,n)(vr,s + pṽr,s) + Cmnrsφm,nφr,s

+ Bmnrs
[
(vm,n + pṽm,n)φr,s + (vm,n + pṽm,n)φr,s

]

+ amn(vm + pṽm – wm)(vn + pṽn – wn) + Dmnrs(wm,n + pw̃m,n)(wr,s + pw̃r,s)

+ Emnrs
[
(wm,n + pw̃m,n)φr,s + (vm,n + pw̃m,n)φr,s

]

+ bmn(φm + pφ̃m – wm)(φn + pφ̃n – wn)
}

, (12)

and it can be shown, in a usual way, that this norm is equivalent to the original one on the
Hilbert space H .

3 Main results
Both basic results of our paper, that is, those concerning the existence and uniqueness of
a solution for the Cauchy problem (10), will be obtained using the theory of semigroups
of operators and are based on the well-known Hille–Yosida theorem.

To begin with, we must specify that the domain of the operator � consists of all the
elements (v, ṽ, v̆, w, w̃,φ, φ̃, φ̆) for which

(v, v̆,φ, φ̆, w̃) ∈ W 1,2
0 ,

Av + Ãṽ + Cφ + C̃φ̃ + Bw ∈ L2(D),
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Ãv + Ăṽ + C̃φ + C̆φ̃ + B̃w ∈ L2(D),

Bv + B̃ṽ + Cφ + C̃φ̃ + C̆w ∈ L2(D).

We will denote by D(�) the domain of the operator �. In the known way, it can be shown
that the domain D is dense in the Hilbert space H .

Considering an arbitrary element W = (v, ṽ, v̆, w, w̃,φ, φ̃, φ̆) from the domain D of the
operator �, it can be shown that

(�W , W ) = –
1
2

∫
D

(Amnklv̇m,nv̇k,l + Cmnklφ̇m,nφ̇k,l) dV ≤ 0, (13)

that is, the operator � is dissipative, as required in the Lummer–Phillips corollary of Hille–
Yosida theorem (see, for instance, [34]).

In accordance with this corollary, in order to ensure that the problem (15) has a solution
and that this solution is unique, it must be demonstrated that the operator � satisfies the
condition of range. For this, some element W ∗ = (v∗, ṽ∗, v̆∗, w∗, w̃∗,φ∗, φ̃∗, φ̆∗) is fixed in
the above defined Hilbert space H . Then it is said that the operator � satisfies the range
condition if the equation �W = W ∗ admits a solution W ∈D(�). With another equivalent
formulation, we must show that the resolvent of the operator � contains the null element.

This means that, considering an arbitrary element (u1, u2, u3, u4, u5, u6, u7, u8) ∈ H , we
must find a solution to the following system:

ṽ = u1, v̆ = u2, φ̃ = u3, φ̆ = u4, w̃ = u5,

Av + Ãṽ + Cφ + C̃φ̃ + Bw = u6,

Ãv + Ăṽ + C̃φ + C̆φ̃ + B̃w = u7,

Bv + B̃ṽ + Cφ + C̃φ̃ + C̆w = u8.

(14)

Considering that we can easily find the variables ṽ, v̆, φ̃, φ̆, and w̃, for the other variables
we obtain the following system:

Av + Cφ + Bw = u6 – Ãu1 – C̃u3,

Ãv + C̃φ + B̃w = u7 – Ău1 – C̆u3, (15)

Bv + Cφ + C̆w = u8 – B̃u1 – C̃u3.

It is not difficult to see that the terms on the right-hand side of the system (15) are elements
of the space W –1,2(D) × W –1,2(D) × W –1,2(D).

Considering this and taking into account the hypotheses H1–H4, Lax–Milgram lemma
can be used, and it ensures the existence of a solution (v,φ, w) ∈ W 1,2

0 (D) × W 1,2
0 (D) ×

W 1,2
0 (D) of system (15).
Also, the operator � generates a semigroup of contractions, the infinitesimal generator

of this semigroup is unique, and it is the solution of Cauchy problem (10), considered for
V0 as an arbitrary element in the domain of the operator �. It is also the unique solution
of the problem P .
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4 Conclusions
We proved both the existence and uniqueness of the solution to problem (10). If we take
into account how this problem was constructed, we deduce the existence and uniqueness
of the solution to the initially formulated problem P .

It is necessary to specify for the variables above,

(v, ṽ, v̆, w, w̃,φ, φ̃, φ̆) and (u1, u2, u3, u4, u5, u6, u7, u8),

the existence of a positive constant K for which we have

∥∥(v, ṽ, v̆, w, w̃,φ, φ̃, φ̆)
∥∥ ≤ K

∥∥(u1, u2, u3, u4, u5, u6, u7, u8)
∥∥.

Also, using arguments similar to those above related to the theory of operator semigroups,
it is possible to demonstrate the continuous dependence of the solutions of the problem
P with respect to the initial data and to the supply terms in the problem P . Moreover, the
exponential decay of the solutions of the problem P can be shown.
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