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Abstract
This paper is concerned with the existence and uniqueness of global attractors for a
class of degenerate parabolic equations with memory on R

n. Since the
corresponding equation includes the degenerate term div{a(x)∇u}, it requires us to
give appropriate assumptions about the weight function a(x) for studying our
problem. Based on this, we first obtain the existence of a bounded absorbing set,
then verify the asymptotic compactness of a solution semigroup via the asymptotic
contractive semigroup method. Finally, the existence and uniqueness of global
attractors are proved. In particular, the nonlinearity f satisfies the polynomial growth
of arbitrary order p – 1 (p≥ 2) and the idea of uniform tail-estimates of solutions is
employed to show the strong convergence of solutions.
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1 Introduction
In this paper, we investigate the long-time behavior of solutions for the following degen-
erate parabolic equation with memory on R

n (n ≥ 2):

ut – div
{

a(x)∇u
}

–
∫ ∞

0
k(s)�u(t – s) ds + λu + f (x, u) = g in R

n ×R
+, (1.1)

and initial value

u(x, t) = u0(x) in R
n × (–∞, 0], (1.2)

where the variable nonnegative weight coefficient a(·) denotes the diffusivity, the forcing
term g = g(x) ∈ L2(Rn) and the initial datum u0 ∈ L2(Rn) are given, λ is a positive constant,
and R

+ = [0,∞).
In order to study the equation (1.1) with initial condition (1.2), let us assume that the

variable nonnegative diffusivity a(·), the nonlinearity f , and the memory k(s) respectively
satisfy the following conditions:
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(H1) The weight function a(x) is a nonnegative function such that a(x) ∈ Lloc(Rn), and
there exists some 0 < α < 2 such that, for each z ∈R,

lim inf
x→z

|x – z|–αa(x) > 0. (1.3)

In addition, for a(x) we also suppose that there exists K > 0 such that, for any k ≥ K ,

sup
k≤|x|≤√

2k
a(x) < ∞. (1.4)

(H2) The memory kernel k(s) is a nonnegative integrable function of total mass
∫ ∞

0 k(s) ds = 1. Let μ(s) = –k′(s), and we assume that

μ ∈ C1(
R

+) ∩ L1(
R

+)
, μ(s) ≥ 0, μ′(s) ≤ 0, ∀s ∈R

+, (1.5)

as well as there is a constant δ > 0 such that

μ′(s) + δμ(s) ≤ 0, ∀s ∈R
+. (1.6)

From (1.5) and (1.6), it is easy to infer that

μ(∞) = lim
s→∞μ(s) = 0. (1.7)

To avoid the presence of unnecessary constants, we set

∫ ∞

0
μ(s) ds = 1. (1.8)

(H3) The nonlinearity f ∈ C1(Rn ×R,R) fulfills f (0) = 0, along with the dissipation con-
dition

f ′(s) ≥ –l, (1.9)

and the arbitrary order polynomial growth restriction

α1|s|p – β1ϕ1(x) ≤ f (s)s ≤ α2|s|p + β2ϕ2(x), p ≥ 2, (1.10)

where αi,βi (i = 1, 2), and l are the positive constants, while ϕ1 ∈ L1(Rn), ϕ2 ∈ L
p

p–1 (Rn) are
nonnegative functions.

In the light of the Dafermos’ idea [1], we need to introduce a new variable ηt to charac-
terize the past history of u, which is defined as follows:

ηt = ηt(x, s) :=
∫ s

0
u(x, t – r) dr, ∀s ∈R

+. (1.11)

Denote ηt
t = ∂

∂t η
t , ηt

s = ∂
∂sη

t , then one easily gets

ηt
t = –ηt

s + u. (1.12)
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The historical variable u0(·, –s) of u satisfies

∫ ∞

0
e–σ s∥∥u0(–s)

∥∥2
H1(Rn) ds ≤ �, (1.13)

where � > 0 and σ ≤ δ (δ is from (1.6)).
As a consequence, the problem (1.1)–(1.2) can be rewritten as follows:

⎧
⎨

⎩
ut – div{a(x)∇u} –

∫ ∞
0 μ(s)�ηt(s) ds + λu + f (x, u) = g,

ηt
t = –ηt

s + u,
(1.14)

with the initial data

u(x, 0) = u0(x), η0(x, s) =
∫ s

0
u0(x, –r) dr. (1.15)

From (1.13), it is easy to obtain the following estimate:

∫ ∞

0
μ(s)

∥∥η0(s)
∥∥2

H1(Rn) ds ≤ �.

The integro-differential reaction–diffusion equation (1.1) with memory and a(x) = 1,
as a model of heat diffusion with delay, depicts a reaction process that depends on the
temperature itself, see, e.g., [2–7] and references therein. Such a model is also applied to
some other physical phenomena, such as polymers and high viscosity liquids, etc.; see,
e.g., [8–10]. However, equation (1.1), compared to the previous case of a(x) = 1, mainly
describes a medium that is possibly somewhere a “perfect” insulator, see, e.g., [11].

The parabolic equations with degeneracy defined on bounded domain have been widely
studied by some authors in recent years, including the well-posedness and long-time be-
havior of solutions (such as global and pullback attractors) for corresponding equation,
see, e.g., [12–25] and references therein. In these published articles, the diffusivity a(·) is
assumed to satisfy certain conditions, based on which the authors can ensure the com-
pactness properties required for studying long-term dynamics. For the sake of simplicity,
we will not go into much detail here. From the aforementioned works, we know that the
global and pullback attractors on a bounded domain for the degenerate parabolic equation
(1.16) given later have been thoroughly researched. However, for the unbounded case, it
seems that few people thought about such questions.

To the best of our knowledge, the authors of [26, 27] have already studied the following
degenerate parabolic equations on R

n:

ut – div
{
σ (x)∇u

}
+ λu + f (x, u) = “external force term”. (1.16)

In [26], for the autonomous semilinear degenerate parabolic equation, they obtained
the existence of global attractors on L2(Rn), Lp(Rn) ∩ H1(Rn,σ ). In [27], for the nonau-
tonomous semilinear degenerate parabolic equation, the existence of pullback attractors
on Lp(Rn) ∩H1(Rn,σ ) was proved under a new condition concerning a variable nonnega-
tive diffusivity σ (·). Recently, the authors of [28] studied the well-posedness and the exis-
tence of global attractors on L2(�) × L2

μ(R; H1
0 (�)) of equation (1.1), which is an improve-
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ment compared with the studies of the semilinear degenerate parabolic equation (1.16).
So, these works inspired us to consider the unbounded case of equation (1.1).

The problem (1.1)–(1.2) can be analyzed by following the Dafermos’ idea of introducing
an additional variable ηt , see, e.g., [3, 4, 29–34] and references therein. As is well known,
if we want to study the existence of global attractors, the key is to obtain the asymptotic
compactness of the solution semigroup in some sense. Note that the nonlinear term f of
(1.1) satisfies the polynomial growth of arbitrary order p – 1 (p ≥ 2) and equation (1.1)
contains the fading memory. As the problem (1.1)–(1.2) is considered on the whole space,
this causes a series of difficulties.

(i) We cannot obtain higher regularity of solutions for equation (1.1) by utilizing the
method of [3, 4, 29, 31, 35].

(ii) In the bounded case, the embedding L2
μ(R+; H2(�) ∩ H1

0 (�)) ↪→ L2
μ(R+; H1

0 (�)) is
noncompact, let alone the embedding in the unbounded case. Thus the compact
embedding method cannot be used to verify the asymptotic compactness of
semigroup {S(t)}t≥0.

In order to overcome these difficulties, the idea of the contractive function method is
used to prove asymptotic compactness of the solution semigroup in [36–38]. Unfortu-
nately, it is widely known that we cannot directly obtain that the semigroup {S(t)}t≥0 is a
contractive semigroup on L2(Rn) × L2

μ(R; H1
0 (Rn)) since the phase space is an unbounded

domain. Therefore, the asymptotic contractive semigroup method proposed in [39] and
the uniform tail-estimates method proposed in [40] shall be applied to solve our problem.
The main contribution of this paper is that we prove the existence and uniqueness of global
attractors and the conclusions of the article extend some existing results in [18, 26–28] to
whole space cases which have not been studied before.

The plan of this paper is as follows. In Sect. 2, we introduce some notations and re-
call some basic concepts on the asymptotic contractive function (semigroup) as well as
some useful results later. In Sect. 3, we first sketch out the well-posedness of the problem
(1.14)–(1.15), and then obtain the existence of a bounded absorbing set, as well as prove
the asymptotic compactness of the semigroup corresponding to problem (1.14)–(1.15)
by constructing an asymptotic contractive function. Finally, we obtain the existence and
uniqueness of global attractors to problem (1.14)–(1.15) on the whole space R

n.

2 Preliminaries
In this section, we introduce some notations and recall some of the existing abstract re-
sults, which shall be used to deal with our problem in the sequel.

2.1 Notation
For convenience, hereafter let C be an arbitrary positive constant and Q(·) be a strictly
monotonically increasing positive function, which may be different from line to line, and
even in the same line. Let

| · |p =
(∫

Rn

∣∣u(x)
∣∣p dx

) 1
p

be the norm of Lp(Rn) (2 ≤ p < ∞), particularly, we denote the norms of L1(Rn) and
L∞(Rn) by ‖·‖L1 and ‖·‖L∞ , respectively. Furthermore, we consider H := L2(Rn), equipped
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the following inner product:

(u, v) =
∫

Rn
u(x)v(x) dx, ∀u, v ∈ L2(

R
n).

To describe our problem, we need to introduce the Hilbert space H1(Rn, a), equipped
with the following norm:

‖u‖2
H1(Rn ,a) :=

∫

Rn

∣∣u(x)
∣∣2 dx +

∫

Rn
a(x)

∣∣∇u(x)
∣∣2 dx.

Denote the weighted spaces V0 = L2
μ(R+; L2(Rn)) and V1 = L2

μ(R+; H1(Rn)), as well as
their inner products and norms as

〈ψ ,η〉V0 =
∫ ∞

0
μ(s)(ψ ,η) ds,

∥∥ηt∥∥2
μ,0 =

∫ ∞

0
μ(s)

∣∣ηt(s)
∣∣2
2 ds,

and

〈ψ ,η〉V1 =
∫ ∞

0
μ(s)〈ψ ,η〉H1(Rn) ds,

∥∥ηt∥∥2
μ,1 =

∫ ∞

0
μ(s)

(∣∣ηt(s)
∣∣2
2 +

∣∣∇ηt(s)
∣∣2
2

)
ds,

respectively. According to the aforementioned notation, the phase space of the problem
(1.14)–(1.15) can be represented as

L2 := H × V1,

endowed the following norm:

‖ · ‖2
L2 = | · |22 + ‖ · ‖2

μ,1.

We denote the ball with radius R in L2 by

B(R) =
{
φ ∈L2 : ‖φ‖L2 ≤ R

}
.

2.2 Abstract results
In this subsection, we give some of the existing theoretical results, which shall be used to
verify the asymptotic compactness of semigroup; for more detail, see [34, 36, 39].

Definition 2.1 Let X be a Banach space and B be a bounded subset of X. We call a function
ψ(·, ·), defined on X × X, an asymptotic contractive function if there exists a contractive
function φ such that for any ε > 0 and any sequence {xn}∞n=1 ⊂ B, there is a subsequence
{xnk }∞k=1 ⊂ {xn}∞n=1 satisfying

ψ(xnk , xnl ) ≤ ε + φ(xnk , xnl ),

where

lim
k→∞

lim
l→∞

φ(xnk , xnl ) = 0.
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We denote the set of all contractive functions on B × B by E(B).

Lemma 2.2 Let X be a Banach space and B be a bounded subset of X. Consider a semigroup
{S(t)}t≥0 with a bounded absorbing set B0 on X. Moreover, assume that for all ε > 0 there
exist T = T(B; ε) and ψT (·, ·) ∈ E(B) such that

∥∥S(T)x – S(T)y
∥∥

X ≤ ε + ψT (x, y), ∀x, y ∈ B,

where φT depends on T . Then the semigroup {S(t)}t≥0 is an asymptotic contractive semi-
group on B.

Theorem 2.3 Let {S(t)}t≥0 be a continuous semigroup on X. Then {S(t)}t≥0 has a global
attractor in X provided that the following conditions hold true:

(i) {S(t)}t≥0 has a bounded absorbing set B0 in X ;
(ii) {S(t)}t≥0 is an asymptotic contractive semigroup on B0.

Lemma 2.4 ([41, 42]) Let X ⊂⊂ H ⊂ Y be Banach spaces, with X reflexive. Suppose that
un is a sequence that is uniformly bounded in L2(0, T ; X) and dun/dt is uniformly bounded
in Lp(0, T ; Y ), for some p > 1. Then there is a subsequence of un that converges strongly in
L2(0, T ; H).

3 Global attractors on L2

In this section, we shall consider the existence and uniqueness of the global attractors in
L2. To this end, we first state the definition of a weak solution, and then give the well-
posedness conclusion for the problem (1.14)–(1.15). Finally, we prove that the problem
(1.14)–(1.15) possesses a bounded absorbing set in L2 and verify the asymptotic compact-
ness of the corresponding solution process, which can ensure the existence and unique-
ness of the global attractors in L2.

3.1 Well-posedness
The well-posedness of the problem (1.14)–(1.15) can be proved via the Faedo–Galerkin
method (see, e.g., [26, 28, 43]). Of course, this needs to be based on the following definition
of a weak solution.

Definition 3.1 Suppose that g ∈ H and the initial value z0 = (u0,η0) ∈ L2. Then for any
T > 0, let I = [0, T]. The pair of functions z(x, t) = (u(x, t),ηt(x, s)) defined onR

n × I is called
a weak solution of the problem (1.14)–(1.15) if

u ∈ C(I; H) ∩ L2(0, T ;H1(
R

n, a
)) ∩ Lp(0, T ; Lp(

R
n)),

ut ∈ L2(0, T ;H–1(
R

n, a
))

, ηt ∈ C(0, T ;V1),

ηt
t + ηt

s ∈ L∞(0, T ;V1) ∩ L2(0, T ;V1),

whereH–1(Rn, a) denotes the dual space ofH1(Rn, a). Furthermore, the following identity:
⎧
⎨

⎩
(ut ,ω) + (a(x)∇u,∇ω) + 〈ηt ,ω〉V1 + λ(u,ω) + 〈f (x, u),ω〉 = (g,ω),

〈ηt
t + ηt

s ,ϕ〉V1 = 〈u,ϕ〉V1 ,
(3.1)

holds true for any (ω,ϕ) ∈ C∞(Rn) × V1 and a.e. t ∈ I .
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Lemma 3.2 For any T > 0 and z0 = (u0,η0) ∈ L2, the problem (1.14)–(1.15) has a unique
weak solution

z(x, t) =
(
u(x, t),ηt(x, s)

) ∈ C(I; H × V1),

and there exists a positive constant κ , which is independent of t, such that the semigroup
S(t) is Lipschitz continuous:

∥∥S(t)z1
0 – S(t)z2

0
∥∥
L2

≤ CeκT∥∥z1
0 – z2

0
∥∥
L2

, ∀t ∈ I, (3.2)

where z1
0 and z2

0 denote the initial data of the problem (1.14)–(1.15).

Proof Let z1(t) = (u1(t),ηt
1) and z2(t) = (u2(t),ηt

2) be two solutions of the problem (1.14)–
(1.15) with the initial data z1

0 = (u1
0,η0

1) and z2
0 = (u2

0,η0
2), respectively. Then we can obtain

d
dt

(∣∣u1(t) – u2(t)
∣∣2
2 +

∥∥∇ηt
1 – ∇ηt

2
∥∥2

μ,0

)
+ δ

∥∥∇ηt
1 – ∇ηt

2
∥∥2

μ,0

+ 2
∫

Rn

(
f
(
x, u1(t)

)
– f

(
x, u2(t)

))(
u1(t) – u2(t)

)
dx + 2λ

∣∣u1(t) – u2(t)
∣∣2
2 ≤ 0.

(3.3)

In addition, we can also get from (1.14)2 that

d
dt

∥∥ηt
1 – ηt

2
∥∥2

μ,0 +
δ

2
∥∥ηt

1 – ηt
2
∥∥2

μ,0 ≤ 1
2δ

∣∣u1(t) – u2(t)
∣∣2
2. (3.4)

By (1.9), it is easy to get that

d
dt

(∣∣u1(t) – u2(t)
∣∣2
2 +

∥∥∇ηt
1 – ∇ηt

2
∥∥2

μ,0

) ≤ ∥∥∇ηt
1 – ∇ηt

2
∥∥2

μ,0 + 2l
∣∣u1(t) – u2(t)

∣∣2
2. (3.5)

Combining with (3.4) and (3.5), we know that there exists κ = max{1, 2l + 1
2δ

} such that for
any t ∈ [0, T],

d
dt

(∣∣u1(t) – u2(t)
∣
∣2
2 +

∥
∥ηt

1 – ηt
2
∥
∥2

μ,1

) ≤ κ
(∥∥ηt

1 – ηt
2
∥
∥2

μ,1 +
∣
∣u1(t) – u2(t)

∣
∣2
2

)
, (3.6)

which implies (3.2). This proof is finished. �

By Lemma 3.2, it is easy to see that the solution semigroup {S(t)}t≥0 on L2 can be defined
as

S(t) : L2 →L2, S(t)z0 = z(t), ∀t ≥ 0. (3.7)

Moreover, we know that the semigroup {S(t)}t≥0 is a strongly continuous semigroup on
the phase space L2.

3.2 The existence of a bounded absorbing set in L2

Unless otherwise specified, we always assume that g ∈ H and the conditions (H1)–(H3)
hold true throughout this article. Furthermore, we use z(t) = (u(t),ηt) to denote the so-
lution of the problem (1.14)–(1.15). In this subsection, we mainly address the dissipative
feature of the semigroup {S(t)}t≥0. To this end, we give the following result.
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Lemma 3.3 Consider any R > 0 and z0 = (u0,η0) ∈ B(R) ⊂ L2. Then there exist two con-
stants c1 > 0 and k1 > 0 such that for any t ≥ 0, whenever ‖z0‖L2 ≤ R, one has

∥∥z(t)
∥∥
L2

≤ Q(R)e–c1t + k1, (3.8)

where k1 = 1
c1

(1 + 4
δ2 )( 1

λ
|g|22 + 2β1‖ϕ1‖L1 ).

Proof Using u to multiply the first equation of (1.14) in H , we can obtain that

1
2

d
dt

(|u|22 +
∥∥∇ηt∥∥2

μ,0

)
+

∫

Rn
a(x)|∇u|2 dx +

δ

2
∥∥∇ηt∥∥2

μ,0

+
∫

Rn
f (x, u)u dx +

λ

2
|u|22 ≤ 1

2λ
|g|22,

(3.9)

where we used

〈∇ηt ,∇ηt
s
〉
V0

≥ δ

2
∥∥∇ηt∥∥2

μ,0 and (g, u) ≤ λ

2
|u|22 +

1
2λ

|g|22.

From (1.10), we have

∫

Rn
f (x, u)u dx ≥ α1|u|pp – β1‖ϕ1‖L1 . (3.10)

Combining with (3.9) and (3.10), it is easy to know that

d
dt

(|u|22 +
∥∥∇ηt∥∥2

μ,0

)
+

∫

Rn
a(x)|∇u|2 dx + δ

∥∥∇ηt∥∥2
μ,0

+ α1|u|pp + λ|u|22 ≤ 1
λ

|g|22 + 2β1‖ϕ1‖L1 .
(3.11)

Taking c1 = {λ, δ
2 } in (3.11), one has

d
dt

(|u|22 +
∥∥∇ηt∥∥2

μ,0

)
+ c1

(|u|22 +
∥∥∇ηt∥∥2

μ,0

) ≤ 1
λ

|g|22 + 2β1‖ϕ1‖L1 . (3.12)

Applying Gronwall’s inequality for (3.12), it follows that

|u|22 +
∥∥∇ηt∥∥2

μ,0 ≤ Q(R)e–c1t +
1
c1

(
1
λ

|g|22 + 2β1‖ϕ1‖L1

)
. (3.13)

Furthermore, we use ηt to multiply the second equation of (1.14) in V0 to get

1
2

d
dt

∥∥ηt∥∥2
μ,0 +

δ

2
∥∥ηt∥∥2

μ,0 ≤
∫ ∞

0
μ(s)

(
u,ηt)ds. (3.14)

Due to Hölder’s and Young’s inequalities and (1.8), we have

∫ ∞

0
μ(s)

(
u,ηt)ds ≤ 1

δ
|u|22 +

δ

4
∣∣ηt(s)

∣
∣2
μ,2,
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which, along with (3.14), yields

d
dt

∥∥ηt∥∥2
μ,0 +

δ

2
∥∥ηt∥∥2

μ,0 ≤ 2
δ
|u|22 ≤ 2

δ

[
Q(R)e–c1t +

1
c1

(
1
λ

|g|22 + 2β1‖ϕ1‖L1

)]
, (3.15)

where (3.13) was used. Applying Gronwall’s inequality in (3.15) again, we have

∥∥ηt∥∥2
μ,0 ≤ e– δ

2 tQ(R) +
4
δ2

[
Q(R)e–c1t +

1
c1

(
1
λ

|g|22 + 2β1‖ϕ1‖L1

)]
. (3.16)

From (3.13) and (3.15), one gets

|u|22 +
∥∥ηt∥∥2

μ,1 ≤ e– δ
2 tQ(R) +

(
1 +

4
δ2

)[
Q(R)e–c1t +

1
c1

(
1
λ

|g|22 + 2β1‖ϕ1‖L1

)]
,

which implies (3.8). The proof is complete. �

Lemma 3.4 For any given R ∈ R
+, let z0 = (u0,η0) ∈ B(R) ⊂ L2, then the semigroup

{S(t)}t≥0 associated with the equation (1.14)–(1.15) admits an (L2,L2)-bounded absorb-
ing set B0, namely, there exists t0 = t0(R) < t such that, for any bounded set B ⊂ L2, one
has

S(t)B ⊂ B0, ∀t ≥ t0.

In fact, the uniformly bounded absorbing set B0 can be given by

B0 =
{

z ∈L2 : ‖z‖2
L2 ≤ ρ0

}
. (3.17)

Proof From Lemma (3.3), let t0 := t0(R) = 1
c1

ln Q(R)
k1

and ρ0 = 2k1, then it is easy to see that
the conclusion is true. �

Corollary 3.5 For any R > 0 and z0 = (u0,η0) ∈ B(R) ⊂ L2, there exists ρ1 = ρ1(k1) > 0
such that the relationship

∫ t+1

t

(∣∣u(s)
∣∣2
2 +

∫

Rn
a(x)

∣∣∇u(s)
∣∣2 dx +

∥∥ηs∥∥2
μ,1 +

∣∣u(s)
∣∣p
p

)
ds ≤ Q(R)e–c1t + ρ1

holds for any t ≥ 0.

Proof Integrating (3.11) with respect to t over (t, t + 1) and combining with Lemma 3.3, it
is easy to obtain

∫ t+1

t

(∣∣u(s)
∣∣2
2 +

∫

Rn
a(x)

∣∣∇u(s)
∣∣2 dx +

∥∥∇ηs∥∥2
μ,0 +

∣∣u(s)
∣∣p
p

)
ds

≤ 1
c2

(
1
λ

|g|22 + 2β1‖ϕ1‖L1 +
∣∣u(t)

∣∣2
2 +

∥∥∇ηt∥∥2
μ,0

)

≤ 1
c2

(
1
λ

|g|22 + 2β1‖ϕ1‖L1 +
∥∥z(t)

∥∥2
L2

)

≤ Q(R)e–c1t +
1
c2

(
1
λ

|g|22 + 2β1‖ϕ1‖L1

)
+

k1

c2
,

(3.18)

where c2 = min{1, δ,α1,λ}.
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Similarly, we integrate (3.15) with respect to t over (t, t + 1) and obtain

∫ t+1

t

∥∥ηs∥∥2
μ,0 ds ≤ 2

δ

∥∥ηt∥∥2
μ,0 +

4
δ2

∫ t+1

t

∣∣u(s)
∣∣2
2 ds

≤ 2
δ

∥∥z(t)
∥∥2
L2

+
4
δ2

(
Q(R)e–c1t +

1
c2

(
1
λ

|g|22 + 2β1‖ϕ1‖L1

)
+

k1

c2

)

≤ Q(R)e–c1t +
4

c2δ2

(
1
λ

|g|22 + 2β1‖ϕ1‖L1

)
+

4k1

c2δ2 +
2k1

δ
,

(3.19)

where (3.8) and (3.18) were used.
Let

ρ1 =
4 + δ2

c2δ2

(
1
λ

|g|22 + 2β1‖ϕ1‖L1

)
+

4k1

c2δ2 +
2k1

δ
+

k1

c2
,

then from (3.18) and (3.19) we can get the desire conclusion. The proof is finished. �

To verify the asymptotic compactness of solution semigroup {S(t)}t≥0, the cut-off func-
tion technique shall be used to derive the following estimate.

Lemma 3.6 Let B be any bounded subset L2 and z0 ∈ B. Then for any ε > 0, there exist the
positive constants K = K(ε, B) and T2 = T2(ε, B) such that for every k ≥ K and t ≥ T2,

∫

Bc
k

|u|2 dx +
∫ ∞

0
μ(s)

∫

Bc
k

(∣∣∇ηt(s)
∣∣2 +

∣∣ηt(s)
∣∣2)dx ds ≤ Cε,

where Bc
k = {x ∈R

n : |x| ≥ k}.

Proof Let θ (·) : R+ →R be a smooth function satisfying 0 ≤ θ (s) ≤ 1 for any s ∈R
+ and

θ (s) = 0, ∀s ∈ [0, 1); θ (s) = 1, ∀s ∈ [2,∞),

then it is easy to see that there exists a positive constant γ such that

0 ≤ θ ′(s) ≤ γ , ∀s ∈ R
+.

Set θk = θ ( |x|2
k2 ). Then we multiply the first equation of (1.14) by θku in H to get

1
2

d
dt

∫

Rn
θk|u|2 dx –

∫

Rn
θku div

{
a(x)∇u

}
dx + λ

∫

Rn
θk|u|2 dx

–
∫ ∞

0
μ(s)

∫

Rn
�ηt(s)θku dx ds +

∫

Rn
θkuf (x, u) dx =

∫

Rn
θkug dx.

(3.20)

We now deal with each term of the above formula (3.20). First of all, for the second term
on the left-hand side of (3.20), one has

–
∫

Rn
θku div

{
a(x)∇u

}
dx =

∫

Rn
θka(x)|∇u|2 dx +

2
k2

∫

Rn
θ ′

k
(
x · a(x)∇u

)
u dx. (3.21)
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For the fourth term on the left-hand side of (3.20), we get

–
∫ ∞

0
μ(s)

∫

Rn
�ηt(s)θku dx ds

=
∫ ∞

0
μ(s)

∫

Rn
θk∇ηt(s) · ∇u dx ds +

2
k2

∫ ∞

0
μ(s)

∫

Rn
θ ′

ku
(
x · ∇ηt(s)

)
dx ds

≥ 1
2

d
dt

∫ ∞

0
μ(s)

∫

Rn
θk

∣∣∇ηt(s)
∣∣2 dx ds +

δ

2

∫ ∞

0
μ(s)

∫

Rn
θk

∣∣∇ηt(s)
∣∣2 dx ds

+
2
k2

∫ ∞

0
μ(s)

∫

Rn
θ ′

ku
(
x · ∇ηt(s)

)
dx ds.

(3.22)

For the fifth term on the left-hand side of (3.20), by (1.10) we can obtain

∫

Rn
θkuf (x, u) dx ≥ α1

∫

Rn
θk|u|p dx – β1

∫

Rn
θkϕ1(x) dx. (3.23)

By Hölder’s and Young’s inequalities, we can handle the right-hand side of (3.20) and ob-
tain

∫

Rn
θkug dx ≤ λ

2

∫

Rn
θk|u|2 dx +

2
λ

∫

Rn
θk|g|2 dx. (3.24)

By virtue of (3.20)–(3.24), we have

1
2

d
dt

(∫

Rn
θk|u|2 dx +

∫ ∞

0
μ(s)

∫

Rn
θk

∣∣∇ηt(s)
∣∣2 dx ds

)
+

∫

Rn
θka(x)|∇u|2 dx

+
δ

2

∫ ∞

0
μ(s)

∫

Rn
θk

∣∣∇ηt(s)
∣∣2 dx ds +

λ

2

∫

Rn
θk|u|2 dx + α1

∫

Rn
θk|u|p dx

≤ –
2
k2

∫

Rn
θ ′

k
(
x · a(x)∇u

)
u dx –

2
k2

∫ ∞

0
μ(s)

∫

Rn
θ ′

ku
(
x · ∇ηt(s)

)
dx ds

+ β1

∫

Rn
θkϕ1(x) dx +

2
λ

∫

Rn
θk|g|2 dx.

(3.25)

According to the definition of θk , it is easy to find that

θ ′
k = 0, when |x| < k or |x| >

√
2k.

Therefore,

–
2
k2

∫ ∞

0
μ(s)

∫

Rn
θ ′

ku
(
x · ∇ηt(s)

)
dx ds

≤ 2γ

k2

∫ ∞

0
μ(s)

∫

k≤|x|≤√
2k

|u||x|∣∣∇ηt(s)
∣∣dx ds

≤ 2
√

2γ

k

∫ ∞

0
μ(s)

∫

k≤|x|≤√
2k

|u|∣∣∇ηt(s)
∣∣dx ds

≤ 2
√

2γ

k

(
kλ

8
√

2γ

∫ ∞

0
μ(s)

∫

k≤|x|≤√
2k

|u|2 dx ds (3.26)
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+
2
√

2γ

kλ

∫ ∞

0
μ(s)

∫

k≤|x|≤√
2k

∣∣∇ηt(s)
∣∣2 dx ds

)

≤ λ

4

∫ ∞

0
μ(s)

∫

k≤|x|≤√
2k

|u|2 dx ds +
8γ 2

k2λ

∫ ∞

0
μ(s)

∫

k≤|x|≤√
2k

∣∣∇ηt(s)
∣∣2 dx ds

≤ λ

4
|u|22 +

8γ 2

k2λ

∥∥∇ηt∥∥2
μ,0.

Similarly, by (1.4), we can obtain

–
2
k2

∫

Rn
θ ′

k
(
x · a(x)∇u

)
u dx

≤ 2
√

2γ

k

∫

k≤|x|≤√
2k

∣∣a(x)
∣∣|∇u||u|dx

≤
√

2γ

k

(
k

4
√

2γ

∫

k≤|x|≤√
2k

a(x)|∇u|2 dx +
√

2γ

k

∫

k≤|x|≤√
2k

a(x)|u|2 dx
)

≤ 1
4

∫

k≤|x|≤√
2k

a(x)|∇u|2 dx +
Cγ

k2

∫

k≤|x|≤√
2k

|u|2 dx

≤ 1
4

∫

Rn
θka(x)|∇u|2 dx +

Cγ

k2 |u|22.

(3.27)

From (3.25)–(3.26), we have

d
dt

(∫

Rn
θk|u|2 dx +

∫ ∞

0
μ(s)

∫

Rn
θk

∣∣∇ηt(s)
∣∣2 dx ds

)
+

3
2

∫

Rn
θka(x)|∇u|2 dx

+ δ

∫ ∞

0
μ(s)

∫

Rn
θk

∣∣∇ηt(s)
∣∣2 dx ds +

λ

2

∫

Rn
θk|u|2 dx + α1

∫

Rn
θk|u|p dx

≤ Cγ

k2 |u|22 +
8γ 2

k2λ

∥∥∇ηt∥∥2
μ,0 + β1‖ϕ1‖L1 +

2
λ

∫

Rn
θk|g|2 dx

≤ C
k2

(|u|22 +
∥∥∇ηt∥∥2

μ,0

)
+ 2β1

∫

Rn
θkϕ1(x) dx +

4
λ

∫

Rn
θk|g|2 dx.

(3.28)

Taking c3 = min{δ, λ
2 }, (3.28) implies that

d
dt

(∫

Rn
θk|u|2 dx +

∫ ∞

0
μ(s)

∫

Rn
θk

∣∣∇ηt(s)
∣∣2 dx ds

)

+ c3

(∫

Rn
θk|u|2 dx +

∫ ∞

0
μ(s)

∫

Rn
θk

∣∣∇ηt(s)
∣∣2 dx ds

)

≤ C
k2

(|u|22 +
∥∥∇ηt∥∥2

μ,0

)
+ 2β1

∫

Rn
θkϕ1(x) dx +

4
λ

∫

Rn
θk|g|2 dx.

Due to ϕ1 ∈ L1(Rn), there exists k1 = k1(ε) > 0 such that for all k > k1(ε),
∫

Rn
θkϕ1(x) dx ≤ ε

2β1
.

Similarly, since g ∈ H , there exists k2 = k2(ε) > 0 such that for all k > k2(ε),
∫

Rn
θk|g|2 dx ≤ λε

4
.
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Thus, by Lemma 3.4 and the aforementioned two estimates, we know that for all t ≥ t0,

d
dt

(∫

Rn
θk|u|2 dx +

∫ ∞

0
μ(s)

∫

Rn
θk

∣∣∇ηt(s)
∣∣2 dx ds

)

+ c3

(∫

Rn
θk|u|2 dx +

∫ ∞

0
μ(s)

∫

Rn
θk

∣∣∇ηt(s)
∣∣2 dx ds

)

≤ Cρ0

k2 + 2ε.

(3.29)

Applying Gronwall’s lemma, we get

∫

Rn
θk|u|2 dx +

∫ ∞

0
μ(s)

∫

Rn
θk

∣∣∇ηt(s)
∣∣2 dx ds

≤ e–c3t
(∫

Rn
θk|u0|2 dx +

∫ ∞

0
μ(s)

∫

Rn
θk

∣∣∇η0(s)
∣∣2 dx ds

)
+

Cρ0

k2 +
2
c3

ε

≤ e–c3tQ(R) +
Cρ0

k2 +
2
c3

ε.

For the above given ε > 0, let us take K =: K(ε) = max{k1, k2,
√

Cρ0
ε

}, then there exists T0 =:
T0(ε) = max{T0, 1

c3
ln Q(R)

ε
} such that, when t ≥ T0 and k ≥ K , one has

∫

Rn
θk|u|2 dx +

∫ ∞

0
μ(s)

∫

Rn
θk

∣∣∇ηt(s)
∣∣2 dx ds ≤ Cε. (3.30)

In addition, if we use θ ( |x|2
k2 )ηt to take inner product with the second equation of (1.14)

on V0, then by (H2), it yields

1
2

d
dt

∫

Rn
θ

( |x|2
k2

)∫ ∞

0
μ(s)

∣∣ηt(s)
∣∣2 ds dx

+
δ

2

∫

Rn
θ

( |x|2
k2

)∫ ∞

0
μ(s)

∣∣ηt(s)
∣∣2 ds dx

≤
∫

Rn
θ

( |x|2
k2

)∫ ∞

0
μ(s)ηt(s)u ds dx

≤ 1
δ

∫

Rn
θ

( |x|2
k2

)
|u|2 dx +

δ

4

∫

Rn
θ

( |x|2
k2

)∫ ∞

0
μ(s)

∣∣ηt(s)
∣∣2 ds dx.

(3.31)

Combining with (3.30) and (3.31), we have

d
dt

∫

RN
θk

∫ ∞

0
μ(s)

∣∣ηt(s)
∣∣2 ds dx +

δ

2

∫

RN
θk

∫ ∞

0
μ(s)

∣∣ηt(s)
∣∣2 ds dx ≤ Cε

δ
. (3.32)

Using Gronwall’s lemma, we get

∫ ∞

0
μ(s)

∫

Rn
θk

∣∣ηt(s)
∣∣2 dx ds ≤ e– δ

2 t
∫ ∞

0
μ(s)

∫

Rn
θk

∣∣η0(s)
∣∣2 dx ds +

Cε

δ2

≤ Q(R)e– δ
2 t +

Cε

δ2 ,
(3.33)
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and then there exists T1 =: T1(ε) = 2
δ

ln Q(R)δ2

Cε
such that, when t ≥ T1,

∫ ∞

0
μ(s)

∫

Rn
θk

∣∣ηt(s)
∣∣2 dx ds ≤ Cε. (3.34)

By (3.30) and (3.34), we know that there exist K and T2 = max{T0, T1} such that

∫

Rn
θk|u|2 dx +

∫ ∞

0
μ(s)

∫

Rn
θk

(∣∣∇ηt(s)
∣∣2 +

∣∣ηt(s)
∣∣2)dx ds ≤ Cε

holds for all k ≥ K and t ≥ T2. So one has

∫

Bc
k

|u|2 dx +
∫ ∞

0
μ(s)

∫

Bc
k

(∣∣∇ηt(s)
∣∣2 +

∣∣ηt(s)
∣∣2)ds ≤ Cε.

The proof is complete. �

3.3 Asymptotic compactness
In this subsection, we will prove the existence of global attractors in L2 through the semi-
group S(t) defined by (3.7). In order to prove Theorem 3.8, first, we give the following
lemma.

Lemma 3.7 Assume that zn(t) = (un(t),ηt
n) (n = 1, 2, . . . ) are solutions of the problem

(1.14)–(1.15). In addition, for any k > 0 and given T > 0, let a ∈ C(B̄k), where

Bk =
{

x ∈ R
n : |x| < k

}
.

Then there exists a subsequence of {un(t)} such that it is convergent in L2(0, L2(Bk)).

Proof First of all, by Corollary 3.5, we can obtain that

{un}∞n=1 is uniformly bounded in L2(0, T ;H1(Bk , a)
)
, (3.35)

as well as by further utilizing the assumption (1.10) in (H3), it is easy to show the following
claim:

{
f (un)

}∞
n=1 is uniformly bounded in L

p
p–1

(
0, T ; L

p
p–1 (Bk)

)
. (3.36)

Next, for any v ∈ C([0, T];C∞
0 (Bk)), it is easy to get that

∫ T

0

∫

Bk

untv dx dt =
∫ T

0

∫

Bk

(
–a(x)∇un · ∇v –

(∫ ∞

0
μ(s)∇ηt

n(s) ds
)

∇v
)

dx dt

+
∫ T

0

∫

Bk

(
–f (un)v – λunv + gv

)
dx dt.

(3.37)
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By (3.37), we have

∣∣∣∣

∫ T

0

∫

Bk

untv dx dt
∣∣∣∣

≤
(∫ T

0

∫

Bk

a(x)|∇un|2 dx dt
)1/2(∫ T

0

∫

Bk

a(x)|∇v|2 dx dt
)1/2

+
∥∥∇ηt

n
∥∥

L2(0,T ;L2
μ(R+;L2(Bk )))‖∇v‖L2(0,T ;L2(Bk ))

+
∥∥f (un)

∥∥
L

p
p–1 (0,T ;L

p
p–1 (Bk ))

‖v‖Lp(0,T ;Lp(Bk ))

+ λ‖un‖L2(0,T ;L2(Bk ))‖v‖L2(0,T ;L2(Bk ))

+ T1/2|g|2‖v‖L2(0,T ;L2(Bk ))

≤ C
(‖a‖1/2

C(B̄k ), T , |g|2
)[(∫ T

0

∫

Bk

a(x)|∇un|2 dx dt
)1/2

+ ‖un‖L2(0,T ;L2(Bk ))

+
∥∥∇ηt

n
∥∥

L2(0,T ;L2
μ(R+;L2(Bk ))) +

∥∥f (un)
∥∥

L
p

p–1 (0,T ;L
p

p–1 (Bk ))
+ 1

]

× [‖v‖L2(0,T ;H1(Bk )) + ‖v‖Lp(0,T ;Lp(Bk ))
]
.

Since C([0, T];C∞
0 (Bk)) is dense in L2(0, T ; H1(Bk)) ∩ Lp(0, T ; Lp(Bk)), by Corollary 3.5 and

(3.36) in (H3), we further know that

{unt}∞n=1 is uniformly bounded in L2(0, T ; H–1(Bk)
)

+ L
p

p–1
(
0, T ; L

p
p–1 (Bk)

)
. (3.38)

Combining with (3.35), (3.38), and Lemma 2.4, one knows that there exists a subsequence
of {un(t)} (not relabeled) such that

un → u strongly in L2(0, T ; L2(Bk)
)
.

This proof is finished. �

Theorem 3.8 Under the assumptions of Lemma 3.7, the semigroup {S(t)}t≥0 generated by
the solutions of the system (1.14)–(1.15) is an asymptotic contractive semigroup on L2.

Proof For any zi
0 ∈ B0 (i = 1, 2), suppose that zi(t) = (ui(t),ηt

i ) = S(t)zi
0 (i = 1, 2) are solutions

of the following equation:

⎧
⎨

⎩
ui

t – div{a(x)∇ui} –
∫ ∞

0 μ(s)�ηt
i (s) ds + λui + f (x, ui) = g in R

n,

∂tη
t
i = ui – ∂sη

t
i ,

(3.39)

with initial conditions

⎧
⎨

⎩
u(x, 0) = ui

0(x), x ∈R
n,

η0(x, s) =
∫ s

0 u0(x, –r) dr, (x, s) ∈R
n ×R

+.
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Let (ω(t),ς t) = (u1(t) – u2(t),ηt
1 – ηt

2), then it satisfies the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ωt – div{a(x)∇ω} –
∫ ∞

0 μ(s)�ς t(s) ds + λω + f (x, u1) – f (x, u2) = 0,

ς t
t = ω – ς t

s ,

ω0 = u1
0 – u2

0, x ∈ R
n

ς0 = η0
1 – η0

2, (x, s) ∈R
n ×R

+.

(3.40)

Multiplying the first equation of (3.40) by ω and integrating over Rn, we get

d
dt

(|ω|22 +
∥∥∇ς t∥∥2

μ,0

)
+ 2

∫

Rn
a(x)|∇ω|2 dx + 2λ|ω|22 + δ

∥∥∇ς t∥∥2
μ,0

+ 2
∫

RN

(
f
(
x, u1) – f

(
x, u2))(u1 – u2)dx ≤ 0.

(3.41)

Taking the inner product of the second equation of (3.40) and θ t on V0 and using Young’s
inequality gives

d
dt

∥∥ς t∥∥
μ,0 +

δ

2
∥∥ς t∥∥

μ,0 ≤ 2
δ
|ω|22. (3.42)

Moreover, by (1.9), we have
∫

RN

(
f
(
x, u1) – f

(
x, u2))(u1 – u2)dx ≥ –l|ω|22. (3.43)

Together with (3.41)–(3.43), one gets

d
dt

(|ω|22 +
∥∥ς t∥∥2

μ,1

)
+ c4

(|ω|22 +
∥∥ς t∥∥2

μ,1

) ≤
(

l +
2
δ

)
|ω|22,

where c4 = min{λ, δ
2 }.

So, from Gronwall’s inequality, we get

|ω|22 +
∥∥ς t∥∥2

μ,1 ≤ e–c4t(|ω0|22 +
∥∥ς0∥∥2

μ,1

)
+

(
l +

2
δ

)
e–c4t

∫ t

0
ec4s∣∣ω(s)

∣∣2
2 ds. (3.44)

For a fixed T2 > 0 (from Lemma 3.6), one has

|ω|22 +
∥∥ς t∥∥2

μ,1 ≤ e–c4t(|ω0|22 +
∥∥ς0∥∥2

μ,1

)

+
(

l +
2
δ

)
e–c4t

∫ T2

0
ec4s∣∣ω(s)

∣∣2
2 ds

+
(

l +
2
δ

)
e–c4t

∫ t

T2

ec4s∣∣ω(s)
∣∣2
2 ds,

(3.45)

Thus, there exists T = T (ε) ≥ T2 such that

|ω|22 +
∥∥ς t∥∥2

μ,1 ≤ ε +
(

l +
2
δ

)
e–c4t

∫ t

T2

∣∣ω(s)
∣∣2
2eα2s ds (3.46)

holds true for any ε > 0 and all t ≥ T .
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Let T ≥ T be given and consider

ψT
(
u1, u2) =

(
l +

2
δ

)
e–c4T

∫ T

T2

∣∣ω(s)
∣∣2
2ec4s ds

=
(

l +
2
δ

)
e–c4T

∫ T

T2

ec4s
(∫

Bk

∣∣ω(s)
∣∣2 dx +

∫

Bc
k

∣∣ω(s)
∣∣2 dx

)
ds

and

φT
(
u1, u2) =

(
l +

2
δ

)
e–c4T

∫ T

T2

ec4s
∫

Bk

∣∣ω(s)
∣∣2 dx ds

≤
(

l +
2
δ

)∫ T

0

∫

Bk

∣∣ω(s)
∣∣2 dx ds =

(
l +

2
δ

)
‖ω‖2

L2(0,T ;L2(Bk )).

By Lemma 3.6, for any ε > 0 and k ≥ K(ε), one has

∫

Bc
k

∣∣ω(s)
∣∣2 dx ≤ δc4ε

2δl + 4
.

Thus, we get that

ψT
(
u1, u2) ≤ ε + φT

(
u1, u2)

and

∥∥S(T)u1 – S(T)u2∥∥2
L2

≤ ε + ψT
(
u1, u2).

Combining with Lemma 3.7 and Definition 2.1, we know that φT is a contractive function.
Therefore, ψT is an asymptotically contractive function, which implies that the semigroup
{S(t)}t≥0 is an asymptotically contractive semigroup on L2 by Definition 2.2. This proof is
complete. �

Now, we will present the main conclusion.

Theorem 3.9 Under the assumptions of Lemma 3.7, assume that {S(t)}t≥0 is the solution
semigroup of equation (1.1) with initial value z0 ∈L2, then {S(t)}t≥0 possesses a nonempty,
invariable, compact global attractor in L2, which attracts any bounded set of L2.

Proof Since we have proved Lemma 3.4 and Theorem 3.8, together with Theorem 2.3, we
now easily get the existence of the global attractor ˜A for the semigroup S(t) defined by
(3.7) in L2. �
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