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Abstract
In this manuscript, our primary objective is to delve into the intricacies of an
extended nonlinear Schrödinger equation. To achieve this, we commence by deriving
a dynamical system tightly linked to the equation through the Galilean
transformation. We then employ principles from planar dynamical systems theory to
explore the bifurcation phenomena exhibited within this derived system. To
investigate the potential presence of chaotic behaviors, we introduce a perturbed
term into the dynamical system and systematically analyze the extended nonlinear
Schrödinger equation. This investigation is further enriched by the presentation of
comprehensive two- and 3D phase portraits. Moreover, we conduct a meticulous
sensitivity analysis of the dynamical system using the Runge–Kutta method. Through
this analytical process, we confirm that minor fluctuations in initial conditions have
only minimal effects on solution stability. Additionally, we utilize the complete
discrimination system of the polynomial method to systematically construct single
traveling wave solutions for the governing model.

Keywords: Schrödinger equation; Galilean transformation; Traveling wave solutions;
Nonlinear equations

1 Introduction
Nonlinear physical phenomena are mathematically captured through a set of equations
referred to as nonlinear differential equations. Notably, among these equations, nonlin-
ear partial differential equations (PDEs) emerge as crucial tools for investigating and in-
terpreting nonlinear behaviors. These nonlinear PDEs play a pivotal role in describing
a diverse array of physical problems spanning various fields including optics, biology,
chemistry, plasma physics, engineering, meteorology, fluid dynamics, oceanography, and
aerospace industries [1–3]. Central to the exploration of these phenomena is the quest
to find solutions for these intricate mathematical models. Over time, numerous effec-
tive approaches have been developed to derive exact solutions for nonlinear PDEs. These
methods encompass a range of techniques such as the tanh-coth function method [4],
the exponential rational function method [5], the Hirota bilinear method [6], the modi-
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fied exp-function method [7], the generalized Kudryashov method [8], neural networks
[9, 10], and others [11, 12].

Amidst the extensive collection of scholarly works, a wide range of soliton solutions has
been extensively chronicled. These solutions encompass diverse categories, notably bright
solitons, dark solitons, and kink solitons. An exploration led by Chen et al. [13] revealed
kink solitons in the context of a 3D Boiti–Leon–Manna–Pempinelli equation, employing
the three-wave method. In a separate endeavor, Ding et al. [14] employed the Kadomtsev–
Petviashvili hierarchy reduction technique to expose dark solitons within the framework
of the Davey–Stewartson II equation. A noteworthy instance involves the work of Tariq et
al. [15], in which the authors ingeniously utilized an F-expansion method to derive bright
solitons for the (2+1)-dimensional chiral equation. The extended nonlinear and the cou-
pled extended nonlinear Schrödinger equations are studied in [16]. Solitary and traveling
wave solutions of 2D generalized Schrödinger equations are studied in [17]. Further, bifur-
cation, stationary optical solitons, and other exact solutions for the generalized nonlinear
Schrödinger equation (NLSE) are presented in [18].

In present-day research, scholars grapple with a diverse spectrum of nonlinear PDEs and
their corresponding dynamic systems. The accessibility of sophisticated symbolic pack-
ages has significantly enhanced researchers’ understanding of dynamic systems, enabling
comprehensive analysis [19, 20]. Approaches to investigating dynamic systems encom-
pass multifaceted perspectives, spanning bifurcation analysis, examination of chaotic be-
haviors, and sensitivity analysis [21–25]. Notably, recent scholarly attention has increas-
ingly focused on these realms of dynamic systems. This burgeoning interest is promi-
nently evident in inquiries concerning prominent PDEs. Illustrative examples encompass
the Hirota–Maccari system [26], the coupled Kundu–Mukherjee–Naskar equation [27],
investigations into the generalized Schrödinger equation [28], explorations of the mod-
ified Gardner equation [29], and the study of the generalized q-deformed Sinh–Gordon
equation [30].

The propagation of femtosecond pulses within a single-mode optical fiber is mathemat-
ically characterized by the extended NLSE. This equation, as introduced by Kodama and
Hasegawa in [31] and further developed by Gordon in [32], as well as Mitschke and Mol-
lenauer in [33], serves as a fundamental framework for describing the intricate dynamics
of ultra-short optical pulses as they traverse through optical fibers. This paper is dedicated
to a comprehensive exploration of the extended NLSE:

ι(Ux + K1Ut) –
K2

2
Utt + ρ|U |2U + ιλ1

(|U |2U)
t + ιλ2

(|U |2)tU – ι
K3

6
Uttt = 0, (1)

where U is the slowly varying envelope of the electric field, dependent on variables x and
t. The parameter K1 represents the inverse of the group velocity, while K2 characterizes
the second-order dispersion (SOD). Additionally,K3 pertains to the third-order dispersion
(TOD) parameter, λ1 corresponds to the coefficient of the derivative cubic term, λ2 relates
to the self-frequency shift of solitons, and ρ signifies the effective nonlinear coefficient.

The extended NLSE presents a versatile and powerful tool for understanding and pre-
dicting a wide array of complex wave phenomena. Its adaptability allows for the explo-
ration of nonlinear effects in diverse systems, including optical pulse propagation, with
precision and depth. This equation’s ability to provide both analytical and numerical so-
lutions facilitates in-depth insights into nonlinear wave dynamics, offering researchers
a comprehensive framework to study simple solitons, intricate breathers, and extreme
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events like rogue waves. In practical applications, it plays a pivotal role in designing and
optimizing optical communication systems, enabling the development of high-capacity
data transmission technologies and signal processing techniques. Overall, the extended
NLSE stands as a cornerstone in the study of nonlinear wave behavior, enhancing our un-
derstanding and control of complex wave patterns.

Numerous prior investigations have delved into the extended NLSE. For instance, there
have been studies on exact solutions considering third-order and nonlinear dispersion ef-
fects, as demonstrated in Ozisik et al. [34] and Borich et al. [35], respectively. Researchers
have also explored breather and rogue wave solutions, encompassing higher-order odd
and even terms, as outlined in Su et al. [36]. Additionally, investigations into higher-order
smooth positon and breather positon solutions have been conducted (Monisha et al. [37]).
The extended NLSE has been examined in the context of quadratic and cubic nonlineari-
ties (Sedletsky et al. [38]) and in the realm of two-breather solutions for the class I infinitely
extended NLSE (Crabb and Akhmediev [39]). Soliton solutions, rational soliton solutions,
and rogue wave solutions have been the focus of studies, exemplified by Huang et al. [40].
Furthermore, breather and rogue wave solutions have been explored through the gener-
alized Darboux transformation, as elucidated by Lou et al. [41].

Several chaotic systems composed of 2D ODEs have been introduced from time to time,
contributing to the rich field of chaos theory. One notable example of a well-known 2D
chaotic system is the Hénon map [42], defined by iteratively updating two variables based
on a set of nonlinear equations. Further, the 2D sine-logistic-tent-coupling map has been
introduced [43]. Similarly, a new 2D hyperchaotic system is presented in [44]. Researchers
often study these 2D chaotic systems to understand the fundamental principles of chaotic
dynamics, bifurcation phenomena, and sensitivity to initial conditions. The exploration
of such systems not only advances theoretical aspects of chaos theory but also finds appli-
cations in secure communication, random number generation, and diverse fields where
pseudorandom and unpredictable behavior are desirable.

The primary objective of this manuscript is to deeply explore the dynamics encapsulated
by the given equation. The journey commences by employing the Galilean transformation
as a foundational step, leading to the derivation of a corresponding dynamical system as-
sociated with Eq. (1). The Galilean transformation serves as a valuable tool when it comes
to converting PDEs into systems of ordinary differential equations (ODEs), especially in
the context of classical mechanics. This transformation is essential for handling problems
involving relative motion between different inertial reference frames. In the process of
converting PDEs to ODEs, the Galilean transformation allows for the seamless transi-
tion from a frame of reference moving at a constant velocity to a stationary frame. By
appropriately accounting for this relative motion, the terms involving spatial derivatives
in the original PDEs can be reformulated into terms involving only time derivatives. This
transformation simplifies the mathematical analysis and facilitates the solution of the re-
sulting system of ODEs. Consequently, the Galilean transformation provides a powerful
mathematical framework for studying physical phenomena in classical mechanics, allow-
ing researchers to gain deeper insights into the dynamics of systems through the more
manageable lens of ODEs.

Furthermore, utilizing the well-established theory of planar dynamical systems, a thor-
ough bifurcation analysis is meticulously conducted, shedding light on the intricate behav-
iors exhibited by the system. This investigation goes beyond bifurcations [45–47], delving
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into the realm of chaotic phenomena within the governed model. To accomplish this, a dy-
namical system is studied, augmented with an external term. The exploration of chaotic
behaviors involves constructing and examining a series of 2D and 3D phase portraits, pro-
viding a comprehensive understanding of the intricate dynamics at play. In the extant lit-
erature, a number of notable publications have been carefully studied in the broad field of
soliton solutions and bifurcation. These studies explore the complex dynamics of nonlin-
ear systems, providing insight into the intriguing behavior of solitons and the bifurcation
processes that control it [48, 49].

Moreover, this research employs the Runge–Kutta method to perform sensitivity analy-
sis of the dynamical system. This investigation ensures the robustness and stability of the
solutions against minor perturbations in initial conditions. By subjecting the system to
slight variations and analyzing their impact on stability, this study contributes to validat-
ing the reliability and consistency of the derived solutions. A comprehensive explanation
of bifurcation analysis for the unperturbed dynamical system is presented, complemented
by detailed phase portraits. The exploration of chaos in the perturbed dynamical system
is carried out, utilizing various techniques to identify chaotic patterns in both time series
and phase portraits. Additionally, the authors employ the complete discrimination system
of the polynomial method to construct single traveling wave solutions of the governing
model. Notably, we emphasize the novelty of this study, asserting that such an investiga-
tion has not been previously undertaken within the context of the discussed system.

The organization of this paper is as follows. In Sect. 2, the focus shifts towards deriving
the dynamical system that corresponds to Eq. (1). In Sect. 3, a thorough exploration en-
compassing bifurcation analysis, chaotic phenomena, and sensitivity analysis concerning
the governing equation is presented. Moving on to Sect. 4, our attention is directed to
the investigation of traveling wave solutions. Lastly, Sect. 5 assumes the role of a reflec-
tive synopsis, succinctly summarizing the achievements and discoveries presented in this
study.

2 Dynamical system of the governing equation
Let us contemplate the ensuing complex transformation

U (x, t) = eιΩG(δ), (2)

where δ = t – ξx + δ0 and Ω = νx – κt + Ω0. Substituting Eq. (2) into Eq. (1), we derive a
nonlinear ODE. This equation, upon separation into its imaginary and real components,
yields the following:

–K3
d3G(δ)

dδ3 +
(
6(3λ1 + 2λ2)

(
G(δ)

)2 + 3
(
κ2
K3 + 2κK2 – 2ξ + 2K1

))dG(δ)
dδ

= 0, (3)

6(κλ1 + ρ)
(
G(δ)

)3 +
(
κ3
K3 + 3κ2

K2 + 6(κK1 – ν)
)
G(δ) + (–3κK3 – 3K2)

d2G(δ)
dδ2 = 0.

(4)

After integrating Eq. (3) with respect to δ once and assuming the integration constant to
be zero, we arrive at the following:

2(3λ1 + 2λ2)
(
G(δ)

)3 + 3
(
κ2
K3 + 2(κK2 – ξ + K1)

)
G – K3

d2G(δ)
dδ2 = 0. (5)
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From Eq. (4) and Eq. (5), we have

3(κλ1 + ρ)
3λ1 + 2λ2

=
κ3K3 + 3κ2K2 + κK1 – 6ν

3(κ2K3 + 2(κK2 – ξ + K1))
=

3(κK3 + K2)
K3

. (6)

One can reach the following constraint from the above proposition:

ξ =
4κ3K2

3 + 12κ2K2K3 + 6κK1K3 + 9κK2
2 + 3νK3 + 9K1K2

9(κK3 + K2)
,

ρ =
2K2(κλ1 + κλ2) + K2(3λ1 + 2λ2)

K3
.

(7)

Upon implementing the Galilean transformation to Eq. (4), we obtain the dynamical sys-
tem as follows:

⎧
⎨

⎩

dG(δ)
dδ

= P ,
dP(δ)

dδ
= W1G3(δ) + W2G(δ),

(8)

where

W1 =
6(κλ1 + ρ)
3κK3 + 3K2

,

W2 =
(κ3K3 + 3κ2K2 + 6(κK1 – ν))

3κK3 + 3K2
.

(9)

3 The exploration of bifurcation analysis, chaotic behavior, and sensitivity
analysis pertaining to the governing equation

In this section, a comprehensive examination of bifurcation analysis, chaotic behavior, and
sensitivity analysis is provided for the governing equation.

3.1 Bifurcation analysis
In this subsection, we present the bifurcation analysis, including phase portraits, of the
dynamical system given by Eq. (8). Firstly, we express the Hamiltonian function for Eq. (8)
as follows:

H(G,P) =
P2

2
–
W1G4

4
–
W2G2

2
= h,

where h is the Hamiltonian constant. We solve the system

⎧
⎨

⎩
P = 0,

W1G3 + W2G = 0

to derive the equilibrium points (Eqps) of (8). The derived Eqps are

E1 = (0, 0), E2 =
(

–ι

√
F2

F1
, 0

)
, E2 =

(
ι

√
F2

F1
, 0

)
.
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The Jacobian matrix determinant of system (8) is

D(G,P) =

∣∣
∣∣
∣

0 1
3W1G2 + W2 0

∣∣
∣∣
∣

= –3W1G2 – W2.

We know that:
1. (G,P) is a saddle point if D(G,P) < 0;
2. (G,P) is a center point if D(G,P) > 0;
3. (G,P) is a cuspid point if D(G,P) = 0;

The outcomes that may be attained by altering the pertinent parameter are listed below.
Case 1: W1 > 0 and W2 > 0
By selecting specific values for the parameters K1 = 1, K2 = 2, K3 = 1, ν = 0.4, κ = 1, ρ = 2,

and λ1 = 1, we discover that the only real Eqp is (0, 0), as depicted in Fig. 1(a). Evidently,
(0, 0) corresponds to a saddle point.

Case 2: W1 < 0 and W2 > 0
After selecting the parameters K1 = 1, K2 = 2, K3 = 1, ν = 0.4, κ = 1, ρ = –2, and λ1 = 1,

we observe that there are three Eqps, (0, 0), (–1.3292, 0), and (1.3292, 0), in which (0, 0)
acts as a saddle point, as illustrated in Fig. 1(b). Furthermore, (–1.3292, 0) and (1.3292, 0)
act as center points.

Case 3: W1 < 0 and W2 < 0
By selecting the parameters K1 = –0.1, K2 = 2, K3 = 1, ν = 0.4, κ = 1, ρ = –2, and λ1 = 1,

we identify that the only noncomplex real Eqp is (0, 0), as depicted in Fig. 1(c). Evidently,
(0, 0) corresponds to a center point.

Case 4: W1 > 0 and W2 < 0
By selecting the parameters K1 = 1, K2 = 2, K3 = 1, ν = 5.4, κ = 1, ρ = 2, and λ1 = 1,

we identify that there are three Eqps, which are (0, 0), (–1.0382, 0), and (1.0382, 0), as de-
picted in Fig. 1(d). Evidently, (0, 0) corresponds to a center point, while (–1.0382, 0) and
(1.0382, 0) represent saddle points.

3.2 Chaotic behavior of the governing equation
In this subsection, we explore the existence of chaotic behavior in the resulting system (8)
by introducing a perturbed term. We analyze 2D and 3D phase portraits for this system.
The following dynamical system is considered:

⎧
⎨

⎩

dG(t)
dt = P ,

dP(t)
dt = W1G3(t) + W2G(t) + ω cos2(μt), ω �= 0,μ �= 0.

(10)

In the following figures, we examine the influence of the perturbed term ω cos2(μt) on the
dynamical system given by Eq. (10). Here, ω and μ represent the amplitude and frequency
of the system, respectively.

We present both 2D and 3D phase portraits of the system for the parameters K1 = 1,
K2 = 2, K3 = 1, ν = 0.4, κ = 1, ρ = 2, and λ1 = 1, while the parameters ω and μ are varied:
in Fig. 2(a), ω = 1, μ = 1; in Fig. 2(b), ω = 0.8, μ = 1; in Fig. 3(a), ω = 1, μ = 0.9; and in
Fig. 3(b), ω = 1, μ = 0.1. On analyzing the phase diagrams, we see complex and mesmer-
izing behaviors. In Fig. 2(a) we see the four scroll dynamics, while in Fig. 2(b) complex dy-
namics are observed. Furthermore, in Fig. 3(a), periodic dynamics can be observed, while
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Figure 1 Phase portraits of the proposed system’s bifurcations with various conditions forW1 andW2 based
on different parameter values

Figure 2 Chaotic visualizations of the proposed equation with parameters assumed as K1 = 1, K2 = 2, K3 = 1,
ν = 0.4, κ = 1, ρ = 2, and λ1 = 1

Fig. 3(b) shows strange periodic dynamics. These discoveries illuminate the system’s dy-
namics’ susceptibility to fluctuations in the parameter μ, offering profound insights into
how the perturbed term ω cos2(μt) influences the system’s global behavior. This newfound
understanding of the system’s sensitivity to parameter variations enhances our grasp of the
intricate relationship between μ, the perturbation term, and the overall system dynamics.
Such insights contribute significantly to the broader comprehension of how even subtle
changes in parameters can steer the trajectory of the system, ultimately paving the way for
more informed and accurate predictions of its behavior under varying conditions.
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Figure 3 Chaotic visualizations of the proposed equation with parameters assumed as K1 = 1, K2 = 2, K3 = 1,
ν = 0.4, κ = 1, ρ = 2, and λ1 = 1

3.3 Sensitivity analysis of the governing equation
Here, we employ the well-known and efficient Runge–Kutta method to analyze the sensi-
tivity of the dynamical system represented by Eq. (8). To achieve this, we solve the follow-
ing dynamical system using the Runge–Kutta method:

⎧
⎨

⎩

dG(t)
dt = P ,

dP(t)
dt = W1G3(t) + W2G(t).

(11)

The values of the parameters are set as follows: K1 = 1, K2 = 2, K3 = 1, ν = 0.4, κ = 1, ρ = 2,
and λ1 = 1. The initial conditions for the system are given by:

(a) G(0) = 0.1 and P = 0; (b) G(0) = 0 and P = 0.1;
(c) G(0) = 0.2 and P = 0; (d) G(0) = 0 and P = 0.2.
The results obtained from this effective scheme are depicted in Fig. 4. The blue curves

show the dynamics of class G , while the red ones depict P ’s dynamics. Looking at the
figures, it is clear that small changes in the initial conditions lead to considerable changes
in the dynamics of the system.

4 Traveling wave solution of the governing equation
This section of the manuscript is dedicated to a comprehensive analysis of the novel trav-
eling wave solutions arising from the governing equation under consideration. The explo-
ration of these solutions is pivotal in unraveling the intricate dynamics embedded within
the system. This analytical approach not only contributes to the theoretical framework of
the study but also lays the foundation for potential applications and implications in di-
verse scientific and engineering domains. The elucidation of these novel traveling wave
solutions is expected to broaden our insights into the complex dynamics of the system,
further substantiating the significance and innovation encapsulated within the research
endeavor. By delving into the characteristics and properties of these traveling wave solu-
tions, we aim to provide a deeper understanding of the underlying mechanisms governing
the system’s behavior. To achieve this objective, Eq. (4) can be reformulated as follows:

W1G3(δ) + W2G(δ) = G ′′(δ). (12)
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Figure 4 Numerical demonstrations of the state variables vs. t with parameters considered as K1 = 1, K2 = 2,
K3 = 1, ν = 0.4, κ = 1, ρ = 2, and λ1 = 1 with different initial values

Multiplying G ′ on both sides of Eq. (12) and integrating, we obtain

(
G ′)2 =

W1

2
+ W2G2 + 2W0, (13)

where W0 is the constant. We take the following transformation:

G = ±
√

(2W1)– 1
3 � , p = 4W2(2W1)– 2

3 , q = 8W0(2W1)– 1
3 , δ1 = (2W1)

1
3 δ. (14)

Then from Eq. (12), we obtain

(�δ1 )2 = �
(
�2 + p� + q

)
. (15)

Now, we can obtain the integral of Eq. (15) as

±(δ1 – δ0) =
∫ d�

√
�(�2 + p� + q)

. (16)
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Figure 5 Numerical visualizations of exact solution U1 with parameters K1 = –1, K2 = 3, K3 = 1, ν = 0.4,
κ = 1, ρ = 2, λ1 = 1, ξ = 2, δ0 = 1, and �0 = 0

In this context, we establish F (�) as �2 + p� + q, and we introduce � as p2 – 4q. Based
on the roots of the equation F (�) = 0, the solution to Eq. (16) manifests in four distinct
scenarios.

Case: 1 � = 0 and � > 0.
When p < 0 and W2 < 0, the solution of Eq. (1) is given by

U1(x, t) = ±
√

–
W2

W1
tanh2

(
(–2W2) 1

2

2
(t – ξx + δ0)

)
eι(νx–κt+Ω0), (17)

The exact solution, denoted as U1, is subjected to numerical simulation in Fig. 5 using
carefully chosen parameters. The simulation results are visually represented, with Fig. 5(a)
showcasing the imaginary component of the solution and Fig. 5(b) portraying the abso-
lute characteristics of U1. These visualizations provide valuable insights into the physical
interpretation of the solution. In Fig. 5(a), the observed behavior of the imaginary com-
ponent reveals a notable feature known as dark solitons. Dark solitons are intriguing non-
linear wave phenomena that describe localized, low-intensity regions within a broader
wave profile. The dark soliton behavior, as seen in the simulation, signifies a stable, soli-
tary wave with a phase difference from its surroundings. This physical demonstration not
only verifies the theoretical solution but also showcases the presence of dark solitons in
the system, which holds significance in various fields, including optics, fluid dynamics,
and plasma physics. The absolute behavior of U1, as shown in Fig. 5(b), further confirms
the characteristics of these dark solitons and underscores their relevance in understanding
nonlinear wave dynamics and localized wave structures. We have

U2(x, t) = ±
√

–
W2

W1
coth2

(
(–2W2) 1

2

2
(t – ξx + δ0)

)
eι(νx–κt+Ω0), (18)

The exact solution U2 is physically illustrated through numerical simulations in Fig. 6,
using well-suited parameters. In Fig. 6(a), the observed behavior corresponds to the imag-
inary component of the solution, while Fig. 6(b) presents the absolute characteristics of
U2. The results clearly manifest a distinctive phenomenon – the singular soliton solution.
Singular solitons are exceptional in that they exhibit highly localized, self-contained wave
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Figure 6 Numerical visualizations of exact solution U2 with parameters K1 = –1, K2 = 3, K3 = 1, ν = 0.4,
κ = 1, ρ = 2, λ1 = 1, ξ = 2, δ0 = 1, and �0 = 0

Figure 7 Numerical visualizations of exact solution U4 with parameters K1 = 0.1, K2 = 3, K3 = 1, ν = 1.4,
κ = 1.2, ρ = 1.2, λ1 = 1, ξ = 2, δ0 = 1, and �0 = 0

structures with remarkable features, including infinite intensity and an abrupt phase jump.
The existence of a singular soliton solution, as evidenced in this demonstration, not only
validates the theoretical prediction but also underscores the presence of these extraor-
dinary structures within the system. The study of singular solitons holds profound sig-
nificance in various branches of physics, as they represent nondispersive and localized
wave phenomena, offering insights with applications in optics, plasma physics, and fluid
dynamics.

When p > 0 and W2 > 0, the solution of Eq. (1) is given by

U3(x, t) =

√
W2

W1
tan2

(
(2W2) 1

2

2
(t – ξx + δ0)

)
eι(νx–κt+Ω0), (19)

When p = 0 and W2 > 0, the solution of Eq. (1) is given by

U4(x, t) = ±
√

2
W1(t – ξx + δ0)2 eι(νx–κt+Ω0), (20)

The concrete representation of the exact solution, denoted as U4, is achieved through nu-
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Figure 8 Numerical visualizations of exact solution U8 with parameters K1 = 0.1, K2 = 3, K3 = 1, ν = 1.4,
κ = 1.2, ρ = 1.2, λ1 = 1, s1 = 0, s2 = 1, s3 = 2, ξ = 2, δ0 = 1, and �0 = 0

merical simulations in Fig. 7, utilizing well-tailored parameters. Figure 7(a) effectively por-
trays the behavior of the solution’s imaginary component, while Fig. 7(b) vividly displays
the absolute characteristics of U4. In this visualization, we witness the existence of peri-
odic waves. These periodic waves exhibit recurrent, self-replicating patterns that preserve
their shape and periodic nature as they travel through the system. However, the overall be-
havior, as depicted in Fig. 7(b), unveils an additional intriguing aspect – the existence of
dark wave solutions.

Case: 2 � > 0 and q = 0
When � > –p and p < 0, the solution of Eq. (1) is given by

U5(x, t) = ±
√
W2

W1
tanh2

(
(2W2) 1

2

2
(t – ξx + δ0)

)
–

2W2

W1
eι(νx–κt+Ω0), (21)

U6(x, t) =

√
W2

W1
coth2

(
(2W2) 1

2

2
(t – ξx + δ0)

)
–

2W2

W1
eι(νx–κt+Ω0). (22)

When � > –p and p > 0, the solution of Eq. (1) is given by

U7(x, t) = ±
√

–
W2

W1
tan2

(
(–2W2) 1

2

2
(t – ξx + δ0)

)
+

2W2

W1
eι(νx–κt+Ω0). (23)

Case: 3 � > 0 and p �= 0
Let there exist constants s1, s2, s3 satisfying the conditions s1 < s2 < s3. Among these con-

stants, one is zero, while the other two serve as the roots of F (�) = 0. In this scenario, the
solution to Eq. (1) can be derived as follows:

U8(x, t) = ±
√

(2W1)– 1
3

[
s1 + (s2 – s1)sn2

(√
s3 – s1

2
(2W1) 1

3 (t – ξx + δ0), m
)]

× eι(νx–κt+Ω0). (24)

The practical manifestation of the exact solution, denoted asU7, is carried out through nu-
merical simulations in Fig. 8, employing carefully selected parameters. Figure 8(a) provides
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a visual representation of the solution’s imaginary component, while Fig. 8(b) vividly illus-
trates the absolute behavior of U7. In this visualization, the remarkable feature observed is
that of aperiodic soliton solutions. Aperiodic solitons, unlike their periodic counterparts,
do not exhibit recurrent or regular wave patterns. Instead, they represent complex, nonre-
peating structures with a unique and irregular behavior. This physical demonstration not
only confirms the theoretical solution but also highlights the presence of aperiodic soli-
tons within the system. The existence of such a soliton type is significant, as it adds a layer
of complexity to nonlinear wave dynamics and can find applications in various scientific
and technological domains, making this observation particularly noteworthy. We have

U9(x, t) = ±
√√
√√(2W1)– 1

3

[–s2sn2(
√

s3–s1
2 (2W1) 1

3 (t – ξx + δ0), m) + s3

cn2(
√

s3–s1
2 (2W1) 1

3 (t – ξx + δ0), m)

]
eι(νx–κt+Ω0), (25)

where m = s2–s1
s3–s1

.
Case: 4 � < 0.
When � > s2, we obtain

U10 = ±
√√√√2

(W0

W1

) 1
2
[

2
1 + cn(2(W0W1) 1

4 (t – ξx + δ0), m)
– 1

]
eι(νx–κt+Ω0), (26)

where m2 = (2W0)
1
2 –W2

2(2W0)
1
2

.

5 Conclusion
This study has effectively accomplished its primary objective of conducting an in-depth
exploration into the intricacies of the extended NLSE. Through a systematic derivation of
the associated dynamical system via the Galilean transformation, coupled with a meticu-
lous investigation of bifurcation phenomena using planar dynamical system theory, the
intricate dynamics of the equation have been unveiled. The introduction of perturba-
tions facilitated a comprehensive exploration of chaotic behaviors, which were vividly de-
picted through phase portraits. The sensitivity analysis, performed using the Runge–Kutta
method, convincingly illustrated the stability of solutions even in the presence of minor
fluctuations in initial conditions. Furthermore, the application of the complete discrimi-
nation system of the polynomial method enabled the systematic construction of solitary
traveling wave solutions for the governing model. Ultimately, this study not only enhances
our understanding of the equation itself but also underscores the effectiveness of analytical
tools in studying complex dynamical systems. This accomplishment sets the stage for fu-
ture applications in nonlinear dynamics and mathematical physics, fostering new avenues
for exploration and advancement in these fields.
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