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Abstract
This paper deals with the existence results of the infinite system of tempered
fractional BVPs

R
0D�,λ

r zj(r) +ψj(r,z(r)) = 0, 0 < r < 1,

zj(0) = 0, R
0Dm,λ

r zj(0) = 0,

b1zj(1) + b2
R
0Dm,λ

r zj(1) = 0,

where j ∈ N, 2 < � ≤ 3, 1 < m≤ 2, by utilizing the Hausdorff measure of
noncompactness and Meir–Keeler fixed point theorem in a tempered sequence
space.

Keywords: Tempered fractional derivative; Measure of noncompactness;
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1 Introduction
Fractional calculus is an important branch of mathematics that deals with the description
of the possibility of computation of unknown functions via suitable derivative and inte-
gral operators of real order and studies the relationships between them [17, 19, 21]. The
concept of fractional calculus has been widely used to model physical problems engineer-
ing systems, and their applications which significantly leads to a set of linear or nonlinear
fractional differential equations [8, 35, 39, 42, 43]. The development of this discipline has
inspired scholars to look into its existence and uniqueness [14, 28, 32–34, 38].

The tempered fractional derivative is obtained by multiplying the fractional derivative
by an exponential factor. The traditional Riemann–Liouville (RL) and Caputo fractional
derivatives are obtained under special circumstances for λ = 0, and this new fractional
operator depends on the parameter λ. Due to its use in physics, groundwater hydrology,
poroelasticity, geophysical flow, and finance [7, 12, 13, 22, 23, 36], the tempered fractional
derivative has recently gained popularity as a subject of study. In [44], Zaky studied the
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well-posedness of the solution to the following two-point nonlinear tempered fractional
boundary value problem (TFBVP)

c
0Dα,λ

r z(r) = g
(
r,z(r)

)
r ∈ [0,T],

αz(0) + βeλTz(T) = γ,

where g ∈ C([0, T] × R,R), α, β, γ are real constants with α + β �= 0, and c
0Dα,λ

r is the
Caputo tempered fractional derivative of rational order α ∈ (0, 1). Pandey et al. [29] by
applying fractional variational approach, studied the properties of eigenvalues for the TF-
BVP

c
r Dϑ ,λ

b
[
φ(r)caDϑ ,λ

r z(r)
]

+ φ(r)z(r) = μψμ(r)z(r), r ∈ [α,β],ϑ ∈ (0, 1),

z(α) = z(β) = 0,

where φ, φ and ψμ are real-valued continuous functions defined on [α,β]. Recently,
Khuddush and Prasad [15] studied the thermistor problem with two-point boundary con-
ditions

c
0D2�,λ

r z(r) =
μg(z(r))

[
∫ T

0 g(z(τ))dτ]2
, 0 < � <

1
2

, 0 < r < T,

az(0) + beλTz(T) = c,

where λ ≥ 0, μ > 0, cD2�

0+ denotes the tempered Caputo fractional derivative of order 2�,
g ∈ C([0,T] × R,R) and derived sufficient conditions for the existence, uniqueness and
Hyers-Ulam stability of solutions.

The measure of noncompactness (MNC) plays a dominant role in functional anal-
ysis, as introduced by Kuratowski [18]. In [41], Srivastava et al. applied the MNC on
C([0, a] × [0, a]) to study the two variable functional integral equations. Many scholars
have also used the notion of an MNC for the existence of solutions for results of infi-
nite systems of differential and integral equations [2, 6, 10, 11, 25, 26, 30, 31, 40]. In the
following, we mention a few recent works on MNC. By utilizing the Hausdorff measure
of noncompactness (HMNC) in tempered sequence spaces, Das et al. [9] established the
existence of solutions to the infinite system of TFBVP

R
0 Dβ

0+
(
zk(r)

)
+ hk

(
r,zk(r)

)
, 0 < r < T,

zk(0) = zk(T) = 0, k = 1, 2, 3, . . . ,

where hk ∈ C([0, T],R), and R
0 Dβ

0+ is a Riemann–Liouville fractional derivative of order
β ∈ (1, 2). Recently, Khuddush et al., [16] established the existence results by applying the
concept of a family of measures of noncompactness in the space of functions Cz,α(R+) to
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the following ∞-point fractional BVP

R
0 Dα

0+z(r) = h
(
r,z(r)

)
, m < α < m + 1, r ∈ R

+,

lim
r→∞

R
0 Dδ–1

0+ z(r) +
∞∑

j=1

cjz
(
ϕ(τj)

)
= 0,

z(0) = 0, z′′(0) = 0, . . . ,z(m)(0) = 0,

where m is a fixed nonnegative integer, cj ∈ R
+, ϕ ∈ C(R+,R), h ∈ C(R+ ×R,R). Inspired

by the above-mentioned works, in this paper, we derive sufficient conditions for the ex-
istence of solutions via the HMNC in tempered sequence spaces to the following infinite
system of TFBVP

R
0 D�,λ

r zj(r) + ψj

(
r,z(r)

)
= 0, 0 < r < 1, (1)

⎧
⎨

⎩
zj(0) = 0, R

0 Dm,λ
r zj(0) = 0,

b1zj(1) + b2
R
0 Dm,λ

r zj(1) = 0,
(2)

where j ∈N, 2 < � ≤ 3, 1 < m≤ 2, λ > 0, R0 D�,λ
r denotes the RL-tempered fractional deriva-

tive of order �, z(r) = (zj(r))∞j=1, and ψj : (0, 1) → (0, 1) is continuous. We also provide an
example to illustrate the theoretical results.

2 Preliminaries
Essential results are stated here prior to proceeding to the main results in the subsequent
sections.

• Denote by AC[b,c] the space of real-valued absolutely continuous functions z(r) on
[b,c].

• Denote by ACk[b,c] the space of real-valued functions z(r), which have continuous
derivatives of order k – 1 on [b,c] such that dk–1z(r)

drk–1 ∈AC[b,c].
• Denote by L([b,c]) the family of all Lebesgue measurable functions on [b,c].

Definition 2.1 ([20, 37]) Let z(r) ∈L([b,c]), λ ≥ 0 and η > 0. The RL-tempered fractional
integral of order η is defined as

R
bIη,λ

r z(r) = e–λrR
bIηr

(
eλrz(r)

)
=

1
�(η)

∫ r

b
e–λ(r–ξ)(r – ξ)η–1z(ξ) dξ,

where R
bIηr is the classical RL-fractional integral [17]

R
bIηr z(r) =

1
�(η)

∫ r

b
(r – ξ)η–1z(ξ) dξ.

Definition 2.2 ([20, 37]) Let k – 1 < η < k, k ∈ N
+ and λ ≥ 0. The RL-tempered fractional

derivative of order η is defined as

R
bDη,λ

r z(r) = e–λrR
bDη

r
(
eλrz(r)

)
=

e–λr

�(k – η)
dk

dξk

∫ r

b

eλξz(ξ)
(r – ξ)η–k+1 dξ,
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where R
bDη

r is the classical RL-fractional derivative [17]

R
bDη

r z(r) =
1

�(k – η)
dk

dξk

∫ r

b

z(ξ)
(r – ξ)η–k+1 dξ.

Lemma 2.3 (Composite property [20]) Let z(r) ∈ ACk[b,c] and k – 1 < η < k. Then, the
composite property between RL-tempered fractional derivative and RL-tempered fractional
integral is given by

R
bIη,λ

r
[
R
bDη,λ

r z(r)
]

= z(r) –
n–1∑

k=0

e–λr(r – b)η–k–1

�(η – k)
[
R
bDη–k–1

r
(
eλrz(r)

)|r=b
]

(3)

and

R
bDη,λ

r
[
R
bIη,λ

r z(r)
]

= z(r). (4)

To study the boundary value problem (1)–(2), first we solve the following linear frac-
tional differential equation

R
0 D�,λ

r z(r) + V(r) = 0, 2 < � ≤ 3, 0 < r < 1, (5)

satisfying the boundary conditions (2).

Lemma 2.4 Let z be a solution of (5) and (2) if and only if z solves the integral equation

z(r) =
∫ 1

0
�(r, p)V(p)e–λ(r–p) dp,

where

�(r, p) =

⎧
⎨

⎩
�1(r, p), 0 ≤ r ≤ p ≤ 1,

�2(r, p), 0 ≤ p ≤ r ≤ 1,

�1(r, p) = kb1
r�–1(1 – p)�–1

�(�)
+ kb2

r�–1(1 – p)�–m–1

�(� – m)
,

�2(r, p) = �1(r, p) –
(r – p)�–1

�(�)
,

and k = [b1 + b2
�(�)

�(�–m) ]–1 > 1.

Proof Assume that z ∈ C[�]+1[0, 1] is a solution of (5). According to Lemma 2.3, we obtain

z(r) = Ae–λrr�–1 + Be–λrr�–2 + Ce–λrr�–3 – I�,λV(r),

where A, B, and C are constants. Using the boundary condition z(0) = 0, we get C = 0, and
hence

z(r) = Ae–λrr�–1 + Be–λrr�–2 – I�,λV(r). (6)
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Applying the tempered fractional order derivative operator R
0 Dm,λ

r on both sides of (6), we
get

R
0 Dm,λ

r z(r) = A
�(�)

�(� – m)
e–λrr�–m–1 – B

�(� – 1)
�(� – m – 1)

e–λrr�–m–2 – I�–m,λV(r). (7)

Using condition R
0 Dm,λ

r z(0) = 0, we obtain B = 0. So, equation (6) reduced to

z(r) = Ae–λrr�–1 – I�,λV(r). (8)

Taking r = 1 into (7), (8) and using condition b1z(1) + b2
R
0 Dm,λ

r z(1) = 0, we get

A =
∫ 1

0
kb1

(1 – p)�–1

�(�)
eλpV(p) dp +

∫ 1

0
kb2

(1 – p)�–m–1

�(� – m)
eλpV(p) dp.

Plugging A value into (8), we get

z(r) =
∫ 1

0
kb1

(1 – p)�–1

�(�)
r�–1e–λ(r–p)V(p) dp +

∫ 1

0
kb2

(1 – p)�–m–1

�(� – m)
r�–1e–λ(r–p)V(p) dp

–
∫ r

0

(r – p)�–1

�(�)
e–λ(r–p)V(p) dp

=
∫ r

0

[
kb1r�–1(1 – p)�–1 – (r – p)�–1

�(�)
+ kb2

(1 – p)�–m–1

�(� – m)
r�–1

]
e–λ(r–p)V(p) dp

+
∫ 1

r

[
kr�–1 (1 – p)�–1

�(�)
+ kb2

(1 – p)�–m–1

�(� – m)
r�–1

]
e–λ(r–p)V(p) dp

=
∫ 1

0
�(r, p)e–λ(r–p)V(p) dp. �

It is clear from Lemma 2.4 that zj is a solution of (1)–(2) iff zj solves the following
integral equation

zj =
∫ 1

0
�(r, p)ψj

(
p,zj(p)

)
e–λ(r–p) dp. (9)

Lemma 2.5 Suppose that k > 0, then for all r, p ∈ [0, 1], the kernel �(r, p) satisfies the fol-
lowing

(i) �(r, p) ≥ 0 and continuous on [0, 1] × [0, 1].
(ii) �(r, p) ≤ kb1

(1–p)�–1

�(�) + kb2
(1–p)�–m–1

�(�–m) =: �	(p).
(iii) maxr∈[0,1]

∫ 1
0 �(r, p) dp = kb1

�(�+1) + kb2
�(�–m+1) =: �	.
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Proof From the definition of �(r, p), it is clear that �(r, p) is continuous on [0, 1] × [0, 1].
For r, p ∈ [0, 1], we have

�2(r, p) = kb1
r�–1(1 – p)�–1

�(�)
+ kb2

r�–1(1 – p)�–m–1

�(� – m)
–

(r – p)�–1

�(�)

=
1

�(�)
[
kb1r�–1(1 – p)�–1 – (r – p)�–1] + kb2

r�–1(1 – p)�–m–1

�(� – m)

=
1

�(�)

[
kb1r�–1(1 – p)�–1 – r�–1

(
1 –

p
r

)�–1]
+ kb2

r�–1(1 – p)�–m–1

�(� – m)

≥ 1
�(�)

[
kbr�–1(1 – p)�–1 – r�–1(1 – p)�–1] + kb2

r�–1(1 – p)�–m–1

�(� – m)

=
1

�(�)

[
kb1r�–1(1 – p)�–1 – k

(
b + b2

�(�)
�(� – m)

)
r�–1(1 – p)�–1

]

+ kb2
r�–1(1 – p)�–m–1

�(� – m)

=
kb2

�(� – m)
[
(1 – p)–m – 1

]
r�–1(1 – p)�–1 ≥ 0.

This proves (i). For r, p ∈ [0, 1], we have

�2(r, p) = kb1
r�–1(1 – p)�–1

�(�)
+ kb2

r�–1(1 – p)�–m–1

�(� – m)
–

(r – p)�–1

�(�)

≤ kb1
r�–1(1 – p)�–1

�(�)
+ kb2

r�–1(1 – p)�–m–1

�(� – m)

=
[
kb1

(1 – p)�–1

�(�)
+ kb2

(1 – p)�–m–1

�(� – m)

]
r�–1

≤ kb1
(1 – p)�–1

�(�)
+ kb2

(1 – p)�–m–1

�(� – m)
.

This proves (ii). Finally,

max
r∈[0,1]

∫ 1

0
�(r, p) dp =

kb1

�(�)

∫ 1

0
(1 – p)�–1dp +

kb2

�(� – m)

∫ 1

0
(1 – p)�–m–1dp

=
kb1

�(� + 1)
+

kb2

�(� – m + 1)
. �

Definition 2.6 ([18]) The Kurtowski MNC of F, where F is a subset of a metric space E,
is given by

Kur(F) = inf

{

η > 0 : F ⊂
p⋃

k=1

Gk, Gk ⊂ E, diam(Gk) < η, p = 1, 2, . . .

}

.

From above definition, we have

Kur(F) ≤ diam(F) for all F ⊂ E.

Let B(ζ,r) = {ξ ∈ Z : ‖ξ–ζ‖ ≤ r}, where Z is a Banach space equipped with the norm ‖ · ‖.
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Denote by MZ the class of all non-empty and bounded subsets of Z and NZ its subclass
containing all relatively compact sets.

Definition 2.7 ([4]) A real-valued function μ from MZ to [0, 1) is said to be an MNC if
(i) Ker(μ) = {H ∈MZ : μ(H) = 0} is non-empty and Ker(μ) ⊂NZ.

(ii) μ(H) ≤ μ(G), if H ⊂ G.
(iii) μ(conv(H)) = μ(H), where conv(H) is the convex closure of H.
(iv) μ(H) = μ(H).
(v) μ(ξG + (1 – ξ)H) ≤ ξμ(G) + (1 – ξ)μ(H) for all 0 ≤ ξ ≤ 1.

(vi) if Gk ∈MZ, Gk = Gk, Gk+1 ⊂ Gk for k ∈N and limk→+∞ μ(Gk) = 0 then
⋂∞

k=1 Gk �= ∅.

Definition 2.8 ([6]) The HMNC is defined as

χ(H) = inf

{

η > 0 : G ⊂
p⋃

k=1

B(ζk,rk),ζk ∈ G,rk < η, p = 1, 2, . . .

}

,

where H is a bounded subset of a metric space G.

Next, we define some Banach spaces as

c0 =
{
� ∈ ω : lim

p→+∞�p = 0,‖�‖c0 = sup
p

|�p|
}

,

c =
{
� ∈ ω : lim

p→+∞�p = z, z ∈C,‖�‖c = sup
p

|�p|
}

.

We also define

χ(J) = lim
k→∞

{
sup

� (z)∈J

[
max
p≥k

|�p|
]}

, J ∈Mc0

which is called the HMNC on the Banach space (c0,‖ · ‖c0 ); for more details, see [6].

Definition 2.9 ([27]) The MNC μ on the Banach space (c,‖ · ‖c) is defined by

μ(J) = lim
k→∞

{
sup

� (z)∈J

[
sup
p≥k

∣
∣∣�p – lim

q→∞�q

∣
∣∣
]}

, J ∈Mc. (10)

Definition 2.10 ([5]) If 
 = (
j), then 
 is called a tempering sequence, if 
j > 0 for all j
and 
 is nonincreasing. Define

M =
{
� = (�j)∞j=1 : lim

j→∞
j�j = 0
}

.

Then, M is a linear space over R. We denote the space by c

0 and c


0 that is a Banach space
with the norm ‖�‖c


0
= sup{
k|�k|}. Next, let

N =
{
� = (�j)∞j=1 : lim

j→∞
j�j = finite
}

.
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Then, M is a linear space over R. We denote the space by c
 and c
 that is a Banach space
with the norm ‖�‖c
 = sup{
k|�k|}.

Here, we note that there is a isometry between the spaces c

0 and c0 and the spaces c


and c: In [5], the HMNC on Mc

0

is defined as

χ (J) = lim
k→+∞

{
sup
w∈J

[
sup
p≥k

(

p|wp|

)]}
, J ∈Mc


0
.

Also, the HMNC on c
 is defined as

μc
 (J) = lim
p→∞

{
sup
w∈J

[
sup
k≥p

∣∣∣
kwk – lim
r→∞(
rwr)

∣∣∣
]}

, J ∈Mc
 .

Let Q = (0, 1). Denote by �(Q,c

0) the space of all continuous functions on Q with values in

c

0, which is a Banach space with the norm

‖�‖�(Q,c

0) = max

{∥∥� (w)
∥∥
c


0
: w ∈ Q

}
, � ∈ �

(
Q,c


0
)
.

Denote by �(Q,c
) the space of all continuous functions on Q with values in c
, which is a
Banach space with the norm

‖�‖�(Q,c
) = max
{∥∥� (w)

∥∥
c
 : w ∈ Q

}
, � ∈ �

(
Q,c


)
,

for more details, see [9].
Let G �= ∅ be a bounded, closed and convex subset of �(Q,c
) and z ∈ Q or �(Q,c


0), Then,

χ�(Q,c

0)(G) = sup

{
χc


0

(
G(w)

)
: w ∈ Q

}

satisfy all the axioms of MNC on �(Q,c

0) and

μ�(Q,c
)(G) = sup
{
μc


(
G(w)

)
: w ∈ Q

}

satisfy all the axioms of MNC on �(Q,c
), which can be found in [9].

Definition 2.11 ([24]) Let G be a metric space with metric d. The mapping F : G → G is
called a Meir–Keeler contraction if for any δ > 0, there exists η > 0 such that

δ ≤ d(z,w) < δ + η �⇒ d(Fz,Fw) < δ, for all z,w ∈ G.

Theorem 2.12 ([24]) Let G be a complete metric space. If F : G → G is a Meir–Keeler
contraction, then F has a unique fixed point.

Definition 2.13 ([1]) The mapping F on a non-empty subset U of a Banach space G is
said to be a Meir–Keeler condensing operator if for any η > 0, there exists δ > 0 such that

η ≤ μ(H) < η + δ �⇒ μ
(
F(H)

)
< η, H ⊂ U.

Theorem 2.14 In addition to Definition 2.13, if U is a closed, bounded and convex subset
of G, then F has a fixed point.
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3 Solvability of the Boundary Value Problem (1) in �(Q,c�
0)

This portion deals with the existence of solutions for BVP (1) in �(Q,c

0).

We assume that the following conditions are met in this section:
(A) Let ψj : Q×R

∞ →R and define an operator ψ from Q× c

0 to c


0 as
(r,z(r)) → (ψz)(r) = (ψj(r,z(r)))∞j=1, which is the family of all functions ((ψz)(r))r∈Q
equicontinuous on c


0.

(B) ξj(r),ζj(r) : Q→ R are continuous functions, 
jξj(r)
uniformly−−−−−→ 0 converges on Q,

and the sequence (ζj(r)) is equibounded on Q. Let ζ(r) = sup{ζj(r) : j ∈ N},
ζ	 = sup{ζ(r) : r ∈ Q}, 
	 = sup{
jξj(r) : j ∈N, r ∈ Q} and

∣
∣ψj

(
r,z(r)

)∣∣≤ ξj(r) + ζj(r)
∣
∣zj(r)

∣
∣, zj ∈ c


0, r ∈ Q,j ∈N.

Theorem 3.1 Let �̂ := supp∈Q�	(p), and suppose eλ�̂ < 1 and (A) – (B) hold, then BVP (1)
has at least one solution z(r) = (zj(r))∞j=1 in �(Q,c


0).

Proof Since sup{
j|zj(r)|} < +∞ for all z(r) = (zj(r))∞j=1 ∈ �(Q,c

0) and r ∈ Q∃κ > 0 �

sup{
j|zj(r)|} < κ . From (B) and (9), we get

∥∥z(r)
∥∥
c


0
= sup

j∈N

{

j

∣
∣∣∣

∫ 1

0
�(r, p)e–λ(r–p)ψj

(
r,z(r)

)
dp

∣
∣∣∣

}

≤ eλ sup
j∈N

{

j

∫ 1

0
�(r, p)ψj

(
r,z(r)

)
dp

}

≤ eλ sup
j∈N

{∫ 1

0
�(r, p)
jψj

(
r,z(r)

)
dp

}

≤ eλ sup
j∈N

{∫ 1

0
�(r, p)
j

[
ξj(p) + ζj(p)

∣∣zj(p)
∣∣]dp

}

≤ eλ sup
j∈N

{∫ 1

0
�(r, p)

[

	 + ζ	κ

]
dp

}

≤ (

	 + ζ	κ

)
eλ
∫ 1

0
�(r, p) dp

≤ �	
(

	 + ζ	κ

)
eλ := a1.

Therefore,

max
r∈Q

∥∥z(r)
∥∥
c


0
≤ a1, i.e.,

∥∥z(r)
∥∥

�(Q,c

0) ≤ a1.

Let E = E(z0(r), a1) be a closed ball centered at z0(r) = (z0(r))∞j=1, for all r ∈ Q, and radius
a1. So, E is a non-empty closed, bounded and convex subset of �(Q,c


0).
For fixed r ∈ Q, define an operator ℘ = (℘j)∞j=1 : �(Q,c


0) → �(Q,c

0) as

(℘z)(r) =
{

(℘jz)(r)
}∞
j=1 =

{∫ 1

0
�(r, p)e–λ(r–p)ψj

(
r,z(r)

)
dp

}∞

j=1
.



Rao et al. Boundary Value Problems         (2024) 2024:23 Page 10 of 17

Since (ψj(r,z(r)))∞j=1 ∈ c

0, for r ∈ Q, it follows that

lim
j→∞

{

j(℘jz)(r)

}
= lim

j→∞

{

j

∫ 1

0
�(r, p)e–λ(r–p)ψj

(
r,z(r)

)
dp

}

≤ eλ
∫ 1

0
�(r, p) lim

j→∞
[

jψj

(
r,z(r)

)]
dp

= 0.

Thus, (℘z)(r) ∈ �(Q,c

0). It is easy to see that (℘jz)(r) satisfies

(℘jz)(0) = 0, R
0 Dm,λ

r
(
℘jz(0)

)
= 0,

b1
(
℘jz(1)

)
+ b2

R
0 Dm,λ

r
(
℘jz(1)

)
= 0.

For fixed r ∈ Q and z(r) ∈ E , we get

∥∥(℘z)(r) – z0(r)
∥∥
c


0
≤ a1 �⇒ max

r∈Q
∥∥(℘z)(r) – z0(r)

∥∥
c


0
≤ a1

�⇒ ∥∥(℘z)(r) – z0(r)
∥∥

�(Q,c

0) ≤ a1.

Thus, ℘ is a self-mapping on E . From (A), for any z(r) = (zj(r))∞j=1 ∈ E and for any η >
0, there exists ξ > 0 such that ‖(ψz)(r) – (ψw)(r)‖c


0
< η

eλ�̂
for each z(r) ∈ E , whenever

|z(r) – w(r)| ≤ ξ, where r ∈ Q. So, for r ∈ Q, we have

∥∥(℘z)(r) – (℘w)(r)
∥∥
c


0
= sup

j∈N

{∣∣∣
∣
j

∫ 1

0
�(r, p)e–λ(r–p)[ψj

(
p,z(p)

)
– ψj

(
p,w(p)

)]
dp

∣
∣∣
∣

}

≤ eλ sup
j∈N

{∫ 1

0
�

	(p)
j
∣
∣ψj

(
p,z(p)

)
– ψj

(
p,w(p)

)∣∣dp
}

≤ eλ�̂
η

eλ�̂
< η.

Thus, ℘ is continuous on E∀r ∈ Q.
Now, we have

χ (℘E) = lim
j→∞

{
sup
z(r)∈E

sup
m≥j

[

m

∣∣
∣∣

∫ 1

0
�(r, p)e–λ(r–p)ψm

(
r,z(r)

)
dp

∣∣
∣∣

]}

≤ eλ�̂ lim
j→∞

{
sup
z(r)∈E

sup
m≥j

[∫ 1

0

(

mξm(p) + 
mζm(p)

∣∣zm(p)
∣∣)dp

]}

≤ eλ�̂χ (E).

Thus,

sup
r∈Q

χ (℘E) ≤ eλ�̂ sup
r∈Q

χ (E).

It follows that

χ�(Q,c

0)(℘E) ≤ eλ�̂χ�(Q,c


0)(E) < η.



Rao et al. Boundary Value Problems         (2024) 2024:23 Page 11 of 17

That is

χ�(Q,c

0)(E) <

η

eλ�̂
.

Setting ξ = η

eλ�̂
[1 – eλ�̂], we get η ≤ χ�(Q,c


0)(E) < η + ξ.
Therefore, ℘ is a Meir–Keeler condensing operator on E . Further, ℘ satisfies all the

conditions of Theorem 2.14, i.e., ℘ has a fixed point in E . Hence, BVP (1) has a solution
in �(Q,c


0). �

4 Solvability of the BVP (1) in �(Q,c�)
In this section, we study the solvability of BVP (1) in �(Q,c
).

We assume the following conditions hold throughout this section:
(C) Let ψj : Q×R

∞ →R and define an operator ψ from Q× c
 to c
 as
(r,z(r)) → (ψz)(r) = (ψj(r,z(r)))∞j=1, which is the family of all functions ((ψz)(r))r∈Q
equicontinuous on c
.

(D) ηj(r), zj(r) : Q→R are continuous functions such that the sequence


jηj(r)
uniformly−−−−−→ 0 on Q and the sequence (zj(r)) is convergence on Q, so we take

z(r) = sup{zj(r) : j ∈N}, z	 = sup{z(r) : r ∈ Q}, 
	 = sup{
jηj(r) : j ∈N, r ∈ Q} and

ψj

(
r,z(r)

)≤ ηj(r) + zj(r)zj(r), zj ∈ c
, r ∈ Q,j = 1, 2, 3, . . . .

Theorem 4.1 Let �̂ := supp∈Q�	(p), suppose eλ�̂z	 < 1 and (C )–(D) hold, then BVP (1)
has at least one solution z(r) = (zj(r)) in �(Q,c
).

Proof Since sup{
j|zj(r)|} < +∞ for all z(r) = (zj(r))∞j=1 ∈ �(Q,c
) and r ∈ Q, there exists
ρ > 0 such that sup{
j|zj(r)|} < ρ. From (D) and (9), we get

∥
∥z(r)

∥
∥
c
 = sup

j∈N

{

j

∣∣
∣∣

∫ 1

0
�(r, p)e–λ(r–p)ψj

(
r,z(r)

)
dp

∣∣
∣∣

}

≤ sup
j∈N

{

jeλ

∫ 1

0

∣∣�(r, p)
∣∣∣∣ψj

(
r,z(r)

)∣∣dp
}

≤ eλ sup
j∈N

{∫ 1

0

∣
∣�(r, p)

∣
∣
j

∣
∣ψj

(
r,z(r)

)∣∣dp
}

≤ eλ sup
j∈N

{∫ 1

0
�(r, p)
j

[
ηj(p) + zj(p)

∣∣zj(p)
∣∣]dp

}

≤ eλ
{∫ 1

0
�(r, p)

[

	 + z

	ρ
]

dp
}

≤ �	eλ
(

	 + z

	ρ
)

:= b.

Thus,

max
r∈Q

∥
∥z(r)

∥
∥
c
 ≤ b, i.e.,

∥
∥z(r)

∥
∥

�(Q,c
) ≤ b.

Let S = S(z0(r), r1) be closed with center z0(r) = (z0(r))∞j=1 for all r ∈ Q and radius b. So, S
is a non-empty bounded, closed convex subset of �(Q,c
).
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For fixed r ∈ Q, define an operator $ = ($j)∞j=1 : �(Q,c

0) → �(Q,c


0) as

($z)(r) =
{

($jz)(r)
}∞
j=1 =

{∫ 1

0
�(r, p)e–λ(r–p)ψj

(
r,z(r)

)
dp

}∞

j=1
.

Now, let i ∈ N and

∣∣
j($jz)(r) – 
i($iz)(r)
∣∣

=
∣
∣∣
∣
j

∫ 1

0
�(r, p)e–λ(r–p)ψj

(
r,z(r)

)
dp – 
i

∫ 1

0
�(r, p)e–λ(r–p)ψi

(
r,z(r)

)
dp

∣
∣∣
∣

≤
∣
∣∣∣
j

∫ 1

0
�(r, p)e–λ(r–p)(ηj(p) + zj(p)zj(p)

)
dp

– 
i

∫ 1

0
�(r, p)e–λ(r–p)(ηi(p) + zi(p)zi(p)

)
dp

∣∣
∣∣

≤ ∣∣e–λ(r–p)∣∣
{∫ 1

0

∣∣�(r, p)
∣∣
jηj(p) – 
iηi(p)

∣
∣∣
∣dp

+
∫ 1

0

∣∣
∣∣�(r, p)

∣
∣
jzj(p)zj(p) – 
izi(p)zi(p)

∣
∣dp

}

≤ eλ
{∫ 1

0

∣∣�(r, p)
∣∣
jηj(p) – 
iηi(p)

∣
∣∣
∣dp

+
∫ 1

0

∣∣
∣∣�(r, p)

∣
∣
jzj(p)zj(p) – 
izi(p)zi(p)

∣
∣dp

}
.

Observe that

∣∣
jzj(p)zj(p) – 
izi(p)zi(p)
∣∣≤ 
j

∣∣zj(p)
∣∣∣∣zj(p) – zi(p)

∣∣ +
∣∣zi(p)

∣∣∣∣
jzj(p) – 
izi(p)
∣∣.

As j,i → ∞, we obtain |zj(p) – zi(p)| → 0, |
jzj(p) – 
izi(p)| → 0 and |
jηj(p) –

iηi(p)| → 0. Since (zj), (
jηj) are convergent on Q and zj(p) ∈ �(Q,c
), it follows that

∣∣
j($jz)(r) – 
i($iz)(r)
∣∣→ 0 as j,i→ ∞.

Hence, ($z)(r) ∈ �(Q,c
). We also note that ($jz)(r) satisfies

($jz)(0) = 0, R
0 Dm,λ

r
(
$jz(0)

)
= 0,

b1
(
$jz(1)

)
+ b2

R
0 Dm,λ

r
(
$jz(1)

)
= 0.

For fixed r ∈ Q and z(r) ∈ S , we get

∥∥($z)(r) – z0(r)
∥∥
c
 ≤ b �⇒ max

r∈Q
∥∥($z)(r) – z0(r)

∥∥
c
 ≤ b

�⇒ ∥∥($z)(r) – z0(r)
∥∥

�(Q,c
) ≤ b,

which proves that $ is a self-mapping on S . From (C), for any w(r) = (wj(r))∞j=1 ∈ S and
for any η > 0, there exists ξ > 0 such that ‖(ψz)(r) – (ψw)(r)‖c
 < η

eλ�̂
for each z(r) ∈ S ,
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whenever |z(r) – w(r)| ≤ ξ, where r ∈ Q. So, for r ∈ Q, we have

∥
∥($z)(r) – ($w)(r)

∥
∥
c
 = sup

j∈N

{∣∣
∣∣
j

∫ 1

0
�(r, p)e–λ(r–p)[ψj

(
p,z(p)

)
– ψj

(
p,w(p)

)]
dp

∣∣
∣∣

}

≤ eλ sup
j∈N

{∫ 1

0
�

	(p)
j
∣∣ψj

(
p,z(p)

)
– ψj

(
p,w(p)

)∣∣dp
}

≤ eλ�̂
η

eλ�̂
< η.

So, $ is continuous on S for every r ∈ Q.
Now, we have

μc
 ($S) = lim
j→∞

{
sup
z(r)∈S

sup
m≥j

[∣∣∣
∣
m

∫ 1

0
�(r, p)e–λ(r–p)ψm

(
p,z(p)

)
dp

– lim
n→∞

(

n

∫ 1

0
�(r, p)e–λ(r–p)ψn

(
p,z(p)

)
dp

)∣∣∣
∣

]}

≤eλ�̂ lim
j→∞

{
sup
z(r)∈S

sup
m≥j

[∫ T

0

∣
∣∣
mψm

(
p,z(p)

)
– lim

n→∞ 
nψn
(
p,z(p)

)∣∣∣dp
]}

≤eλ�̂ lim
j→∞

{
sup
z(r)∈S

sup
m≥j

[∫ T

0

∣
∣∣
mzm(p)zm(p) – lim

n→∞ 
nzn(p)zn(p)
∣
∣∣dp

]}

≤eλ�̂ lim
j→∞

{
sup
z(r)∈S

sup
m≥j

[∫ T

0

(∣∣zm(τ)
∣∣
∣∣
∣
mzm(τ) – lim

n→∞ 
nzn(τ)
∣∣
∣

–
∣∣∣ lim
n→∞ 
nzn(τ)

(
zm(τ) – zn(τ)

)∣∣∣
)

dτ
]}

≤eλ�̂z	μc
 (S).

Thus,

sup
r∈Q

μc
 ($S) ≤ eλ�̂z	 sup
r∈Q

μc
 (S).

It follows that,

μ�(Q,c
)($S) ≤ eλ�̂z	μ�(Q,c
)(S) < η �⇒ μ�(Q,c
)(S) <
η

eλ�̂z	
.

Setting ξ = η

eλ�̂z	 [1 – eλ�̂z	], we get η ≤ μ�(Q,c
)(S) < η + ξ.
Therefore, $ is a Meir–Keeler condensing operator on S . Since r is arbitrary, so for every

r ∈ Q, $ satisfies all the conditions of Theorem 2.14, i.e., $ has a fixed point in S . Hence,
BVP (1) has a solution in �(Q,c
). �

5 Applications
In this section, we provide two examples to check the validity of our main results.

Example 5.1 Consider the following BVP

R
0 D

5
2 , 1

6
r zj(r) +

[
e–jr cos(jr)

j
+

∞∑

i=j

zj(r)
i2

]

= 0, 0 < r < 1, (11)
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⎧
⎪⎪⎨

⎪⎪⎩

z(0) = 0, R
0 D

3
2 , 1

6
r z(0) = 0,

0.1z(1) +
2

3
√
π

R
0 D

3
2 , 1

6
r z(1) = 0.

(12)

So, � = 5
2 , m = 3

2 , λ = 1
6 , b1 = 0.1, b2 = 2

3
√
π

, Q = [0, 1], and ψj(r,z(r)) = e–jr cos(jr)
j +

∑∞
i=j

zj(r)
i2 .

Let 
j = 1
j for all j ∈N. Now, for z(r) ∈ �(Q,c


0), we have

lim
j→∞
jψj

(
r,z(r)

)
= lim
j→∞

[
e–jr cos(jr)

j
+

1
j

∞∑

i=j

zj(r)
i2

]

= 0.

Next, let ν(r) = (νj(r))∞j=1 ∈ �(Q,c

0). Let η > 0 be given and δ = 24η

π2 such that ‖z(r) –
ν(r)‖�(Q,c


0) < δ. Then,

∥∥(ψz)(r) – (ψν)(r)
∥∥
c


0
= sup

j∈N

{

j
∣∣ψj

(
r,z(r)

)
– ψj

(
r,ν(r)

)∣∣}

= sup
j∈N

{
1
j

∞∑

i=j

1
i2

∣
∣zj(r) – νj(r)

∣
∣
}

≤ π2

6
∥
∥zj(r) – νj(r)

∥
∥
c


0
< η.

Thus, ((ψz)(r))r∈Q is equicontinuous on c

0. For r ∈ Q and j ∈N, we also have

∣∣ψj

(
r,z(r)

)∣∣≤ e–jr| cos(jr)|
j

+
∞∑

i=j

1
i2

∣∣zj(r)
∣∣

≤ 1
j

+
π2

6
∣∣zj(r)

∣∣,

where ξj(r) = 1
j and ζj(r) = π2

6 . So, ζ	 = π2

6 . We note that (
ξj(r)) = (1/j2)
uniformly−−−−−→ 0 on

Q, and the sequence ζj(r) is equibounded on Q. Also, k = [b + c �(�)
�(�–m) ]–1 = 1.67,

�
	(p) = kb

(1 – p)�–1

�(�)
+ kc

(1 – p)�–m–1

�(� – m)

= 0.126(1 – p)1.5 + 0.628.

Then, �̂ = 0.754. So,

eλ�̂ = 0.754 6√e < 1.

Hence, by Theorem 3.1, BVP (11)–(12) has a solution in �(Q,c

0).

Example 5.2 Consider the BVP

R
0 D

7
3 , 1

8
r zj(r) +

[
1
j

+
∞∑

i=j

zj(r)
2i2

]

= 0, 0 < r < 1, (13)
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⎧
⎨

⎩
z(0) = 0, R

0 D
4
3 , 1

8
r z(0) = 0,

0.2z(1) + 27
4
√

3π
R
0 D

4
3 , 1

6
r z(1) = 0.

(14)

So, � = 7
3 , m = 4

3 , λ = 1
8 , Q = [0, 1], b1 = 0.2, b2 = 27

4
√

3π , and ψj(r,z(r)) = 1
j +

∑∞
i=j

zj(r)
2i2 .

Let 
j = 1
j for all j ∈N. Now, for z(r) ∈ �(Q,c
), we have

lim
j→∞
jψj

(
r,z(r)

)
= lim
j→∞

[
1
j2 +

1
j

∞∑

i=j

zj(r)
2i2

]

= 0.

This shows that (ψj(r,z(r))) ∈ c
. Next, let w(r) = (wj(r))∞j=1 ∈ �(Q,c
). Let η > 0 be given
and δ = 12η

π2 such that ‖z(r) – w(r)‖�(Q,c
) < ξ. Then

∥∥(ψz)(r) – (wz)(r)
∥∥
c
 = sup

j∈N

{

j
∣∣ψj

(
r,z(r)

)
– ψj

(
r,w(r)

)∣∣}

= sup
j∈N

{
1
j

∞∑

i=j

1
2i2

∣∣zj(r) – wj(r)
∣∣
}

≤ π2

12
∥∥zj(r) – wj(r)

∥∥
c


0
< η.

Thus, ((ψz)(r))r∈Q is equicontinuous on c
. For r ∈ Q and j ∈ N, we also have ηj(r) = 1
j

and zj(r) = π2

12 . So, z	 = π2

12 . We note that (
ηj(r)) = ( 1
j2 )

uniformly−−−−−→ 0 on Q, and the sequence
zj(r) is convergent on Q. Also, k = [b + c �(�)

�(�–m) ]–1 = 1.06,

�
	(p) = kb

(1 – p)�–1

�(�)
+ kc

(1 – p)�–m–1

�(� – m)

= 0.178(1 – p)4/3 + 0.662.

Then, �̂ = 0.84. So,

eλ�̂z	 = 0.84 × 8√e × π2

12
< 1.

Hence, by Theorem 4.1, BVP (13)–(14) has a solution in �(Q,c
).

6 Conclusion
The present paper considers a boundary value problem with an infinite system of tem-
pered fractional order. A variation of the well-known RL-fractional derivative, the so-
called tempered fractional RL-derivative, is the fractional derivative used in our case.
Using the HMNC technique and the Meir–Keeler fixed point theorem, we looked into
whether there is a solution to an infinite system. This study was conducted in two brand-
new sequence spaces: tempered sequence spaces �(Q,c


0) and �(Q,c
). Finally, numerical
examples are also given to demonstrate the results we achieved. Future research could
focus on the following areas:

(1) To investigate infinite system of singular TFBVP, further research is required.
(2) Is it possible to expand the concept used in this paper to investigate infinite systems

of fractional difference equations and dynamic equations on time scales.
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