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Abstract
In this work, a new type of the unique continuation property for time-fractional
diffusion equations is studied. The proof is mainly based on the Laplace transform
and the properties of Bessel functions. As an application, the uniqueness of the
inverse problem in the simultaneous determination of spatially dependent source
terms and fractional order from sparse boundary observation data is established.
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1 Introduction
Classical unique continuation, which shows that the local information of the solution can
uniquely determine the global information of the solution, is an important property of
elliptic and parabolic equations. More specifically, the vanishment of the solution of the
homogeneous problem in the open subset results in its vanishment in the entire domain,
see Saut and Scheurer [1]. There are many important applications of the unique continu-
ation properties. For the inverse source problem, we refer the readers to El Badia and Ha-
Duong [2], Hu, Kian, and Zhao [3]. For approximate controllability, see Cannarsa, Tort,
and Yamamoto [4], Dou and Lu [5].

Major advances have been made in fractional calculus in the last few decades. As a gen-
eralization of the classical diffusion equation, the fractional diffusion equation has be-
come a research hotspot in mathematics. The extension of the unique continuation prop-
erties to fractional diffusion equations has attracted the attention of many researchers.
Li and Yamamoto [6] investigated the lateral Cauchy problem for the one-dimensional
time-fractional diffusion equation. As a direct conclusion of the uniqueness of the Cauchy
problem, they proved that the classical unique continuation property is valid. Other re-
searchers in recent years have investigated the unique continuation property for fractional
differential equations via Carleman estimates, see Xu, Cheng, and Yamamoto [7], Cheng,
Lin, and Nakamura [8]. Sakamoto and Yamamoto [9] indicated the weak unique continu-
ation property of the time-fractional diffusion equations with the homogeneous Dirichlet
boundary condition on the whole boundary. Jiang et al. [10] generalized the result in [9] to
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the multiterm case. The literature mentioned above focuses on the unique continuation
properties in the inner open subset. However, as far as we know, there are few published
results concerning the properties from sparse data. We wonder whether the global infor-
mation of the solution can be determined from a small finite number N of measurement
points. The primary goal of this paper is to investigate the unique continuation property
of the following problem.

Let � ⊂R
2 be a unit disc and T > 0. Consider the following initial-boundary value prob-

lem of the time-fractional diffusion equation:

⎧
⎪⎪⎨

⎪⎪⎩

(c∂α
t – �)u(x, t) = 0, in � × (0, T),

u(x, 0) = u0, in � × {0},
u(x, t) = 0, on ∂� × (0, T).

(1)

c∂α
t u denotes the Caputo derivative of u at time t > 0, which is defined by

c∂α
t u(x, t) =

1
�(1 – α)

∫ t

0
(t – τ )–αu′(x, τ ) dτ . (2)

Here 0 < α < 1. �(·) denotes the gamma function. For the definition and properties of
fractional derivatives, see Podlubny [11].

Problem 1.1 Let u be the solution of (1) and Zob = {z1, z2} ⊂ ∂�. Does ∂u
∂ν

(z1, t) =
∂u
∂ν

(z2, t) = 0 imply u ≡ 0 in � × (0, T)? Here, the boundary flux data ∂u
∂ν

are used, and ν

is the unit outward normal vector of ∂�.

In practice, environmental authorities often need to determine the intensity and loca-
tion of pollution sources based on monitoring data. The study of the inverse source prob-
lem has become popular due to the aforementioned issues. Anomalous transport poses
significant challenges for accurate prediction and remediation of groundwater contami-
nation. Fractional calculus has attracted more and more attention in anomalous diffusion
due to its heritability and memorability. We refer the readers to Zhang, Meerschaert, and
Baeumer [12], Sun et al. [13], and Yin et al. [14]. Furthermore, it is known that the fractional
order is related to the inhomogeneity of the media, but it is not clear which physical law
can relate the inhomogeneity to the fractional order. So we are also required to consider
the inverse fractional order problem. There exists a large and rapidly growing number
of publications related to the inverse problems in determining sources, fractional orders,
and other unknown coefficients. For some early work on the determination of the source
terms, we refer the readers to Zhang and Xu [15], Kirane and Malik [16], Chi, Li, and Jia
[17], Liu, Rundell, and Yamamoto [18]; and for more recent works, we refer to Liu and
Zhang [19], Rundell and Zhang [20], Li and Zhang [21], Phuong, Kumar, and Binh [22],
Binh and Long [23], Phuong, Thi, and Luc [24] and the references therein. In particular,
we mention the reference [10] by Jiang et al., where the uniqueness of an inverse problem
in determining the spatial component in the source term by interior measurements uti-
lizing the weak unique continuation property was proven. For the determination of the
fractional orders and other unknown coefficients, refer to Cheng et al. [25], Li et al. [26],
Li et al. [27], Kian et al. [28], Ozbilge and Demir [29], Jday and Mdimagh [30], Phuong et
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al. [31], Phuong et al. [32], Long and Saadati [33]. It is worth noting that some of the above
inverse problems are studied in disc or rectangular domains mathematically. Inversion
studies in these special domains have also received widespread attention in engineering
defect identification (see [34–36] for instance). The study of inverse problems in these
special regions can provide theoretical support for engineering numerical simulations.

This paper considers the inverse problem of simultaneously determining spatially de-
pendent source terms and fractional orders from two point Neumann boundary data.
More precisely, we consider an initial-boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

(c∂α
t – �)u(x, t) = g(t)f (x), in � × (0, T),

u(x, 0) = 0, in � × {0},
u(x, t) = 0, on ∂� × (0, T).

(3)

The above model explains the evolution of density u(x, t) at location x and time t of some
substances, such as contaminants, where g(t)f (x) is a source term in �. The source term
can often be assumed to be modeled in the form of the separation of variables. g(t) and f (x)
describe the spatial distribution of the source and the time evolution pattern, respectively.
We are dedicated to using sparse boundary data to simultaneously determine the spatially
dependent source term f (x) and fractional order α.

A precise mathematical statement of this inverse problem is provided below.

Problem 1.2 Let � be the unit disc in R
2 and the fractional derivative be defined as above.

Assume that the temporal component g(t) is known in equation (3). The boundary flux
data are given at two points:

∂u
∂ν

(z, t), (z, t) ∈ Zob × (0, T). (4)

Can we uniquely determine f (x) and α simultaneously? Here, Zob is defined as in Prob-
lem 1.1.

It is worth noting that the observations required in this work are only for a limited period
(i.e., t ∈ (0, T)), which is in contrast to Li and Zhang [21, Theorem 1.1]. Our aim is to find
the connection between the above inverse problem and Problem 1.1, and to apply the
conclusion of Problem 1.1 to prove the uniqueness of this inverse problem.

In the rest of this section, we first endeavor to answer the Problem 1.1. For this, we
propose the following theorem.

Theorem 1.1 Let u0 ∈ L2(�) and u ∈ L2(0, T ; H1
0 (�)) be the solution to (1). Set z� =

(cos θ�, sin θ�) ∈ ∂�, � = 1, 2 as the boundary points, and θ� satisfies θ1 – θ2 /∈ πQ,Q as
the set of rational numbers. Let ∂u

∂ν
(z1, t) = ∂u

∂ν
(z2, t) = 0. Then the following holds:

u ≡ 0, in �.

We give the following uniqueness theorem to answer Problem 1.2.

Theorem 1.2 Let u(x, t) satisfy (3). Suppose that the spatial component f ∈ L2(�) �= 0 in
the source term is unknown and g ∈ C1[0, T] with g(0) �= 0. Assume that 1/2 < α1,α2 < 1.



Liu et al. Boundary Value Problems         (2024) 2024:19 Page 4 of 13

Then z� = (cos θ�, sin θ�) ∈ ∂�, � = 1, 2, is set as the boundary observation points, and θ�

satisfies θ1 – θ2 /∈ πQ,Q as the set of rational numbers.
Denote the two sets of unknown solutions to equation (3) as u1 and u2. If

∂u1

∂ν
(z�, t) =

∂u2

∂ν
(z�, t), � = 1, 2,

then

α1 = α2, f1(x) = f2(x), x ∈ �.

The rest of this paper is organized as follows. In Sect. 2, some prior knowledge is listed,
such as the eigensystem of the Laplacian operator, the properties of Bessel functions, and
the Mittag-Leffler function. In Sect. 3, we give the proof of Theorem 1.1. In Sect. 4, we
present the proof of Theorem 1.2 as an application of Theorem 1.1. Finally, concluding
remarks are provided in Sect. 5.

2 Preliminary information
In this section, we first set up notations and introduce the Dirichlet eigensystem of the
Laplacian operator. Let L2(�) be a usual L2-space with the inner product 〈·, ·〉, and let
H1

0 (�) denote the usual Sobolev spaces. We introduce the eigensystem {(λn,ϕn)}∞n=–∞ of
the Laplacian operator –
 on � with the Dirichlet boundary condition, i.e.,

⎧
⎨

⎩

–
ϕn = λnϕn, in �,

ϕn = 0, on ∂�.
(5)

Since � is the unit disc in R
2 as mentioned above, we consider the eigensystem in polar

coordinates for convenience. According to the Bessel function and its related properties,
{〈λn,ϕn〉}∞n=0 is given as follows:

0 < λ0 < λ1 ≤ · · · ,λn → ∞, (n → ∞),

and ϕn denotes the corresponding eigenfunction

ϕn(r, θ ) = ωnJ|m(n)|(
√

λ|n|r)eim(n)θ , n ∈ Z, (6)

which forms a complete orthonormal basis of L2(�). Here, (r, θ ) are the polar coordinates
on �, J|m(n)|(·) is the Bessel function of order |m(n)| with

√
λ|n| as its zero point, m(n)

demonstrates the dependence of m on n such that m(n) = –m(–n), and ωn is the normal-
ized coefficient and allows the form

ωn = π–1/2[J|m(n)|+1
(
λ1/2

|n|
)]–1, n ∈N

+. (7)

See [21, Sect. 2.2] for further details.
Sometimes, we also write λn = λ|n| for simplicity. Therefore, for a given eigenvalue λn0 ,

in the case of m(n0) �= 0, the corresponding eigenpairs are given as

(
λn0 ,ωn0 J|m(n0)|

(
λ1/2

n0 r
)
eim(n0)θ),

(
λn0 ,ωn0 J|m(n0)|

(
λ1/2

n0 r
)
e–im(n0)θ).
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For the purpose of the latter proof, we list some properties of Bessel functions.

Lemma 2.1 [37] Bessel functions have the following differential relations and recurrence
relations:

d
dx

(
xmJm(x)

)
= xmJm–1(x),

d
dx

(
Jm(x)

)
=

m
x

Jm(x) – Jm+1(x),

2m
x

Jm(x) = Jm–1(x) + Jm+1(x),

xJm–1(x) = x
d

dx
(
Jm(x)

)
+ mJm(x).

(8)

Next, we introduce the Mittag-Leffler function and some of its properties. The gen-
eralized Mittag-Leffler function plays an important role in fractional calculus [38]. The
function is defined as follows:

Eα,β (z) :=
∞∑

k=0

zk

�(αk + β)
, (z ∈C,α > 0,β ∈R).

We provide the asymptotic property of the Mittag-Leffler function below.

Lemma 2.2 [11, Theorem 1.6] Eα,β (z) is an analytic function. Assume πα/2 < ρ <
min{π ,πα}. Then there exists a constant C = C(α,β ,ρ) > 0 such that

∣
∣Eα,β (z)

∣
∣ ≤ C

1 + |z| ,
(
0 < α < 2,β ∈ R,ρ ≤ ∣

∣arg(z)
∣
∣ ≤ π

)
.

Then, we introduce the lemma for the Laplace transform of the Mittag-Leffler function.
First, we define s ∈ C

+ := {s ∈ C : Re(s) > 0} to ensure analyticity. Here, s is the Laplace
transform parameter.

Lemma 2.3 [39, Proposition 4] For α ∈ (0, 1), let λ ≥ 0, the Laplace transform
L{tα–1Eα,α(–λtα)} exists at every point s ∈C

+ and

L
{

tα–1Eα,α
(
–λtα

)}
=

1
sα + λ

.

Lemma 2.4 [18, Lemma 4.1] Let u satisfy the initial-boundary value problem (3), where
g ∈ C1[0, T] and f ∈ L2(�). Then the weak solution u is denoted by

u =
∫ t

0
θ (t – τ )v(τ ) dτ , 0 < t < T , (9)

where θ ∈ L1(0, T), J1–αθ = g(t). v is the solution to the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

c∂α
t v – 
v = 0, in � × (0, T),

v(x, 0) = f (x), in � × {0},
v(x, t) = 0, on ∂� × (0, T).

(10)
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Here, Jαθ (t) is the Riemann–Liouville integral, which is defined as follows:

Jαθ (t) :=
1

�(α)

∫ t

0
(t – η)α–1θ (η) dη.

3 A new type of unique continuation
In this section, we present the proof of Theorem 1.1. From the above lemma, we are ready
to give the proof of the main result.

Proof of Theorem 1.1 We first obtain the eigenfunction expansions of the solution to (1)
by the Fourier method. We multiply both sides of (1) by ϕn(x) and integrate the equation
with respect to x. Using integration by parts for the second term and ϕn|∂� = 0, we can
derive

⎧
⎨

⎩

c∂α
t un(t) + λnun(t) = 0, t ∈ (0, T),

un(0) = (u0,ϕn),
(11)

where un(t) = 〈u(·, t),ϕn〉. By using the Mittag-Leffler function, we can formally obtain the
expansion

un(t) = Eα,1
(
–λntα

)〈u0,ϕn〉.

Together with (6), the following holds:

u(r, θ , t) =
∞∑

n=–∞
Eα,1

(
–λntα

)〈u0,ϕn〉ϕn(r, θ )

=
∞∑

n=0

Eα,1
(
–λntα

)〈u0,ϕn〉ϕn(r, θ ) +
–1∑

n=–∞
Eα,1

(
–λntα

)〈u0,ϕn〉ϕn(r, θ ).

(12)

Next, we assert that u(r, θ , t) is t-analytic. To validate this claim, since Eα,1(–λntα) is ana-
lytic in C, we denote

∞∑

n=0

Eα,1
(
–λnzα

)〈u0,ϕn〉ϕn(r, θ ) =: u+,

and

–1∑

n=–∞
Eα,1

(
–λnzα

)〈u0,ϕn〉ϕn(r, θ ) =: u–.

Thus, for any K ⊂⊂ {z ∈ C; Re z > 0},

u+
N (r, θ , z) :=

N∑

n=0

Eα,1
(
–λnzα

)〈u0,ϕn〉ϕ(r, θ )

is analytic in K . According to Lemma 2.2 and Lemma 2.3, the following holds:

∥
∥u+(·, z) – u+

N (·, z)
∥
∥2

L2(�) =
∞∑

n=N+1

∣
∣〈u0,ϕn〉Eα,1

(
–λnzα

)∣
∣2
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≤ CK

∞∑

n=N+1

∣
∣〈u0,ϕn〉

∣
∣2, z ∈ K .

Thus, limn→∞ ‖u+ – u+
N‖L∞(K ;L2(�)) = 0 so that u+(r, θ , t) is analytic in K . Analogously, we

can obtain that u– is also analytic in K . As a result of the arbitrariness of K , the above
assertion is valid. A similar argument can be found in Sakamoto and Yamamoto [9].

From the analyticity of u(r, θ , t), the solution u to the initial-boundary value problem
(1) can be analytically extended from (0, T) to (0,∞). For simplicity, we still denote the
extension by u. Therefore, we arrive at the following initial-boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

c∂α
t u – 
u = 0, in � × (0,∞),

u = u0, in � × {0},
u = 0, on ∂� × (0,∞),

(13)

and the condition ∂u
∂ν

(z1, t) = ∂u
∂ν

(z2, t) = 0 on ∂� × (0, t) implies

∂u
∂ν

(z1, t) =
∂u
∂ν

(z2, t) = 0, on ∂� × (0,∞). (14)

Next, we perform the Laplace transform in (13) and use the formula

c∂̂α
t g(s) = sα ĝ(s) – sα–1g(0+),

to derive the transformed equation
⎧
⎨

⎩

–
û(s) + sαû(s) = sα–1u0,

û(s) = 0, on ∂�.

From the eigensystem {〈λn,ϕn〉}∞n=–∞ of –
 on � with the Dirichlet boundary condition,
the following holds:

û(r, θ ; s) =
∞∑

n=–∞

sα–1

sα + λn
〈u0,ϕn〉ϕn(r, θ ), in � × {Re s > 0}.

By using the formula ∂û
∂ν

(·; s) = ∂û
∂r (·; s) and Lemma 2.1, the following holds:

∂û
∂r

(·; s) =
∞∑

n=–∞

sα–1

sα + λn
〈u0,ϕn〉∂ϕn

∂r
(r, θ ), (15)

and together with (14), we have

∂û
∂r

(z1; s) =
∂û
∂r

(z2; s) = 0.

Note that � is a unit disk, as mentioned in Sect. 1. Thus z1 and z2 are boundary observation
points implying r = 1, there holds

∂û
∂r

(z1; s) =
∞∑

n=–∞

sα–1

sα + λn
〈u0,ϕn〉∂ϕn

∂r
(1, θ1) = 0,
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and

∂û
∂r

(z2; s) =
∞∑

n=–∞

sα–1

sα + λn
〈u0,ϕn〉∂ϕn

∂r
(1, θ2) = 0.

We set η = sα , which yields

∞∑

n=–∞

1
η + λn

〈u0,ϕn〉∂ϕn

∂r
(1, θ1)

=
∞∑

n=–∞

1
η + λn

〈u0,ϕn〉∂ϕn

∂r
(1, θ2) = 0.

(16)

It is readily seen that (16) holds for η ∈ C\{–λn}∞n=1. Then, for any n = 1, 2, . . . , we can
take a sufficiently small circle centered at –λn that does not include distinct eigenvalues.
Integrating (16) on this circle yields

〈u0,ϕn〉∂ϕn

∂r
(1, θ�) + 〈u0,ϕ–n〉∂ϕ–n

∂r
(1, θ�) = 0, n ∈N

+,� = 1, 2. (17)

Moreover, from the properties of Bessel functions in Lemma 2.1, it follows that

∂ϕn

∂r
(r, θ ) = ωn

√
λ|n|

(
1

r
√

λ|n|
J|m(n)|(r

√
λ|n|) – J|m(n)|+1(r

√
λ|n|)

)

eim(n)θ .

Since J|m(n)|(·) is the Bessel function of order |m(n)| with
√

λn as its zero point, the above
formula can be reduced to

∂ϕn

∂r
(1, θ�) = –ωn

√
λ|n|J|m(n)|+1(

√
λ|n|)eim(n)θ� , � = 1, 2.

By noting the definition of ωn, we further see that

∂ϕn

∂r
(1, θ�) = –

√
λ|n|√
π

eim(n)θ� , � = 1, 2. (18)

By combining the above formulas, we finally get

〈u0,ϕn〉eim(n)θ� + 〈u0,ϕ–n〉e–im(n)θ� = 0, n ∈ N
+,� = 1, 2.

We divide the next proofs into the following two cases.
Case 1. Provided that m(n) = 0, that is, n = 0, 〈u0,ϕ0〉 = 0 holds.
Case 2. Provided that m(n) �= 0, the following hold:

〈u0,ϕn〉eim(n)θ1 + 〈u0,ϕ–n〉e–im(n)θ1 = 0,

and

〈u0,ϕn〉eim(n)θ2 + 〈u0,ϕ–n〉e–im(n)θ2 = 0.
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We conclude that
[

eim(n)θ1 e–im(n)θ1

eim(n)θ2 e–im(n)θ2

][
〈u0,ϕn〉
〈u0,ϕ–n〉

]

=

[
0
0

]

.

From the matrix determinant and Euler’s formula, we conclude

eim(n)(θ1–θ2) – e–im(n)(θ1–θ2) = 2i sin
(
m(n)(θ1 – θ2)

)
.

Recalling Theorem 1.1, θ1 and θ2 are fulfilled

θ1 – θ2 /∈ πQ, Q is the set of rational numbers.

Therefore, we have

2i sin
(
m(n)(θ1 – θ2)

) �= 0.

Hence, we conclude that 〈u0,ϕn〉 = 〈u0,ϕ–n〉 = 0. Since n is chosen arbitrarily, we con-
clude 〈u0,ϕn〉 = 0 for all n ∈ Z, and thus u0 = u(·, 0) = 0 in �, which indicates u = 0 in �.
This completes the proof of Theorem 1.1. �

4 Fractional order and source term identification
In this section, our goal is to give the proof for the uniqueness of the inverse problem for
the determination of the fractional order and source term.

Proof of Theorem 1.2 To prove Theorem 1.2, we first prove that the observation

∂u1

∂ν
(z1, t) =

∂u2

∂ν
(z1, t),

implies α1 = α2. To achieve this, we extend the function g from (0, T) to (0,∞) by letting
g = 0 outside of (0, T). For simplicity, we still denote the extension by g and obtain the
following initial-boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

c∂
αj
t uj – 
uj = g(t)fj(x), in � × (0,∞),

u = 0, in � × {0},
u = 0, on ∂� × (0,∞).

(19)

The solution uj to the initial-boundary value problem (19) is an extension of the solution
u to problem (1.2). For simplicity, we still denote the extension as u.

By combining equation (18) and the series representation of the solution u (e.g., see
Sakamoto and Yamamoto [9]), we have

∂uj

∂r
(1, θ , t) =

∞∑

n=–∞

∫ t

0
g(t – τ )ταj–1Eαj ,αj

(
–λ|n|ταj

)
dτ 〈fj,ϕn〉∂ϕn

∂r
(1, θ )

= –
∞∑

n=–∞

∫ t

0
g(t – τ )ταj–1Eαj ,αj

(
–λ|n|ταj

)
dτ 〈fj,ϕn〉

√
λ|n|√
π

eim(n)θ ,

j = 1, 2.

(20)
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We perform Laplace transform on both sides of the above formula to obtain

∂ûj

∂r
(1, θ , t) = –

ĝ(s)√
π

∞∑

n=–∞

λ
3
2
|n|

sαj + λ|n|
〈fj,ϕn〉eim(n)θ , Re s > 0, (21)

which implies

∂û1

∂r
(1, θ ; s) –

∂û2

∂r
(1, θ ; s)

= –
ĝ(s)√

π

∞∑

n=–∞
λ

3
2
|n|

[ 〈f1,ϕn〉
sα1 + λ|n|

–
〈f2,ϕn〉

sα2 + λ|n|

]

eim(n)θ , Re s > 0.

Moreover, from the observation ∂u1
∂r (1, θ1, t) = ∂u2

∂r (1, θ1, t), t ∈ (0, T), it follows that

∫ ∞

T

[
∂u1

∂r
(1, θ1, t) –

∂u2

∂r
(1, θ1, t)

]

e–st dt

= –
ĝ(s)√

π

∞∑

n=–∞
λ

3
2
|n|

[ 〈f1,ϕn〉
sα1 + λ|n|

–
〈f2,ϕn〉

sα2 + λ|n|

]

eim(n)θ1 , Re s > 0.

By choosing ε ∈ (0, T) and multiplying sesε on both sides of the above formula, we obtain

lim
Re s→∞,Re s>0

seεs
∫ ∞

T

[
∂u1

∂r
(1, θ1, t) –

∂u2

∂r
(1, θ1, t)

]

e–st dt

= – lim
s→∞,Re s>0

sĝ(s)√
π

∞∑

n=–∞
λ

3
2
|n|

[ 〈f1,ϕn〉
sα1 + λ|n|

–
〈f2,ϕn〉

sα2 + λ|n|

]

eim(n)θ1 .

We note from the initial value theorem of the Laplace transforms that

lim
Re s→∞

sĝ(s) = g(0) > 0,

and then

lim
Re s→∞,Re s>0

∞∑

n=–∞
λ

3
2
|n|

[ 〈f1,ϕn〉
sα1 + λ|n|

–
〈f2,ϕn〉

sα2 + λ|n|

]

eim(n)θ1 = 0.

If α1 �= α2, then from Lemma 3.7 in Li and Zhang [21], it follows that 〈f1,ϕn〉 = 〈f2,ϕn〉 = 0
for all n ∈ Z, which contradicts f �= 0. Therefore, we must have α1 = α2.

Now, it remains to prove that if ∂u
∂ν

(z1, t) = ∂u
∂ν

(z2, t) = 0 holds, then f (x) = 0 can be derived.
Let u satisfy the initial-boundary value problem (3), where g ∈ C1[0, T] and f ∈ L2(�).
According to Lemma 2.4, u takes the form of (9). Therefore, the following holds:

∂u
∂ν

(x, t) =
∫ t

0
θ (t – τ )

∂v
∂ν

(x, τ ) dτ , (x, t) ∈ � × (0, T).

In particular,

∂u
∂ν

(z1, t) =
∂u
∂ν

(z2, t) = 0,
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then the following holds:

∫ t

0
θ (t – τ )

∂v
∂ν

(z�, τ ) dτ = 0, � = 1, 2.

Applying the operator J1–α to both sides of the above formula yields

∫ t

0
g(t – τ )

∂v
∂ν

(z�, τ ) dτ = 0, � = 1, 2.

Derivation of both sides of the above equation with respect to t, the following holds:

g(0)
∂v
∂ν

(z�, t) +
∫ t

0
g ′(t – τ )

∂v
∂ν

(z�, τ ) dτ = 0, on ∂�,� = 1, 2.

Note that g(0) �= 0, and we estimate

∣
∣
∣
∣
∂v
∂ν

(z�, t)
∣
∣
∣
∣ ≤ 1

|g(0)|
∫ t

0

∣
∣g ′(t – τ )

∣
∣ ·

∣
∣
∣
∣
∂v
∂ν

(z�, τ )
∣
∣
∣
∣dτ

≤ Cg

|g(0)|
∫ t

0

∣
∣
∣
∣
∂v
∂ν

(z�, τ )
∣
∣
∣
∣dτ , 0 < t < T .

According to Gronwall’s inequality, we obtain ∂v
∂ν

(z�, t) = 0, z� ∈ ∂�, and � = 1, 2. Lastly,
we apply Theorem 1.1 to the homogeneous problem (10) to derive v = 0 in � × (0, T), in
which we can conclude f = 0 in �. We therefore finish the proof of the Theorem 1.2. �

5 Concluding remarks and future work
In this paper, a new type of the unique continuation property for time-fractional diffu-
sion equations is studied. The proof of this unique continuation principle was concerned,
which leads to uniqueness of the corresponding inverse problems. We gave a representa-
tion formula for the solution in polar coordinates based on eigenfunction expansion and
the Mittag-Leffler function. With the help of the Laplace transformation and the proper-
ties of the Bessel function, we proved the unique continuation property from two point
Neumann boundary data. As an application, we considered the uniqueness of an inverse
problem for simultaneously determining the spatial component in the source term and
the fractional order from two point finite time observation data. The uniqueness result is
slightly sensitive to the geometry of the domain. We will consider the case in other do-
mains such as rectangular and elliptic in the future. Otherwise, it would be interesting to
investigate the unique continuation properties of the solution in a high dimensional case.
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