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Abstract
This article aims to investigate the existence of nontrivial solutions with minimal
energy for a logarithmic weighted (N,p)-Laplacian problem in the unit ball B of RN ,
N > 2. The nonlinearities of the equation are critical or subcritical growth, which is
motivated by weighted Trudinger–Moser type inequalities. Our approach is based on
constrained minimization within the Nehari set, the quantitative deformation lemma,
and degree theory results.
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1 Introduction
This paper is devoted to the existence of sign-changing solutions for the following problem
involving the logarithmic weighted (N , p)-Laplacian:

⎧
⎨

⎩

–∇ .(wβ (x)|∇u|N–2∇u) – �pu + V (x)|u|N–2u = f (x, u) in B,

u = 0 on ∂B,
(1.1)

where B is the unit ball of RN , N > p ≥ 2, the nonlinearity f (x, t) is continuous in B×R and

behaves like eαt
N

(N–1)(1–β) ,β ∈ [0, 1), as t → ∞, for some α > 0, �p denotes the p-Laplacian
the second-order operator defined by �pu = ∇ .(|∇u|p–2∇u), and the weight wβ (x) is given
by

wβ (x) =
(
1 – log |x|)β(N–1), β ∈ [0, 1). (1.2)

The potential V : B →R is a positive continuous function and verifies
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(V1) V (x) ≥ V0 > 0 in B for some V0 > 0.
Condition (V1) implies that the function 1

V belongs to L
1

N–1 (B).
The weighted (N , p)-Laplacian operator is a generalization of the nonlinear (N , p)-

Laplacian operator. Indeed, the weight function serves as a versatile tool for modeling
various effects, including the presence of a medium or the influence of an external field.
This versatility makes it particularly suitable for representing a wide range of physical phe-
nomena, such as diffusion, fluid flow, reaction-diffusion equations [2, 13], biophysics [23],
plasma physics [39], and specific elementary particle models [6, 7, 18]. It is essential to
note that the origins of the (N , p)-Laplacian equation can be traced back to the study of
stationary solutions in the context of the following reaction-diffusion system:

ut = ∇ .
(|∇u|N–2∇u + �pu

)
– V (x)|u|N–2u + f (x, u).

In this equation, the function u represents a concentration. The first term characterizes
diffusion with a diffusion coefficient of (|∇u|N–2 + |∇u|p–2). The continuous potential V (x)
is a function influencing the system’s energy, and f (x, u) corresponds to the reaction term,
linking to source and loss processes [5, 13]. As a result, quasilinear elliptic boundary value
problems involving the (N , p)-Laplacian operator with various nonlinearities have been
extensively investigated by numerous researchers, as evident in works such as [3, 22, 33,
36] and the associated references.

When N = q ≥ 2, much attention from researchers has been directed towards this par-
ticular limit in the Sobolev embedding, widely recognized as the Trudinger–Moser case.
More precisely, consider a smooth bounded domain � in R

N , where N ≥ 2. Let W 1,N
0 (�)

represent the standard first-order Sobolev space defined as follows:

W 1,N
0 (�) = closure

{

u ∈ C∞
0 (�)

∣
∣
∣

∫

�

|∇u|N dx < ∞
}

,

equipped with the norm

‖u‖W 1,N
0 (�) =

(∫

�

|∇u|N dx
) 1

N
.

This space represents a critical limit in the Sobolev embedding theorem. While the the-
orem establishes that the space W 1,N

0 (�) ↪→ Lp(�) for all 1 ≤ p < ∞, it is well known,
through simple examples, that W 1,N

0 (�) � L∞(�). Consequently, the natural question that
arises is to identify the maximum growth function � : R→R

+ such that
∫

�

�(u) dx < ∞ for u ∈ W 1,N
0 (�) while satisfying ‖u‖W 1,N

0 (�) ≤ 1.

This question was conclusively answered by Yudovich [42], Pohozaev [37], and Trudinger
[38]. Their collective work has established that the maximal growth function is defined

as �(t) = e|t| N
N–1 . Moser further refined this result in his work [35]. More specifically, he

demonstrated that for all u ∈ W 1,N
0 (�), the function exp(α|u| N

N–1 ) belongs to L1(�) for
some α > 0. In fact, he established that

sup
‖u‖

W 1,N
0 (�)

≤1

∫

�

eα|u| N
N–1 dx < C(N) ⇐⇒ α ≤ αN := Nω

1
N–1
N–1 , (1.3)
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where ωN–1 represents the area of the unit sphere in R
N . It is worth noting that the con-

stant αN is a critical threshold; for values of α greater than αN , the supremum in (1.3) be-
comes infinite. Such estimates, akin to (1.3), are now commonly referred to as Trudinger–
Moser type inequalities. For further exploration and applications in this field, the reader
is directed to works such as [15–17, 31, 32] and the associated references.

It is essential to highlight that considerable research efforts have been dedicated to the
investigation of the impact of weight functions on the limiting inequalities of Trudinger–
Moser type. Interested readers can delve into studies like [1, 12] to explore the effect of
power weights within the integral term on maximal growth and [8–11] for insights into
the influence of weights within the Sobolev norm. Kufner, in his work [29], introduced the
concept of weighted Sobolev spaces and developed an embedding theory for such spaces
with general weight functions. Let � ⊂ R and w ∈ L1(�) be a nonnegative function, then
the weighted Sobolev space can be introduced as follows:

W 1,N
0 (�, w) = closure

{

u ∈ C∞
0 (�)

∣
∣
∣

∫

�

w(x)|∇u|N dx finite
}

. (1.4)

When the weight function w takes the form of the logarithmic function, the weighted
Sobolev spaces defined as in (1.4) hold particular significance. These spaces deal with lim-
iting scenarios of such embeddings. Nevertheless, to obtain meaningful results, we find
it necessary to confine our attention to radial functions. Thus, we turn our focus to the
weighted Sobolev space of radial functions.

W 1,N
0,rad(�, w) = closure

{

u ∈ C∞
0,rad(�)

∣
∣
∣

∫

B
w(x)|∇u|N dx finite

}

,

endowed with the norm

‖u‖W 1,N
0,rad(�,w) := |∇u|N ,w =

(∫

B
w(x)|∇u|N dx

) 1
N

, (1.5)

when w is given by (1.2).
The initial exploration of Trudinger–Moser inequalities for Sobolev spaces with loga-

rithmic weights was conducted by Calanchi and Ruf, as documented in [8]. Their work
focused on the case when N = 2, considering a Sobolev norm of logarithmic type. Subse-
quently, they expanded their research to encompass the general case, as outlined in [9].
To be more specific, they established the following result.

Theorem 1.1 [9] Let β ∈ [0, 1) and let wβ be given by (1.2), then

∫

B
e|u|γ dx is finite, for every u ∈ W 1

0,rad(B, wβ ), if and only if

γ ≤ γN ,β =
N

(N – 1)(1 – β)
=

N ′

1 – β

(1.6)

and

sup
u∈W 1

0,rad(B,wβ )
|∇u|N ,wβ

≤1

∫

B
eα|u|γN ,β dx < +∞ ⇔ α ≤ αN ,β = N

[
ω

1
N–1
N–1 (1 – β)

] 1
1–β , (1.7)
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where ωN–1 is the area of the unit sphere SN–1 in R
N and N ′ is the Hölder conjugate

of N .

Let γ := γN ,β = N ′
1–β

, in view of inequalities (1.6) and (1.7), we say that f has subcritical
growth at +∞ if

lim|s|→∞
|f (x, s)|

eαsγ = 0 for all α such that αN ,β ≥ α > 0 (1.8)

and f has critical growth at ∞ if there exists some 0 < α0 ≤ αN ,β ,

lim|s|→∞
|f (x, s)|

eαsγ = 0, ∀α such that α0 ≤ α ≤ αN ,β and

lim|s|→∞
|f (x, s)|

eαsγ = ∞, ∀α < α0.
(1.9)

In the case p < q = N , problem (1.1) has attracted substantial attention from various re-
searchers, each addressing it with distinct nonlinearities. This work is inspired by the work
of authors such as [24, 25, 28, 30, 41, 44] and the references therein. Notably, in the work
by Figueredo and Nunes [24], the focus was on investigating the existence of positive so-
lutions within a specific class of quasilinear problems.

⎧
⎨

⎩

– div(a(|∇u|p)|∇u|p–2∇u) = f (u) in � ⊂R
N ,

u = 0 on ∂�,
(1.10)

in which the hypotheses on function a included the case –�N u – �pu. The nonlinearity
f : R → R is a superlinear continuous function with exponential subcritical or critical
growth, and the function a is C1. By using the minimization argument and deformation
lemma, the authors proved the existence of a least energy nodal solutions for equation
(1.10) with two nodal domains. Moreover, Zhang and Yang [44] considered the problem

⎧
⎪⎪⎨

⎪⎪⎩

–�N u – �pu = λuN–1eβuN ′
– μ in �,

u > 0 in �,

u = 0 on ∂�,

where 1 < N/2 < p < N , N ′ = N
N–1 , � is an open bounded domain containing the ori-

gin in R
N with C2 boundary and λ,μ > 0 are positive real parameters. To be more

specific, the authors demonstrated the existence of positive solutions for the above
problem by combining variational techniques with regularity arguments. Alternatively,
[4, 10, 11, 14, 19, 20, 43] investigated elliptic equations with weighted N-Laplacian opera-
tor and critical Trudinger–Moser nonlinearities, while this paper will focus on a different
class of problems.

Inspired by the above results, this paper embarks on an inquiry into the presence of
sign-changing solutions possessing minimal energy for weighted problems akin to those
of Shrödinger type. We study both subcritical and critical exponential growth patterns at
infinity by using the constraint minimization argument and topological degree theory.
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With this objective in mind, we consider the space

Xβ := W 1,N
0,rad(B, wβ ),

which is a reflexive and Banach space provided condition (V1) holds. Xβ is endowed with
the norm

‖u‖ :=
(∫

B
wβ (x)|∇u|N + V (x)|u|N dx

) 1
N

, (1.11)

which is equivalent to the following norm:

‖u‖W 1,N
0,rad(B,wβ ) =

(∫

B
wβ (x)|∇u|N dx

) 1
N

.

Note that the embedding Xβ ↪→ Lq(B) is continuous for all q ≥ 1. Moreover, the embed-
ding Xβ ↪→ Lq(B) is compact for all q ≥ N , see [26]. For this work, we impose the following
conditions on the nonlinearity f (x, t):

(A1) f : B ×R→R is C1 and radial in x;
(A2) There exists θ > N such that

0 < θF(x, t) ≤ tf (x, t), ∀(x, t) ∈ B ×R \ {0},

where F(x, t) =
∫ t

0 f (x, s) ds;
(A3) For each x ∈ B, t �→ f (x,t)

|t|N–1 is increasing for all t ∈R \ {0};
(A4) limt→0

f (x,t)
|t|N–1 = 0, uniformly in x ∈ B;

(A5) There exist r > N and Cr > 1 such that

sgn(t)f (x, t) ≥ Cr|t|r–1 for all (x, t) ∈ B ×R,

where sgn(t) = 1 if t > 0, sgn(t) = 0 if t = 0, and sgn(t) = –1 if t < 0.
A typical example of a function f satisfying conditions (A1), (A2), (A3), (A4), and (A5) is
given by

f (t) = Cr|t|r–2t + |t|r–2tetγ with r > N .

The energy functional, sometimes referred to as the Euler–Lagrange functional associ-
ated with problem (1.1), is defined as follows:

J (u) :=
1
N

∫

B
wβ (x)|∇u|N + V (x)|u|N dx +

1
p

∫

B
|∇u|p dx –

∫

B
F(x, u) dx, (1.12)

where F(x, u) =
∫ u

0 f (x, t) dt. It is evident that the search for nontrivial weak solutions to
problem (1.1) is equivalent to identifying nonzero critical points within the functional J .
Since the reaction term f is of critical or subcritical growth, there exist positive constants
c1 and c2 such that

∣
∣f (x, t)

∣
∣ ≤ c1 exp

{
c2|t|γ

}
, ∀x ∈ B, ∀t ∈R, (1.13)
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and so, by using (A1), we have that J ∈ C1(Xβ ,R) and

〈
J ′(u),ϕ

〉
:=

∫

B

(
wβ (x)|∇u|N–2 + |∇u|p–2)∇u∇ϕ dx +

∫

B
V (x)|u|N–2uϕ dx

–
∫

B
f (x, u)ϕ dx

for all u and ϕ ∈ Xβ . Clearly, the critical points of functional J are weak solutions of
problem (1.1).

Definition 1.1 A function u is called a solution to (1.1) if u ∈ Xβ and

∫

B

(
wβ (x)|∇u|N–2 + |∇u|p–2)∇u∇ϕ dx +

∫

B
V (x)|u|N–2uϕ dx

=
∫

B
f (x, u)ϕ dx for all ϕ ∈ Xβ .

(1.14)

Definition 1.2 v ∈ Xβ is called nodal or sign-changing solution of problem (1.1) if v is a
solution of problem (1.1) and v± �= 0 a.e. in B.

v ∈ Xβ is called least energy sign-changing solution of problem (1.1) if v is a sign-
changing solution of (1.1) and

J (v) = inf
{
J (u) : J ′(u) = 0, u± �= 0 a.e. in B

}
.

Our approach revolves around the pursuit of sign-changing solutions that minimize
the associated energy functional J among the ensemble of all sign-changing solutions to
problem (1.1). To this end, we introduce the sign-changing Nehari set defined as follows:

N :=
{

u ∈ Xβ , u± �= 0 and
〈
J ′(u), u+〉

=
〈
J ′(u), u–〉

= 0
}

,

where u+(x) := max{u(x), 0} and u–(x) := min{u(x), 0}. It is evident that any sign-changing
solution of problem (1.1) resides in the set N . According to (1.14), we have

〈
J ′(u), u±〉

=
∫

B
wβ (x)

∣
∣∇u±∣

∣N + V (x)
∣
∣u±∣

∣N dx +
∫

B

∣
∣∇u±∣

∣p dx –
∫

B
f
(
x, u±)

u± dx.

It is important to note that, for every u = u+ + u– ∈N , it is readily observed that

J (u) = J
(
u+)

+ J
(
u–)

,
〈
J ′(u), u+〉

=
〈
J ′(u+)

, u+〉
and

〈
J ′(u), u–〉

=
〈
J ′(u–)

, u–〉
.

In our initial theorem, we prove the existence of sign-changing solutions for (1.1) in the
exponential subcritical case.

Theorem 1.2 Assume that f (x, t) has a subcritical growth at ∞ and satisfies conditions
(A1), (A2), (A3), and (A4). If in addition condition (V1) holds, then problem (1.1) admits a
least energy sign-changing solution v ∈N with precisely two nodal domains.
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In our second theorem, we establish the existence of a sign-changing solution for (1.1)
in the exponential critical case.

Theorem 1.3 Assume that f (x, t) has a critical growth at ∞ and satisfies conditions (A1),
(A2), (A3), (A4), and (A5). If in addition condition (V1) holds, then there exists δ > 0 such
that problem (1.1) admits a least energy sign-changing solution v ∈ N with precisely two
nodal domains provided

Cp > max

(

1,
(

N2θ (r – p)cNr

p(r – N)(θ – N)

(
2(α0 + δ)

αN ,β

)(N–1)(1–β)) r–p
p

)

> 0, (1.15)

where cNr = infNr Jr(u) > 0,

Jr(u) :=
1
N

‖u‖N +
1
p
‖u‖p

p –
1
r

∫

B
|u|r dx

and

Nr :=
{

u ∈ Xβ , u± �= 0 and
〈
J ′

r (u), u+〉
=

〈
J ′

r (u), u–〉
= 0

}
.

The rest of this paper proceeds as follows. In Sects. 2, we introduce preliminaries for
the compactness analysis and some useful lemmas. Section 3 is devoted to proving Theo-
rem 1.2. Finally, in Sect. 4, we establish some estimates and prove Theorem 1.3.

Notation Throughout this paper, we use the following notations:
• C denotes a positive constant that may change from one line to another, and we

sometimes index the constant to show how they change.
• |u|p denotes the norm in the Lebesgue space Lp(B) for p ≥ 1.
• |u|p,ω denotes the norm in the weighted Lebesgue space Lp(B,ω), which is defined by

|u|p,ω =
(∫

B
wβ (x)|u|p dx

) 1
p

.

• ‖u‖p denotes the norm in the usual Sobolev space W 1,p
0 (B), which is defined by

‖u‖p =
(∫

B
|∇u|p dx

) 1
p

.

2 Some useful lemmas
In this section, we prove some lemmas that are important to obtain the desired results. To
this end, let u ∈ Xβ with u± �= 0, we define the function G : R+ ×R+ →R and the mapping
K : R+ ×R+ →R

2, where

G(s, t) = J
(
su+ + tu–)

(2.1)

and

K(s, t) =
(〈
J ′(su+ + su–)

, su+〉
,
〈
J ′(su+ + tu–)

, tu–〉)
. (2.2)
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Lemma 1 For any u ∈ Xβ with u± �= 0, there is the unique maximum point pair (su, tu) ∈
R+ ×R+ of the function G such that suu+ + tuu– ∈N .

Proof The proof of this lemma is obtained in three steps. The first step consists in showing
that there exists a pair of positive numbers (su, tu) such that suu+ + tuu– ∈N for any u ∈ Xβ

with u± �= 0. Note that

〈
J ′(su+ + tu–)

, su+〉
=

∥
∥su+∥

∥N +
∥
∥su+∥

∥p
p –

∫

B
f
(
x, su+)

su+ dx (2.3)

and

〈
J ′(su+ + tu–)

, tu–〉
=

∥
∥tu–∥

∥N +
∥
∥tu–∥

∥p
p –

∫

B
f
(
x, tu–)

tu– dx. (2.4)

Note that, from (A4), for any ε > 0, there exists δ > 0 such that

f (x, t) ≤ ε|t|N–1 for |t| ≤ δ and x ∈ B. (2.5)

Since f is subcritical or critical, for every ε > 0, there exist constants c1 = c1(ε) > 0 and
K > 0 such that, for all q > N ,

f (x, t)t ≤ c1|t|q exp
(
α|t|γ )

, ∀|t| ≥ K ,α > α0 ∀x ∈ B· (2.6)

Then, from (2.5) and (2.6), we have

f (x, t)t ≤ ε|t|N + C|t|q exp
(
α|t|γ )

for all α > α0, q > N .

So, we get

∫

B
f
(
x, su+)

su+ dx ≤ ε

∫

B

∣
∣su+∣

∣N dx + C
∫

B

∣
∣su+∣

∣q
exp

(
α
(
su+)γ )

dx

for all α > α0, q > N .
(2.7)

Now, from (2.7), (1.6), the Sobolev embedding theorem, and Hôlder’s inequality, we have

for s > 0 small enough satisfying s ≤ α

1
γ

N ,β

(2α)
1
γ ‖u+‖

:

〈
J ′(su+ + tu–)

, su+〉

≥ ∥
∥su+∥

∥N +
∥
∥su+∥

∥p
p – εsN

∫

B

∣
∣u+∣

∣N dx – Cεsq
∫

B

∣
∣u+∣

∣q
exp

(
α
(
su+)γ )

dx

≥ ∥
∥su+∥

∥N +
∥
∥su+∥

∥p
p – εsN

∫

B

∣
∣u+∣

∣N dx

– Csq
(∫

B

∣
∣u+∣

∣2q dx
) 1

2
(∫

B
exp

(

2αsγ
∥
∥u+∥

∥γ

(
u+

‖u+‖
)γ )

dx
) 1

2

≥ sN∥
∥u+∥

∥N – εsN C1
∥
∥u+∥

∥N – C2sq∥∥u+∥
∥q.

(2.8)
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Choose ε > 0 small enough such that (1 – εC1) > 0. Since q > N , we have that

〈
J ′(su+ + tu–)

, su+〉
> 0 for s small enough and all t ≥ 0.

Similarly, according to (2.4) and (2.7), we get

〈
J ′(su+ + tu–)

, tu–〉
> 0 for t small enough and all s ≥ 0.

Hence, there exists r > 0 such that

〈
J ′(ru+ + tu–)

, ru+〉
> 0 and

〈
J ′(su+ + ru–)

, ru–〉
> 0 for all s, t ≥ 0. (2.9)

On the other hand, by (A2), we can find positive constants C3 and C4 such that

f (x, t)t ≥ C3|t|θ – C4, ∀(x, t) ∈ (
B,R \ {0}). (2.10)

Thus, we get

〈
J ′(su+ + tu–)

, su+〉

=
∥
∥su+∥

∥N +
∥
∥su+∥

∥p
p –

∫

B
f
(
x, su+)

su+ dx

≤ sN∥
∥u+∥

∥N + sp∥∥u+∥
∥p

p – C3sθ

∫

B

∣
∣u+∣

∣θ +
ωN–1

N
C4.

(2.11)

Since θ > N , there exists R > r large enough such that

〈
J ′(Ru+ + tu–)

, Ru+〉
< 0 and

〈
J ′(su+ + Ru–)

, Ru–〉
< 0 for all s, t ∈ [r, R]. (2.12)

In view of Miranda’s theorem [34], together with (2.9) and (2.12), we can conclude that
there exists (su, tu) ∈R+ ×R+ such that K(su, tu) = (0, 0), i.e., suu+ + tuu– ∈N .

In the second step, we prove the uniqueness of the pair (su, tu). First, we assume that
u = u+ + u– ∈N . Then, we have

〈
J ′(u), u+〉

= 0 and
〈
J ′(u), u–〉

= 0,

that is,

∥
∥u+∥

∥N +
∥
∥u+∥

∥p
p =

∫

B
f
(
x, u+)

u+ dx and
∥
∥u–∥

∥N +
∥
∥u–∥

∥p
p =

∫

B
f
(
x, u–)

u– dx. (2.13)

By Claim 1, we know that there exists at least one positive pair (s0, t0) satisfying s0u+ +
t0u– ∈ N . Now, we show that (s0, t0) = (1, 1) is the unique pair of numbers. Without loss
of generality, let us assume that s0 ≤ t0. It follows from (2.3) that

sN
0
∥
∥u+∥

∥N + sp
0
∥
∥u+∥

∥p
p =

∫

B
f
(
x, s0u+)

s0u+ dx. (2.14)
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If s0 < 1, then from (2.13), (2.14), and (A3), we have

0 <
(
s–N

0 – 1
)∥
∥u+∥

∥N +
(
sp–N

0 – 1
)∥
∥u+∥

∥p
p

=
∫

B

(
f (x, s0u+)
(s0u+)N–1 –

f (x, u+)
(u+)N–1

)
(
u+)N dx ≤ 0,

(2.15)

which is a contradiction. Hence, 1 ≤ s0 ≤ t0.
Arguing similarly by using the equations 〈J ′(su+ + tu–), tu–〉 = 0 and 〈J ′(u), u–〉 = 0, we

obtain that s0 ≤ t0 ≤ 1, which implies that s0 = t0 = 1, and the proof is complete.
For the general case, we suppose that u /∈N . Assume that there exist two other pairs of

positive numbers (s1, t1) and (s2, t2) such that

σ1 = s1u+ + t1u– ∈N and σ2 = s2u+ + t2u– ∈N .

Then

σ2 =
(

s2

s1

)

s1u+ +
(

t2

t1

)

t1u– =
(

s2

s1

)

σ +
1 +

(
t2

t1

)

σ –
1 ∈N .

Since σ1 ∈N , it is clear that

s2

s1
=

t2

t1
= 1,

which means that s1 = s2 and t1 = t2.
Finally, we prove that the pair (su, tu) is the unique maximum point of the function G on

R+ ×R+. We know from the above that (su, tu) is the unique critical point of G on R+ ×R+.
By definition and (2.10), we obtain

G(s, t) = J
(
su+ + tu–)

=
1
N

∥
∥su+ + tu–∥

∥N +
1
p
∥
∥su+ + tu–∥

∥p –
∫

B
F
(
x, su+ + tu–)

dx

≤ 1
N

∥
∥su+ + tu–∥

∥N +
1
p
∥
∥su+ + tu–∥

∥p – C1sθ

∫

B

∣
∣u+∣

∣θ dx – C1tθ

∫

B

∣
∣u–∣

∣θ dx + C|B|

≤ 1
N

(
sN∥

∥u+∥
∥N + tN∥

∥u–∥
∥N)

+
1
p
(
sp∥∥u+∥

∥p + tp∥∥u–∥
∥p) – C1sθ

∫

B

∣
∣u+∣

∣θ dx

– C1tθ

∫

B

∣
∣u–∣

∣θ dx + C|B|,

which implies that lim|(s,t)|→∞ G(s, t) = –∞ because θ > N . Hence, it suffices to show that
the maximum point cannot be achieved on the boundary of R+ × R+. We carry out the
proof by contradiction. Assuming (0, t̄) is the global maximum point of G with t̄ ≥ 0, we
have

G(s, t̄) =
1
N

∥
∥su+ + t̄u–∥

∥N +
1
p
∥
∥su+ + t̄u–∥

∥p –
∫

B
F
(
x, su+ + t̄u–)

dx.

Hence, by (2.8) it is clear that

G ′
s(s, t̄) = sN–1∥∥u+∥

∥N + sp–1∥∥u+∥
∥p –

∫

B
f
(
x, su+)

u+ dx > 0
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for small enough s. This means that G is an increasing function with respect to s if s is small
enough, which is a contradiction. In a similar way, we can deduce that G cannot achieve
its global maximum at (s, 0) with s ≥ 0. Thus, we have completed the proof. �

Lemma 2 Assume that (A1)–(A4) and (V1) hold. Then, for any u ∈ Xβ with u± �= 0 such
that 〈J ′(u), u±〉 ≤ 0, the unique maximum point pair of G on R+ ×R+ verifies 0 < su, tu ≤ 1.

Proof Without loss of generality, we may suppose that 0 < tu ≤ su. Since suu+ + tuu– ∈ N ,
we have

∥
∥suu+∥

∥N +
∥
∥suu+∥

∥p
p =

∫

B
f
(
x, su+)

su+ dx. (2.16)

Furthermore, since 〈J ′(u), u+〉 ≤ 0, we have

∥
∥u+∥

∥N +
∥
∥u+∥

∥p
p ≤

∫

B
f
(
x, u+)

u+ dx. (2.17)

Then, from (2.16) and (2.17), we get

(
s–N

u – 1
)∥
∥u+∥

∥N +
(
sp–N

u – 1
)∥
∥u+∥

∥p
p ≥

∫

B

(
f (x, suu+)
(suu+)N–1 –

f (x, u+)
(u+)N–1

)
(
u+)N dx. (2.18)

From (A3) and (M2), the left-hand side of (2.18) is negative for su > 1, whereas the right-
hand side is positive, which is a contradiction. Therefore 0 < su, tu ≤ 1. �

Lemma 3 Suppose that hypotheses (A1), (A2), and (A3) are satisfied. Then, for each x ∈ B,
we have

tf (x, t) – NF(x, t) is increasing for t > 0 and decreasing for t < 0.

In particular, tf (x, t) – NF(x, t) > 0 for all (x, t) ∈ B ×R \ {0}.

Proof To prove this lemma, it is enough to analyze the derivative of tf (x, t) – NF(x, t) to-
gether with assumptions (A1) and (A3). �

Lemma 4 Assume that (A2), (A4), and (V1) hold. Then, for all u ∈N , we have:
i) There exists κ > 0 such that ‖u+‖, ‖u–‖ ≥ κ ;

ii) J (u) ≥ ( 1
N – 1

θ
)‖u‖N .

Proof i) We only prove that there exists κ > 0 such that ‖u+‖ ≥ κ for all u ∈ N and the
proof for ‖u–‖ is similar. By contradiction, we suppose that there exists a sequence {u+

n} ⊂
M such that ‖u+

n‖ → 0 as n → ∞. Since un ∈ N , we have 〈J ′(un), u+
n〉 = 0. Thus, from

(2.7), we get

∥
∥u+

n
∥
∥N <

∥
∥u+

n
∥
∥N +

∥
∥u+

n
∥
∥p

p =
∫

B
f
(
x, u+

n
)
u+

n dx

≤ ε

∫

B

∣
∣u+

n
∣
∣N dx + C

∫

B

∣
∣u+

n
∣
∣q

exp
(
α
(
u+

n
)γ )

dx
(2.19)
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for all n ∈ N, q > N , and α > α0. Since ‖u+
n‖ → 0 as n → ∞, there exists n0 ∈ N such that

‖u+
n‖γ ≤ ( αN ,β

2α
) for all n ≥ n0. From Hôlder’s inequality and (1.6), we get

∫

B

∣
∣u+

n
∣
∣q

exp
(
α
(
u+

n
)γ )

dx ≤
(∫

B

∣
∣u+

n
∣
∣2q dx

) 1
2
(∫

B
exp

(

2α
∥
∥u+

n
∥
∥γ

(
u+

n
‖u+

n‖
)γ )

dx
) 1

2

≤ C
∥
∥u+

n
∥
∥q

2q.

(2.20)

Combining (2.19) with the last inequality, we can deduce from the Sobolev embedding
theorem that when n ≥ n0,

∥
∥u+

n
∥
∥N ≤ C3ε

∥
∥u+

n
∥
∥N + C4

∥
∥u+

n
∥
∥q. (2.21)

We can choose ε > 0 such that (1 – C3ε) > 0, and since q > N , we can deduce that (2.21)
contradicts ‖u+

n‖ → 0 as n → ∞. The proof is complete.
ii) Given u ∈N , by the definition of N and (A2), we obtain

J (u) = J (u) –
1
θ

〈
J ′(u), u

〉

=
(

1
N

–
1
θ

)

‖u‖N +
(

1
p

–
1
θ

)

‖u‖p
p –

1
θ

∫

B

(
f (x, u)u – θF(x, u)

)
dx

≥
(

1
N

–
1
θ

)

‖u‖N .

(2.22)

�

So, we have J (u) > 0 for all u ∈ N . Therefore, J (u) is bounded below on N , that is,
cM = infu∈N J (u) is well defined.

Lemma 5 If u0 ∈N satisfies J (u0) = cN , then J ′(u0) = 0.

Proof Suppose by contradiction that J ′(u0) �= 0. By the continuity of J ′, it follows that
there exist δ > 0 and ι > 0 such that

∥
∥J ′(v)

∥
∥ ≥ ι for all ‖v – u0‖ ≤ 3δ.

Choose τ ∈ (0, min{1/2, δ√
2‖u0‖ }). Let D := (1 – τ , 1 + τ ) × (1 – τ , 1 + τ ) and

k(s, t) := su+
0 + tu–

0 for all (s, t) ∈ D.

In view of Lemma 1, we have

¯cN := max
∂D

(J ◦ k) < cN . (2.23)

Let ε := min{(cN – ¯cN )/3, ιδ/8} and Sδ := B(u0, δ). According to Lemma 2.3 in [40], there
exists a deformation η ∈ C([0, 1] × Xβ , Xβ ) such that

(a) η(1, v) = v if v /∈ (J –1([cN – 2ε, cN + 2ε]) ∩ S2δ),
(b) η(1,J cN +ε ∩ Sδ) ⊂ J cN –ε ,
(c) J (η(1, v)) ≤ J (v) for all v ∈W .
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Clearly,

max
(s,t)∈D̄

J
(
η
(
1, k(s, t)

))
< cN . (2.24)

Therefore we claim that η(1, k(D)) ∩M �= ∅, which contradicts the definition of cN .
We define k̄(s, t) := η(1, k(s, t)),

�0(s, t) :=
(〈
J ′(k(s, t)

)
, su+

0
〉
,
〈
J ′(k(s, t)

)
, tu–

0
〉)

=
(〈
J ′(su+

0 + tu–
0
)
, su+

0
〉
,
〈
J ′(su+

0 + tu–
0
)
, tu–

0
〉)

=
(
φ1

u(s, t),φ2
u(s, t)

)

and

�1(s, t) :=
(

1
s
〈
J ′(k̄(s, t)

)
,
(
k̄(s, t)

)+〉
,

1
t
〈
J ′(k̄(s, t)

)
,
(
k̄(s, t)

)–〉
)

.

By a straightforward computation, we get

∂φ1
u(s, t)
∂s

∣
∣
∣
∣
(1,1)

:= N
∥
∥u+

0
∥
∥N + p

∥
∥u+

0
∥
∥p –

∫

B

(
f ′(x, u+

0
)(

u+
0
)2 + f

(
x, u+

0
)
u+

0
)

dx, (2.25)

∂φ2
u(s, t)
∂t

∣
∣
∣
∣
(1,1)

:= N
∥
∥u–

0
∥
∥N + p

∥
∥u–

0
∥
∥p –

∫

B

(
f ′(x, u–

0
)(

u–
0
)2 + f

(
x, u–

0
)
u–

0
)

dx (2.26)

and

∂φ1
u(s, t)
∂t

∣
∣
∣
∣
(1,1)

=
∂φ2

u(s, t)
∂s

∣
∣
∣
∣
(1,1)

:= 0.

Let

H =

[
∂φ1

u(s,t)
∂s |(1,1)

∂φ2
u(s,t)
∂s |(1,1)

∂φ1
u(s,t)
∂t |(1,1)

∂φ2
u(s,t)
∂t |(1,1)

]

.

Then we have that det H �= 0. Hence, �0(s, t) is a C1 function and (1, 1) is the unique
isolated zero point of �0; by using the degree theory, we deduce that deg(�0, D, 0) = 1.

Hence, combining (2.23) with (a), we obtain

k(s, t) = k̄(s, t) on ∂D.

Therefore, by the degree theory (see [21, Theorem 4.5]), we get deg(�1, D, 0) = deg(�0,
D, 0) = 1. Hence, again by the degree theory, �1(s0, t0) = 0 for some (s0, t0) ∈ D so that

η
(
1, k(s0, t0)

)
= k̄(s0, t0) ∈N ,

which contradicts (2.24). Hence, J ′(u0) = 0, which implies u0 is a critical point of J . �

In the following lemma, we prove that w has exactly two nodal domains.
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Lemma 6 If w is a least energy sign-changing solution of problem (1.1), then w has exactly
two nodal domains.

Proof Assume by contradiction that w = w1 + w2 + w3 satisfies

wi �= 0, i = 1, 2, 3, w1 ≥ 0, w2 ≤ 0, a.e. in B,

B1 ∩ B2 = ∅, B1 =
{

x ∈ B : w1(x) > 0
}

, B2 =
{

x ∈ B : w2(x) < 0
}

,

w1|B\B1∪B2 = w2|B\B2∪B1 = w3|B1∪B2 = 0

and

〈
J ′(w), wi

〉
= 0 for i = 1, 2, 3. (2.27)

Setting v = w1 + w2, we have that v+ = w1 and v– = w2, i.e., v± �= 0. From Lemma 1, it follows
that there exists a unique point pair (sv, tv) ∈ R+ × R+ such that svw1 + tvw2 ∈ N . Hence,
J (svw1 + tvw2) ≥ cN . Moreover, from (2.27), we obtain 〈J ′(v), v±〉 ≤ 0. Then, by Lemma 2,
we have that

(sv, tv) ∈ (0, 1] × (0, 1].

On the other hand, by (A2) we have that

0 =
1
N

〈
J ′(w), w3

〉
=

1
N

〈
J ′(w3), w3

〉
< J (w3).

Hence, by Lemma 3, we can obtain that

cM ≤ J (svw1 + tvw2) = J (svw1 + tvw2) –
1
N

〈
J ′(svw1 + tvw2), svw1 + tvw2

〉

=
sN

v
N

‖w1‖N +
tN
v

N
‖w2‖N +

(
1
p

–
1
N

)

sp
v‖w1‖N

p +
(

1
p

–
1
N

)

tp
v ‖w2‖N

p

+
1
N

∫

B

(
f (x, svw1)svw1 – NF(x, svw1)

)
dx

+
1
N

∫

B

(
f (x, tvw2)tvw2 – NF(x, tvw2)

)
dx

≤ 1
N

‖w1‖N +
1
N

‖w2‖N +
(

1
p

–
1
N

)

‖w1‖N
p +

(
1
p

–
1
N

)

‖w2‖N
p

+
1
N

∫

B

(
f (x, w1)w1 – NF(x, w1)

)
dx

+
1
N

∫

B

(
f (x, w2)w2 – NF(x, w2)

)
dx

= J (w1 + w2) –
1
N

〈
J ′(w1 + w2), w1 + w2

〉

= J (w1 + w2) +
1
N

〈
J ′(w), w3

〉

< J (w1 + w2) + J (w3) = J (w) = cN ,

which is a contradiction, that is, w3 = 0 and w has exactly two nodal domains. �
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3 Proof of Theorem 1.2
Lemma 7 There exists w ∈N such that J (w) = cN .

Proof Let the sequence (wn) ⊂ N satisfy limn→∞ J (wn) = cN . It is clear that (wn) is
bounded by Lemma 4. Then, up to a subsequence, there exists w ∈ E such that

w±
n ⇀ w± in Xβ ,

w±
n → w± in Lq(B),∀q ≥ N ,

w±
n → w± a.e. in B.

(3.1)

We claim that
∫

B
f
(
x, w±

n
)
w±

n dx →
∫

B
f
(
x, w±)

w± dx. (3.2)

Indeed, by (2.7), we have

∫

B
f
(
x, w±

n
)
w±

n dx ≤ ε

∫

B

∣
∣w±

n
∣
∣N dx + C

∫

B

∣
∣w±

n
∣
∣q

exp
(
α
∣
∣w±

n
∣
∣γ

)
dx

for all α > 0 and q > N .
(3.3)

We define g(w±
n (x)) as follows:

g
(
w±

n (x)
)

:= ε
∣
∣w±

n
∣
∣N + C

∣
∣w±

n
∣
∣q

exp
(
α
∣
∣w±

n
∣
∣γ

)
. (3.4)

We will prove that g(w±
n (x)) is convergent in L1(B). First note that

|wn|N → |w|N in L1(B). (3.5)

Considering s, s′ > 1 such that 1
s + 1

s′ = 1, we get

|wn|q → |w|q in Ls′ (B). (3.6)

Moreover, choosing α > 0 enough small such that sα(maxn ||w±
n ||γ ) ≤ αN ,β , we conclude

from Theorem 1.1 that
∫

B
exp

(
sα

∣
∣w±

n
∣
∣γ

)
dx ≤ M. (3.7)

Since

exp
(
α
∣
∣w±

n
∣
∣γ

) → exp
(
α
∣
∣w±∣

∣γ
)

a.e. in B. (3.8)

Then, from (3.7) and [27, Lemma 4.8, Chap. 1], we get that

exp
(
α
∣
∣w±

n
∣
∣γ

)
⇀ exp

(
α
∣
∣w±∣

∣γ
)

in Ls(B). (3.9)
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Then it follows from Hölder’s inequality, (3.5), (3.6), (3.9), and the Trudinger–Moser
inequality that

∫

B

(
g
(
w±

n (x)
)

– g
(
w±(x)

))
dx

= ε

∫

B

(∣
∣w±

n
∣
∣N –

∣
∣w±∣

∣N)
dx

+ C
∫

B

(∣
∣w±

n
∣
∣q –

∣
∣w±∣

∣q)
exp

(
α
∣
∣w±

n
∣
∣γ

)
dx

+ C
∫

B

∣
∣w±∣

∣q(
exp

(
α
∣
∣w±

n
∣
∣γ

)
– exp

(
α
∣
∣w±∣

∣γ
))

dx

≤ ε

∫

B

(∣
∣w±

n
∣
∣N –

∣
∣w±∣

∣N)
dx + C

(∫

B

(∣
∣w±

n
∣
∣q –

∣
∣w±∣

∣q)s′ dx
) 1

s′
(∫

B
exp

(
sα

∣
∣w±∣

∣γ
)

dx
) 1

s

+ C
∫

B

∣
∣w±∣

∣q(
exp

(
α
∣
∣w±

n
∣
∣γ

)
– exp

(
α
∣
∣w±∣

∣γ
))

dx

≤ ε

∫

B

(∣
∣w±

n
∣
∣N –

∣
∣w±∣

∣N)
dx + CM

(∫

B

(∣
∣w±

n
∣
∣q –

∣
∣w±∣

∣q)s′ dx
) 1

s′

+ C
∫

B

∣
∣w±∣

∣q(
exp

(
α
∣
∣w±

n
∣
∣γ

)
– exp

(
α
∣
∣w±∣

∣γ
))

dx

→ 0 as n → ∞,

which closes the proof of (3.2). Thus, as a direct consequence,

∫

B
F
(
x, w±

n
)

dx →
∫

B
F
(
x, w±)

dx (3.10)

holds.
Now, we claim that w± �= 0. Suppose, by contradiction, w+ = 0. From the definition of

N , (3.1), and (3.2), we have that limn→+∞ ‖w+
n‖ = 0, which contradicts Lemma 4. Hence,

w+ �= 0 and w– �= 0.
From the lower semicontinuity of norm and (3.1) it follows that

∥
∥w+∥

∥N +
∥
∥w+∥

∥p
p ≤ lim inf

n→+∞
(∥
∥w+

n
∥
∥N +

∥
∥w+

n
∥
∥p

p

)
. (3.11)

On the other hand, by using 〈J ′(wn), w+
n〉 = 0 and (3.2), we have

lim inf
n→+∞

(∥
∥w+

n
∥
∥N +

∥
∥w+

n
∥
∥p

p

)
= lim inf

n→+∞

∫

B
f
(
x, w+

n
)
w+

n dx =
∫

B
f
(
x, w+)

w+ dx. (3.12)

From (3.11) and (3.12) we deduce that 〈J ′(w), w+〉 ≤ 0, and similarly we can prove
〈J ′(w), w–〉 ≤ 0. Then, Lemma 2 implies that there exists (su, tu) ∈ (0, 1] × (0, 1] such that
suw+ + tuw– ∈ N . Thus, by the lower semicontinuity of norm, (3.2), (3.10), and Lemma 3,
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we get that

cN ≤ J
(
suw+ + tuw–)

= J
(
suw+ + tuw–)

–
1
N

〈
J ′(suw+ + tuw–)

, suw+ + tuw–〉

≤ J (w) –
1
N

〈
J ′(w), w

〉

=
1
N

‖w‖N +
(

1
p

–
1
N

)

‖w‖p
p +

1
N

∫

B

(
f (x, w)w – NF(x, w)

)
dx

≤ lim inf
n→+∞

[
1
N

‖wn‖N +
(

1
p

–
1
N

)

‖wn‖p
p

+
1
N

∫

B

(
f (x, wn)wn – NF(x, wn)

)
dx

]

≤ lim inf
n→+∞

[

J (wn) –
1
N

〈
J ′(wn), wn

〉
]

= cN .

Therefore, we get that J (w) = cN , which is the desired conclusion. �

Thus, from Lemmas 5 and 6, w is a least energy sign-changing solution of problem (1.1)
with exactly two nodal domains.

4 Proof of Theorem 1.3
To prove Theorem 1.3, we need to consider the auxiliary problem

⎧
⎨

⎩

–∇ .(wβ (x)|∇u|N–2∇u) – �pu + V (x)|u|N–2u = |u|r–2u in B,

u = 0 on ∂B,
(4.1)

where r is the constant that appears in assumption (A5). The energy functional Jr associ-
ated with (4.1) is given by

Jr(u) :=
1
N

‖u‖N +
1
p
‖u‖p

p –
1
r

∫

B
|u|r dx,

and the sign-changing Nehari set is defined by

Nr :=
{

u ∈ Xβ , u± �= 0 and
〈
J ′

r (u), u+〉
=

〈
J ′

r (u), u–〉
= 0

}
.

Let cNr = infNr Jr(u), we have the following result.

Lemma 8 There exists w ∈Nr such that Jr(w) = cNr .

Proof The proof of this lemma is obtained in four steps:
Step 1. For any u ∈ Xβ with u± �= 0, similar to Lemma 1, there is the unique maximum

point pair (su, tu) ∈R+ ×R+ of the function Jr such that suu+ + tuu– ∈Nr .
Step 2. If u ∈ Xβ with u± �= 0, such that 〈J ′

r (u), u±〉 ≤ 0, then, similar to Lemma 2, the
unique maximum point pair (su, tu) in Step (1) satisfies 0 < su, tu ≤ 1.

Step 3. Similar to Lemma 4, for all u ∈Nr , there exists κ > 0 such that ‖u+‖, ‖u–‖ ≥ κ .
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Step 4. Now, let the sequence (wn) ⊂ Np satisfy limn→+∞ Jr(wn) = cMr . Similar to
Lemma 7, we can show that, up to a subsequence, w±

n ⇀ w± in Xβ . From Step
(3), we show that w± �= 0. Using Steps (1), (2) and again similar to Lemma 7, we
get w ∈Nr such that Jr(w) = cNr .

�

Now, we will obtain an important estimate for the nodal level cN . That will be a powerful
tool to obtain an appropriate bound of the norm of a minimizing sequence for cN in N .

Lemma 9 Assume that (A1), (A5), (V1), and (1.15) are satisfied. It holds that

cN ≤ θ – N
Nθ

(
αN ,β

2(α0 + δ)

)(N–1)(1–β)

. (4.2)

Proof From Lemma 8, there exists w ∈ Nr such that Jr(w) = cNr and J ′
r (w) = 0. Conse-

quently, we get

1
N

‖w‖N +
1
p
‖w‖p

p –
1
r

∫

B
|w|r dx = cNr and

∥
∥w±∥

∥N +
∥
∥w±∥

∥p
p =

∫

B

∣
∣w±∣

∣r dx. (4.3)

From (A5) and (4.3), we get 〈J ′(w), w±〉 ≤ 0, which together with Lemma 2 yields that
there is a unique pair (s, t) ∈ (0, 1] × (0, 1] such that sw+ + tw– ∈ N . Using (A5) and (4.3),
we obtain

cN ≤ J
(
sw+ + tw–)

≤ sN

N
∥
∥w+∥

∥N +
tN

N
∥
∥w–∥

∥N +
sp

p
∥
∥w+∥

∥p
p +

tp

p
∥
∥w–∥

∥p
p –

Cr

r
sr∣∣w+∣

∣r
r –

Cr

r
tr∣∣w–∣

∣r
r

≤ sp

p
(∣
∣w+∣

∣r
r –

∥
∥w+∥

∥p
p

)
+

tp

p
(∣
∣w–∣

∣r
r –

∥
∥w–∥

∥p
p

)
+

sp

p
∥
∥w+∥

∥p
p +

tp

p
∥
∥w–∥

∥p
p

–
Cr

r
sr∣∣w+∣

∣r
r –

Cr

r
tr∣∣w–∣

∣r
r

≤ max
ξ>0

(
ξp

p
– Cr

ξ r

r

)

|w|rr .

By some straightforward algebraic manipulations, we get

cN ≤ C
–p
r–p

r
r – p

rp
|w|rr . (4.4)

Note that from (4.3) we have
(

1
N

–
1
r

)

|w|rr =
1
N

‖w‖N +
1
N

‖w‖p
p –

1
r

∫

B
|w|r dx

<
1
N

‖w‖N +
1
p
‖w‖p

p –
1
r

∫

B
|w|r dx = cNr .

(4.5)

Thus, by combining (4.4) and (4.5), we obtain

cN < C
–p
r–p

r
N(r – p)
p(r – N)

cNr . (4.6)

Therefore, by (1.15) and (4.6), we obtain that (4.2) holds. �
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The next result gives us some compactness properties of minimizing sequences.

Lemma 10
(i) If (wn) ⊂N is a minimizing sequence for cN , then up to a subsequence there exists

w ∈ Xβ such that

w±
n ⇀ w± in Xβ , w±

n → w± in Lq(B),∀q ≥ N , and

w±
n → w± a.e. in B

and
∫

B
f
(
x, w±

n
)
w±

n dx →
∫

B
f
(
x, w±)

w± dx. (4.7)

(ii) There exists w ∈N such that J (w) = cN .

Proof (i) Let the sequence (wn) ⊂ N satisfy limn→∞ J (wn) = cN . It is clear that (wn) is
bounded by Lemma 4. Then, up to a subsequence, there exists w ∈ Xβ such that

w±
n ⇀ w± in Xβ , w±

n → w± in Lq(B),∀q ≥ N , and w±
n → w± a.e. in B.

Note that, according to (2.7), we have

f
(
x, w±

n
)
w±

n ≤ ε
∣
∣w±

n
∣
∣N + C

∣
∣w±

n
∣
∣q

exp
(
α
∣
∣w±

n
∣
∣γ

)
=: g

(
w±

n (x)
)

for all α > α0 and q > N .

We will prove that g(w±
n (x)) is convergent in L1(B). First note that

|wn|N → |w|N in L1(B). (4.8)

Considering s, s′ > 1 such that 1
s + 1

s′ = 1 and s close to 1, we get

|wn|q → |w|q in Ls′ (B). (4.9)

On the other hand, using Lemma 3, we obtain that

cN = lim sup
n→+∞

J (un)

= lim sup
n→+∞

(

J (un) –
1
θ

〈
J ′(un), un

〉
)

= lim sup
n→+∞

(
(

1
N

–
1
θ

)

‖un‖N +
(

1
p

–
1
θ

)

‖un‖p
p

+
1
θ

(∫

B

(
f (x, un)un – θF(x, un) dx

)

> lim sup
n→+∞

(
1
N

–
1
θ

)

‖un‖N ,

(4.10)

which together with Lemma 9 gives that lim supn→+∞ ‖wn‖γ < αN ,β
2(α0+δ) .
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Now, choosing α = α0 + δ, we get that

∫

B
exp

(
sα

∣
∣w±

n
∣
∣γ

)
dx ≤

∫

B
exp

(

s(α0 + δ)‖wn‖γ

(
wn

‖wn‖
)γ )

dx

≤
∫

B
exp

(

s(α0 + δ)
αN ,β

2(α0 + δ)

(
wn

‖wn‖
)γ )

dx.
(4.11)

Since s > 1 and is sufficiently close to 1, we get s
2αN ,β ≤ αN ,β . Then it follows by Theo-

rem 1.1 that there is M > 0 such that
∫

B
exp

(
sα

∣
∣w±

n
∣
∣γ

)
dx ≤ M. (4.12)

Since

exp
(
α
∣
∣w±

n
∣
∣γ

) → exp
(
α
∣
∣w±∣

∣γ
)

a.e. in B. (4.13)

Then, from (4.12) and [27, Lemma 4.8, Chap. 1], we get that

exp
(
α
∣
∣w±

n
∣
∣γ

)
⇀ exp

(
α
∣
∣w±∣

∣γ
)

in Ls(B). (4.14)

Now, using (4.8), (4.9), (4.14) and proceeding as in Lemma 7, we will complete the proof
of (4.7).

(ii) Now, proceeding in the similar way to the proof of Lemma 7, there exists w ∈N such
that J (w) = cN , which is the conclusion we want. �

Therefore, from Lemmas 5 and 6, we deduce that w is a least energy sign-changing so-
lution for problem (1.1) with exactly two nodal domains.
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