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Abstract
In this paper we study the nonlinear Bose–Einstein condensates Schrödinger system

⎧
⎪⎨

⎪⎩

–�u1 – λ1u1 =μ1u31 + βu1u22 + κ (x)u2 in R
3,

–�u2 – λ2u2 =μ2u32 + βu21u2 + κ (x)u1 in R
3,

∫

R3 u21 = a21,
∫

R3 u22 = a22,

where a1, a2, μ1, μ2, κ = κ (x) > 0, β < 0, and λ1, λ2 are Lagrangian multipliers. We use
the Ekeland variational principle and the minimax method on manifold to prove that
this system has a solution that is radially symmetric and positive.

Mathematics Subject Classification: 35J15; 35J47; 35J57
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1 Introduction
In this paper we study the stationary nonlinear Bose–Einstein condensates Schrödinger
system

⎧
⎪⎪⎨

⎪⎪⎩

–�u1 – λ1u1 = μ1u3
1 + βu1u2

2 + κ(x)u2 in R
3,

–�u2 – λ2u2 = μ2u3
2 + βu2

1u2 + κ(x)u1 in R
3,

∫

R3 u2
1 = a2

1,
∫

R3 u2
2 = a2

2,

(1.1)

where a1, a2, μ1, μ2, κ(x) > 0, β < 0, and λ1, λ2 are Lagrangian multipliers that will be de-
termined. If there exists (λ1,λ2, u1, u2) ∈ R

2 ×H1(R3)×H1(R3) that satisfies (1.1), then we
call (λ1,λ2, u1, u2) a normalized solution of (1.1). This problem possesses several physical
motivations such as nonlinear optics and Bose–Einstein condensation.

When μ1, μ2, a1, a2 > 0 and κ(x) = 0, problem (1.1) has been considered by many math-
ematicians in recent years. In [3] Bartsch and Jeanjean studied the case β > 0; they proved
that there exists β1 > 0 depending on ai and μi, i = 1, 2, such that if 0 < β < β1 then (1.1)
has a solution (λ1,λ2, ū1, ū2), where λ1, λ2 < 0 and ū1 and ū2 are both positive and radially
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symmetric, and there exists β2 > 0 depending on ai and μi such that if β > β2 then (1.1) has
a solution (λ1,λ2, ū1, ū2), where λ1, λ2 < 0 and ū1 and ū2 are both positive and radially sym-
metric. In [6–8] Bartsch and Soave studied the case β < 0, and they proved the existence
of positive solutions of (1.1). Moreover, if μ1 = μ2, a1 = a2 then (1.1) has infinitely many
positive solutions. We refer the interested reader to [4, 5, 12, 13, 20] and the references
therein for more results of this case.

When μ1, μ2, a1, a2 > 0 and κ(x) �= 0, to the best of our knowledge, the only result avail-
able is presented in [25]. We proved the existence of solutions for (1.1) when β > 0, the in-
teraction is attractive, and κ(x) is a radially symmetric function, which means κ(x) = κ(|x|),
by using the Ekeland variational principle and minimax theory on manifold.

It is necessary to point out that Schrödinger systems with fixed λi have been widely stud-
ied in the last twenty years, the existence and behavior of solutions are well understood.
For autonomous systems, we refer the interested reader to [1, 2, 9, 15, 17–19, 24, 27, 28]
and the references therein. For nonautonomous systems, we refer the interested reader
to [21, 26], which studied the ground state solutions of Schrödinger systems with poten-
tials, but for system (1.1) it is far from being well understood. Furthermore, normalized
solutions for the single equation were studied in [14, 16, 22, 23] and the references therein.

Now, let us focus on the repulsive case of system (1.1), which means a1, a2, μ1, μ2,
κ(x) > 0, and β < 0. We also use the variational method to prove the existence of solutions
for system (1.1), but different from the attractive case because β < 0, the Liouville type
theorem in [25] is no longer applicable, we need to establish a new Liouville type theorem
for elliptic systems to make sure that the weak limit of P.S. sequence is nontrivial. We
will prove the existence of solutions for (1.1), which will be found as critical points of the
energy functional J on manifold S , where

J(u1, u2) :=
1
2

∫

R3
|∇u1|2 + |∇u2|2 –

1
4

∫

R3
μ1u4

1 + μ2u4
2 + 2βu2

1u2
2 –

∫

R3
κ(x)u1u2

and

S := Sa1 × Sa2 , Sa :=
{

u ∈ H1
rad

(
R

3) :
∫

R3
u2 = a2

}

,

space H1
rad(R3) denotes the space of radially symmetric functions in H1(R3). We have the

following results.
First, for the autonomous case (κ(x) = κ is a constant). Because λ1, λ2 are unknown, the

traditional Nehari manifold method is not available, so we need to combine the Nehari
identity and the Pohožeav identity to get a new constraint for system (1.1):

P :=
{

(u1, u2) ∈ S :
∫

R3
|∇u1|2 + |∇u2|2 =

3
4

∫

R3
μ1u4

1 + μ2u4
2 + 2βu2

1u2
2

}

.

From [6] we know that P is a C2 submanifold of S . First, we show that J is bounded from
below and away from 0 on P . Next, we use the Ekeland variational principle to find a P.S.
sequence for J on S at level c := infP J(u1, u2) and prove that the P.S. sequence is bounded,
then it has a weak limit in H1(R3) × H1(R3). Finally, we prove that the weak limit is also
a strong limit by establishing a new Liouville type theorem for elliptic systems. Then we
have the following existence theorem.
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Theorem 1.1 Assume a1, a2, μ1, μ2 > 0, β < 0, and κ > 0 with the additional condition

κ <
8

27C2
a1,a2 a1a2

, (1.2)

where Ca1,a2 = max{μ1a1G4,μ2a2G4} and G is the best constant for the Gagliardo–
Nirenberg inequality in Lemma 3.1. Then system (1.1) has a solution (λ̄1, λ̄2, ū1, ū2) such
that λ̄1, λ̄2 < 0, ū1, ū2 > 0. Moreover, ū1 and ū2 are radially symmetric.

Next, for the nonautonomous case (κ(x) is not a constant). When κ(x) is not a constant,
the Pohožeav identity of (1.1) is very complicated, so we need to find the critical point of
J on manifold S directly. The functional J on S is unbounded from below, so we try to
construct a mountain pass structure of J on the manifold S and by the minimax theory
on the Finsler manifold, which was introduced in [10], and to obtain the critical point of J
on S . We have the following theorem.

Theorem 1.2 Assume a1, a2, μ1, μ2 > 0, –√
μ1μ2 < β < 0, and κ(x) = κ(|x|) is positive and

away from 0, κ(x) ∈ L∞(R3), 2
3∇κ(x) · x + κ(x) ≥ 0, ∇κ(x) · x is bounded and

∣
∣κ(x)

∣
∣∞ <

5
18C2

a1,a2 a1a2
,

where Ca1,a2 = max{μ1a1G4,μ2a2G4} and G is the best constant for the Gagliardo–
Nirenberg inequality in Lemma 3.1. Then system (1.1) has a solution (λ̄1, λ̄2, ū1, ū2) such
that λ̄1, λ̄2 < 0, ū1, ū2 > 0. Moreover, ū1 and ū2 are radially symmetric.

Finally, we need to point out that the proofs of Theorem 1.1 and Theorem 1.2 are dif-
ferent from [6] and [25]. To deal with the repulsive case and the linear coupling terms
of system (1.1), we need to establish a new Liouville type theorem for elliptic systems
(Lemma 3.8) by asymptotic estimates to prove that the weak limit of P.S. sequence is also
a strong limit.

The paper is organized as follows. In Sect. 2 we give some notations and preliminaries.
Sections 3 and 4 are devoted to the proofs of Theorems 1.1 and 1.2.

2 Notations
Throughout the paper we always work in the space R

3, and we use the notation |u|p to
denote the Lp-norm. Set H1(R3) to be the usual Sobolev space, and its norm is denoted by

‖u‖ := ‖u‖H1 :=
(|∇u|22 + |u|22

)1/2.

To use the compact embedding in whole space, we denote the radially symmetric space as
follows:

H1
r := H1

rad
(
R

3) :=
{

u ∈ H1(
R

3) : u(x) = u
(|x|)},

and we set

S := S1 × S2, Si := Sai :=
{

u ∈ H1
r : |u|2 = ai

}
, i = 1, 2,
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where |u|p := |u|p,R3 := (
∫

R3 |u|p)1/p, p > 1. From standard variational arguments and the
Palais principle of symmetric criticality, we know that critical points of the following func-
tional on S are weak solutions of (1.1):

J(u1, u2) :=
1
2

∫

R3
|∇u1|2 + |∇u2|2 –

1
4

∫

R3
μ1u4

1 + μ2u4
2 + 2βu2

1u2
2 –

∫

R3
κ(x)u1u2.

We will use the following fiber mapping, which was introduced in [14] originally. For
s ∈R and u ∈ H1(R3), we define

(s � u)(x) := e
3s
2 u

(
esx

)
.

From the definition, we can easily check that |s � u|2 = |u|2 and |∇(s � u)|2 = es|∇u|2; as a
consequence, take s ∈R, (u1, u2) ∈ S , we have s � (u1, u2) := (s � u1, s � u2) ∈ S .

To deal with the autonomous case, we give the following notations. First define a func-
tion �(u1,u2)(s) as follows:

�(u1,u2)(s) := J
(
s � (u1, u2)

)
,

when κ is a constant by changing variables, we have

�(u1,u2)(s) =
e2s
2

∫

R3
|∇u1|2 + |∇u2|2 –

e3s

4

∫

R3
μ1u4

1 + μ2u4
2 + 2βu2

1u2
2 –

∫

R3
κu1u2.

Next we introduce a subset of S :

T :=
{

(u1, u2) ∈ S :
∫

R3
μ1u4

1 + μ2u4
2 + 2βu2

1u2
2 > 0

}

.

Clearly, T = S , when –√u1u2 < β < +∞, T is a proper subset of S while β ≤ –√u1u2.
Moreover, when (u1, u2) ∈ T , the function �(u1,u2)(s) has a unique strict maximum point,
which is defined by

s(u1,u2) = ln

( 4
∫

R3 |∇u1|2 + |∇u2|2
3
∫

R3 μ1u4
1 + μ2u4

2 + 2βu2
1u2

2

)

. (2.1)

It is clear that for any (u1, u2) ∈ T , we have s(u1,u2) � (u1, u2) ∈P .

3 Autonomous systems
In this section, we prove Theorem 1.1.

We work on the space H := H1
rad(R3) × H1

rad(R3), the corresponding energy functional
of (1.1) on S is

J(u1, u2) :=
1
2

∫

R3
|∇u1|2 + |∇u2|2 –

1
4

∫

R3
μ1u4

1 + μ2u4
2 + 2βu2

1u2
2 –

∫

R3
κu1u2.

We try to find the critical point of J on S .
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Lemma 3.1 (Gagliardo–Nirenberg inequality) For any u ∈ H1(R3), we have

∫

R3
u4 ≤ G

(∫

R3
u2

) 1
2
(∫

R3
|∇u|2

) 3
2

,

where G is a universal constant.

Lemma 3.2 J is coercive on P and there exists δ > 0 such that

inf
(u1,u2)∈P

J(u1, u2) > δ,

when κ < 8
27Ca1,a2 a1a2

, where Ca1,a2 = max{μ1a1G4,μ2a2G4}.

Proof From Lemma 3.1 we know for all u ∈ H1(R3):

∫

R3
u4 ≤ G

(∫

R3
u2

) 1
2
(∫

R3
|∇u|2

) 3
2

.

If (u1, u2) ∈P , then (u1, u2) ∈ T , we have

0 <
(∫

R3
|∇u1|2 + |∇u2|2

) 2
3

=
(

3
4

∫

R3
μ1u4

1 + μ2u4
2 + 2βu2

1u2
2

) 2
3

≤
(

3
4

∫

R3
μ1u4

1 + μ2u4
2

) 2
3 ≤

(
3
4

Ca1,a2

) 2
3
∫

R3
|∇u1|2 + |∇u2|2.

Moreover, when (u1, u2) ∈P , we have

J(u1, u2) =
1
6

∫

R3
|∇u1|2 + |∇u2|2 –

∫

R3
κu1u2 ≥ 8

27C2
a1,a2

– κa1a2.

Then, if κ < 8
27C2

a1,a2 a1a2
, where Ca1,a2 = max{μ1a1G4,μ2a2G4}, then there exists δ > 0 such

that

inf
(u1,u2)∈P

J(u1, u2) > δ,

the coerciveness of J on P is obvious, which finishes the proof. �

From Lemma 3.2 we know

c := inf
(u1,u2)∈P

J(u1, u2) > 0,

and J is coercive. These properties inspire us to prove that c is the critical value of J on
manifold S .



Yun and Zhang Boundary Value Problems         (2024) 2024:25 Page 6 of 20

First we define the functional E : T →R by

E(u1, u2) := J
(
s � (u1, u2)

)
.

From the definition of s(u1,u2), we have s(u1,u2) � (u1, u2) ∈ P . Together with (2.1) it is easy
to check that

E(u1, u2) =
1
6

∫

R3
|∇s(u1,u2) � u1|2 + |∇s(u1,u2) � u2|2 –

∫

R3
κu1u2

=
e2s(u1,u2)

6

∫

R3
|∇u1|2 + |∇u2|2 –

∫

R3
κu1u2

=
8
∫

R3 |∇u1|2 + |∇u2|2
27

∫

R3 μ1u4
1 + μ2u4

2 + 2βu2
1u2

2
–

∫

R3
κu1u2.

(3.1)

Lemma 3.3 We have

c = inf
(u1,u2)∈T

E(u1, u2).

Proof For every (u1, u2) ∈P , we have s(u1,u2) = 0. Moreover,

J(u1, u2) = E(u1, u2) ≥ inf
(u1,u2)∈T

E(u1, u2) ⇒ c ≥ inf
(u1,u2)∈T

E(u1, u2).

On the other hand, for every (u1, u2) ∈ T , we have

E(u1, u2) = J
(
su1,u2 � (u1, u2)

) ≥ c ⇒ inf
(u1,u2)∈T

E(u1, u2) ≥ c.

Combining two inequations above, we finish the proof. �

The following lemma shows us the relations of derivative between J and E.

Lemma 3.4 The functional E ∈ C1(T ,R), and

(
dE(u1, u2), (φ1,φ2)

)
=

(
dJ

(
s(u1,u2) � (u1, u2)

)
, s(u1,u2) � (φ1,φ2)

)
, (3.2)

where (u1, u2) ∈ T , (φ1,φ2) ∈ T(u1,u2)S , and T(u1,u2)S is the tangent space of S in H at point
(u1, u2).

Proof From (3.1) we know that E ∈ C1(T ,R) is obvious, and take (u1, u2) ∈ T , (φ1,φ2) ∈
T(u1,u2)S , we have

(
dE(u1, u2), (φ1,φ2)

)

=
( 4

∫

R3 |∇u1|2 + |∇u2|2
3
∫

R3 μ1u4
1 + μ2u4

2 + 2βu2
1u2

2

)2 ∫

R3
∇u1 · ∇φ1 + ∇u2 · ∇φ2

–
( 4

∫

R3 |∇u1|2 + |∇u2|2
3
∫

R3 μ1u4
1 + μ2u4

2 + 2βu2
1u2

2

)3 ∫

R3
μ1u3

1 + μ2u3
2 + βu2

1u2φ2 + βu1u2
2φ1
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–
∫

R3
κu1φ2 –

∫

R3
κu2φ1

= e2s(u1,u2)

∫

R3
∇u1 · ∇φ1 + ∇u2 · ∇φ2

– e3s(u1,u2)

∫

R3
μ1u3

1 + μ2u3
2 + βu2

1u2φ2 + βu1u2
2φ1 –

∫

R3
κu1φ2 –

∫

R3
κu2φ1

=
∫

R3
∇(s(u1,u2) � u1) · ∇(s(u1,u2) � φ1) + ∇(s(u1,u2) � u2) · ∇(s(u1,u2) � φ1)

–
∫

R3
μ1(s(u1,u2) � u1)3(s(u1,u2) � φ1) + μ2(s(u1,u2) � u2)3(s(u1,u2) � φ2)

–
∫

R3
β(s(u1,u2) � u1)2(s(u1,u2) � u2)(s(u1,u2) � φ2)

–
∫

R3
β(s(u1,u2) � u2)2(s(u1,u2) � u1)(s(u1,u2) � φ1)

–
∫

R3
κ(s(u1,u2) � u1)(s(u1,u2) � φ2) –

∫

R3
κ(s(u1,u2) � u2)(s(u1,u2) � φ1)

=
(
dJ

(
s(u1,u2) � (u1, u2)

)
, s(u1,u2) � (φ1,φ2)

)
,

which finishes the proof. �

Next, from the Ekeland variational principle, we can find a P.S. sequence for J on S at
level c.

Proposition 3.1 There exist two sequences {(ũ1,n, ũ2,n)} and {(u1,n, u2,n)} := {sn � (ũ1,nũ2,n)}
satisfying the following properties, where sn := s(ũ1,n ,ũ2,n):

(a) {(ũ1,n, ũ2,n)} is a P.S. sequence of E on manifold S at c;
(b) sn → 0 as n → +∞, and {(u1,n, u2,n)} ∈P for every n;
(c) {(u1,n, u2,n)} is a P.S. sequence of J on S at c.
Moreover, we can assume u–

1,n, u–
2,n → 0 in H.

Proof First we can choose (v1,n, v2,n) ∈ T such that E(v1,n, v2,n) → c. We take ( ˜̃u1,n, ˜̃u2,n) :=
s(v1,n ,v2,n) � (v1,n, v2,n) ∈ P . From the definition of E, we know that E(( ˜̃u1,n, ˜̃u2,n)) → c. From
the Ekeland variational principle, there exists (ũ1,n, ũ2,n) such that

E(ũ1,n, ũ2,n) → c,

d|SE(ũ1,n, ũ2,n) → 0,

and ‖ ˜̃ui,n – ũi,n‖, i = 1, 2. From the fact that ( ˜̃u1,n, ˜̃u2,n) ∈P , we have sn := s(ũ1,n ,ũ2,n) → 0, we
define (u1,n, u2,n) := sn � (ũ1,n, ũ2,n). From Lemma 3.4 we have

(
dJ(u1,n, u2,n), (φ1,φ2)

)
= (dE

(
–sn � (u1,n, u2,n)

)
,
(
–sn � (φ1,φ2)

)
,

where (φ1,φ2) ∈ TS (u1,n, u2,n). From the fact that sn → 0, there exists C > 0 such that 0 ≤
sn ≤ C. Moreover, there exist C1 > 0, C2 > 0 such that

C1 <
‖ – sn � (φ1,φ2)‖

‖(φ1,φ2)‖ < C2,
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∥
∥d|S J(u1,n, u2,n)

∥
∥∗ = sup

‖(φ1,φ2)‖=1
φ1,φ2∈TS (u1,u2)

∣
∣
(
dJ(u1,n, u2,n), (φ1,φ2)

)∣
∣

= sup
‖(φ1,φ2)‖=1

φ1,φ2∈TS (u1,u2)

∣
∣
(
dE

(
–sn � (u1,n, u2,n)

)
,
(
–sn � (φ1,φ2)

))∣
∣

= sup
‖(φ1,φ2)‖=1

φ1,φ2∈TS (u1,u2)

∣
∣
(
dE(ũ1,n, ũ2,n),

(
–sn � (φ1,φ2)

))∣
∣

=
∥
∥d|E(ũ1,n, ũ2,n)

∥
∥∗

‖ – sn � (φ1,φ2)‖
‖(φ1,φ2)‖

→ 0.

From the continuity of J , we have J(u1,n, u2,n) → c. Moreover, because

J
(|u1|, |u2|

) ≤ J(u1, u2),

we can choose v1,n, v2,n ≥ 0, then we have u–
1,n, u–

2,n → 0 in H, which finishes the proof. �

Then we need to show that the P.S. sequence {(u1,n, u2,n)}, which is mentioned in Propo-
sition 3.1, is bounded in H.

Lemma 3.5 Sequence {(u1,n, u2,n)} is bounded in H.

Proof First we have

J(u1,n, u2,n) =
1
2

∫

R3
|∇u1,n|2 + |∇u2,n|2 –

1
4

∫

R3
μ1u4

1,n + μ2u4
2,n + 2βu2

1,nu2
2,n

–
∫

R3
κu1,nu2,n → c > 0.

(3.3)

From the fact that {(u1,n, u2,n)} ∈P , we have

∫

R3
|∇u1,n|2 + |∇u2,n|2 =

3
4

∫

R3
μ1u4

1,n + μ2u4
2,n + 2βu2

1,nu2
2,n. (3.4)

Combining (3.3) and (3.4), we obtain

1
6

∫

R3
|∇u1,n|2 + |∇u2,n|2 –

∫

R3
κu1,nu2,n → c.

From the Schwarz inequation we have that {(∇u1,n,∇u2,n)} is bounded in L2 × L2 together
with (u1,n, u2,n) ∈ S , then {(u1,n, u2,n)} is bounded in H. �

Then we have

(u1,n, u2,n) ⇀ (ū1, ū2) ∈H; (3.5)

by the standard arguments of compact embedding, we have ui,0 ≥ 0, i = 1, 2.
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From the above discussion we have

dJ|S (u1,n, u2,n) = dJ(u1,n, u2,n) – λ1,n(u1,n, 0) – λ2,n(0, u2,n) → 0 (3.6)

in H∗, where

λ1,n =
1

|u1,n|22
(
dJ(u1,n, u2,n), (u1,n, 0)

)

=
1
a2

1

(∫

R3
|∇u1,n|2 – μ1

∫

R3
u4

1,n – β

∫

R3
u2

1,nu2
2,n – κ

∫

R3
u1,nu2,n

)

,

λ2,n =
1

|u2,n|22
(
dJ(u1,n, u2,n), (0, u2,n)

)

=
1
a2

2

(∫

R3
|∇u2,n|2 – μ2

∫

R3
u4

2,n – β

∫

R3
u2

1,nu2
2,n – κ

∫

R3
u1,nu2,n

)

.

It is easy to check that {λ1,n} and {λ2,n} are bounded sequences, and we may assume λ1,n →
λ̄1, λ2,n → λ̄2 up to the subsequence. Then, by weak convergence, we have

dJ(ū1, ū2) – λ̄1(ū1, 0) – λ̄2(0, ū2) = 0 in H∗.

Moreover, (λ̄1, λ̄2, ū1, ū2) is a solution of system

⎧
⎨

⎩

–�u1 – λ1u1 = μ1u3
1 + βu1u2

2 + κu2 in R
3,

–�u2 – λ2u2 = μ2u3
2 + βu2

1u2 + κu1 in R
3.

(3.7)

If (u1,n, u2,n) → (ū1, ū2) ∈H strongly, then (λ̄1, λ̄2, ū1, ū2) is a solution of system

⎧
⎪⎪⎨

⎪⎪⎩

–�u1 – λ1u1 = μ1u3
1 + βu1u2

2 + κu2 in R
3,

–�u2 – λ2u2 = μ2u3
2 + βu2

1u2 + κu1 in R
3,

∫

R3 u2
1 = a2

1,
∫

R3 u2
2 = a2

2.

(3.8)

The following lemma gives a sufficient condition of strong convergence for the sequence
{(u1,n, u2,n)}.

Lemma 3.6 If λ̄i < 0, i = 1, 2, then we have strong convergence ui,n → ūi in H1
r , i = 1, 2.

Proof When λ̄1 < 0, we compute

o(1) =
(
dJ(u1,n, u2,n) – dJ(ū1, ū2), (u1,n – ū1, 0)

)
– λ̄1

∫

R3
(u1,n – ū1)2

=
∫

R3
(∇u1,n – ∇ū1)2 – λ̄1

∫

R3
(u1,n – ū1)2 + o(1).

Then, if λ̄1 < 0, we have u1,n → ū1 in H1
r . Similarly, if λ̄2 < 0, we have u2,n → ū2 in H1

r ,
which finishes the proof. �

Lemma 3.7 At least one of λi, i = 1, 2 is negative.
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Proof Notice that (u1,n, u2,n) ∈ P , u–
1,n, u–

2,n → 0 in H1
r and Lemma 3.2. There exists δ > 0

such that

λ̄1a2
1 + λ̄2a2

2

= λ1,na2
1 + λ2,na2

2 + o(1)

=
∫

R3
|∇u1,n|2 + |∇u2,n|2 –

∫

R3
μ1u4

1,n + μ2u4
2,n + 2βu2

1,nu2
2,n – 2

∫

R3
κu+

1,nu+
2,n + o(1)

≤ –
1
3

∫

R3
|∇u1,n|2 + |∇u2,n|2 + o(1)

< –
1
6
δ + o(1).

Then we have λ̄1 < 0 or λ̄2 < 0, which finishes the proof. �

We need some Liouville type theorems to ensure that λ̄1 and λ̄2 are both negative.

Lemma 3.8 If λ̄1 < 0 and λ̄2 ≥ 0, then there exists R 
 0 such that ū1 and ū2 are decreasing
in Bc

R(0). Moreover, ū1 ≤ C
r2 for some C > 0 in Bc

R(0).

Proof When u ∈ H1
rad(R3), for simplicity we take u(x) = u(r), where r = |x|. We have

�u =
(
r2u′(r)

)′r–2

and

∣
∣u(x)

∣
∣ ≤ C|u| 1

2
2 |∇u| 1

2
2 |x|–1, (3.9)

then there exists R1 > 0 such that x ∈ Bc
R1

(0)

�ū2(x) = –
(
μ2ū3

2(x) + βū2
1(x)ū2(x) + κū1(x) + λ̄2ū2(x)

)

≤ –
(
βū2

1(x)ū2(x) + κū1(x)
)

≤ –
κ

2
ū1(x).

(3.10)

Taking r1, r2 > R1 in (3.10), we have

∫ r2

r1

(
r2ū′

2(r)
)′ dr ≤ –

∫ r2

r1

κū2(r)r2 dr,

i.e.,

r2ū′
2(r2) – r2

1u′
2(r1) +

∫ r2

r1

r2u1(r) dr ≤ 0. (3.11)

We claim that there exists R2 > 0 such that when r > R2 we have ū′
2(r) < 0. If not, it is

obvious that there exists a sequence rn such that rn → ∞ and ū′
2(rn) = 0. Then from (3.11)
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we have

κ

∫ rn+1

rn

r2ū1(r) dr ≤ 0,

which is impossible because from the maximum principle we know that ū1, ū2 > 0. Then
we have ū2 is decreasing when r > R2. From [11] we know that there exists R3 > 0 such that
ū1(r) is decreasing when r > R3.

Next, we take r2 = 2r1 > R := max{R1, R2, R3}, and noticing (3.9), we have

–
∫ r2

r1

(
r2ū′

2(r)
) ≤ C

∫ r2

r1

1
r

+ r dr ≤ C
(
ln 2 + r2

2
)

(3.12)

for some constant C > 0. Moreover, notice that ū2(r) is decreasing when r > R and (3.12),
then we have

∣
∣ū′

2(r)
∣
∣ ≤ C

r
, (3.13)

where r > R. Finally, from (3.11) and (3.13), we have

ū1(r) ≤ C
r2 ,

when r > R. �

Lemma 3.9 If λ̄1 < 0 and λ̄2 ≥ 0, then we have ū2 ≡ 0.

Proof We assume that ū2 �≡ 0. From the maximum principle, we have ū2 > 0. First we have

–�ū2 – λ̄2ū2 = μ2ū3
2 + βū2

1ū2 + κū1.

Take ū2 = w and c(x) = –|β|ū2
1(x), then we have

∣
∣c(x)

∣
∣ ≤ C

|x|4

and

–�w + c(x)w ≥ 0,

where x ∈ Bc
R(0). For φ ∈ (1, 3

2 ], we take V = r–φ , then we have

–�V + c(x)V = –
(
φ2 – φ

)|x|–φ–2 + c(x)|x|–φ

≤ –
(
φ2 – φ

)|x|–φ–2 + C|x|–φ–4

< 0

(3.14)

when x ∈ Bc
R′ (0) for some R′ > 0. Take ϕ := w – C0r–φ , where C0 = w(R̄)

R̄–φ and R̄ := max{R, R′},
we have

–�ϕ + c(x)ϕ ≥ 0
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in Bc
R̄(0). From the maximum principle, we have w ≥ C0r–φ in Bc

R̄(0), but it is easy to show
that r–φ /∈ L2(Bc

R̄(0)), which contradicts w ∈ L2(R3), so we must have ū2 ≡ 0. �

Proof of Theorem 1.1 If λ̄1 < 0, λ̄2 ≥ 0, we have ū2 ≡ 0 and ū1 > 0. From the structure of
system (3.7), we know that (ū1, 0) cannot be the solution of system (3.7). If λ̄1 ≥ 0, λ̄2 <
0, we have ū1 ≡ 0 and ū2 > 0. From the structure of system (3.7), we know that (0̄, u2)
cannot be the solution of system (3.7). So we must have λ̄1, λ̄2 < 0. From Lemma 3.6 we
have (λ̄1, λ̄2, ū1, ū2) is a solution of system (1.1). Moreover, λ̄1, λ̄2 < 0 and ū1, ū2 > 0, which
finishes the proof of Theorem 1.1. �

4 Nonautonomous systems
In this section, we prove Theorem 1.2.

The corresponding energy functional of system (1.1) on S is defined by

J(u1, u2) =
1
2

∫

R3
|∇u1|2 + |∇u2|2 –

1
4

∫

R3
μ1u4

1 + μ2u4
2 + 2βu2

1u2
2 –

∫

R3
κ(x)u1u2,

where μ1, μ2, κ > 0 and β < 0.
Firstly, J|S is unbounded from below, so we cannot achieve infS J(u1, u2). Secondly, (1.1)

is a nonautonomous system. The Pohožeav identity of system (1.1) involves the gradient
of κ(x), and it is hard to figure out whether J is bounded below on the Pohožeav manifold.
To get the critical point of J|S , we will try to find a minimax value of J|S by constructing
a minimax structure on S . For this purpose, we introduce the following two sets, where
K2 > K1 > 0:

AK1 :=
{

(u1, u2) ∈ S :
∫

R3
|∇u1|2 + |∇u2|2 ≤ K1

}

,

BK2 :=
{

(u1, u2) ∈ S :
∫

R3
|∇u1|2 + |∇u2|2 = K2

}

.

By Lemma 3.1 we have

∫

R3
μ1u4

1 + μ2u4
2 + 2βu2

1u2
2 ≤ Ca1,a2

(∫

R3
|∇u1|2 + |∇u2|2

) 3
2

,

where Ca1,a2 = max{a1μ1G4, a2μ2G4}, and G > 0 denotes the best constant for the
Gagliardo–Nirenberg inequality in R

3.

Lemma 4.1 There exists C1 > 0, where C := C(κ , a1, a2) and K1 > 0 such that for any
(u1, u2) ∈ AK1 ,

J(u1, u2) > –C. (4.1)

Proof We let K1 < 4
C2

a1,a2
, where 4

C2
a1,a2

is the biggest zero point of the function

1
2

x –
Ca1,a2

4
x

3
2 .
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Then we have

J(u1, u2) =
1
2

∫

R3
|∇u1|2 + |∇u2|2 –

1
4

∫

R3
μ1u4

1 + μ2u4
2 + βu2

1u2
2 –

∫

R3
κu1u2

≥ 1
2

∫

R3
|∇u1|2 + |∇u2|2 –

Ca1,a2

4

(∫

R3
|∇u1|2 + |∇u2|2

) 3
2

– κa1a2

≥ –κa1a2,

then we take C = κa1a2 to get (4.1). �

Lemma 4.2 Assume K2 = 16
9C2

a1,a2
and κ < 5

18C2
a1,a2

. If K1 is small enough, then we have

sup
AK1

J(u1, u2) < inf
BK2

J(u1, u2) (4.2)

and

inf
BK2

J(u1, u2) > 0. (4.3)

Proof Take (v1, v2) ∈ BK2 , (u1, u2) ∈ AK1 , notice that K2 > 0 is the maximum point of the
function

1
2

x –
Ca1,a2

4
x

3
2 ,

κ(x) < 5
18C2

a1,a2 a1a2
. Note that –√

μ1μ2 < β < 0 and choose K1 small enough, then we have

J(v1, v2) – J(u1, u2)

=
1
2

∫

R3
|∇v1|2 + |∇v2|2 –

1
2

∫

R3
|∇u1|2 + |∇u2|2

–
1
4

∫

R3
μ1v4

1 + μ2v4
2 + 2βv2

1v2
2 +

1
4

∫

R3
μ1u4

1 + μ2u4
2 + 2βu2

1u2
2

–
∫

R3
κv1v2 +

∫

R3
κu1u2

≥ 1
2

∫

R3
|∇v1|2 + |∇v2|2 –

1
2

∫

R3
|∇u1|2 + |∇u2|2

–
1
4

∫

R3
μ1v4

1 + μ2v4
2 + 2βv2

1v2
2 – 2κa1a2

≥ 1
2

K2 –
Ca1,a2

4
(K2)

3
2 –

1
2

K1 – 2κa1a2

> 0.

(4.4)

Take (u1, u2) ∈ BK2 , similarly to (4.4), we have

J(u1, u2) =
1
2

∫

R3
|∇u1|2 + |∇u2|2 –

1
4

∫

μ1u4
1 + μ2u4

2 + 2βu2
1u2

2 –
∫

R3
κu1u2
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≥ 1
2

K2 –
Ca1,a2

4
(K2)

3
2 – κa1a2

> 0.

This finishes the proof. �

We fix a point (v1, v2) ∈ AK1 both nonnegative, and we try to find a point (w1, w2) such
that J(w1, w2) is negative enough, and

∫

R3 |∇w1|2 + |∇w2|2 is large enough. Then any path
from (v1, v2) to (w1, w2) must pass through BK2 , so we get a mountain pass structure on
manifold S . To do this, we use the translation, which was firstly mentioned in [11]:

s � u := e
3s
2 u

(
esx

)
.

By direct calculation we have

|s � u|22 = |u|22

and

∣
∣∇(s � u)

∣
∣2
2 = e2s|∇u|22.

Moreover, we have

J(s � v1, s � v2)

=
e2s

2

∫

R3
|∇v1|2 + |∇v2|2 –

e3s

4

∫

R3
μ1v4

1 + μ2v4
2 + 2βv2

1v2
2 –

∫

R3
κ(x)(s � v1)(s � v2)

≤ e2s

2

∫

R3
|∇v1|2 + |∇v2|2 –

e3s

4

∫

R3
μ1v4

1 + μ2v4
2 + 2βv2

1v2
2 + κa1a2.

If s is large enough, then we have J(s � v1, s � v2) < –C1, where C1 is defined in (4.1), and we
take (w1, w2) := (s � v1, s � v2).

Then we can get a mountain pass structure of J on manifold S :

� :=
{
γ (t) =

(
γ1(t),γ2(t)

)
: γ (0) = (v1, v2),γ (1) = (w1, w2)

}
, (4.5)

and the mountain pass value is

c := inf
γ∈�

sup
t∈[0,1]

J
(
γ (t)

) ≥ inf
BK2

J(u1, u2) > 0. (4.6)

To obtain the boundedness of the P.S. sequence at mountain pass value c, we use the fol-
lowing notations:

J̃(s, u1, u2) := J(s � u1, s � u2) = J̃(0, s � u1, s � u2). (4.7)

The corresponding minimax structure of J̃ on R× S is as follows:

�̃ :=
{
γ̃ (t) =

(
s(t),γ1(t),γ2(t)

)
: γ̃ (0) = (0, v1, v2), γ̃ (1) = (0, w1, w2)

}
,
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and its minimax value is

c̃ = inf
γ̃∈�̃

sup
t∈[0,1]

J̃
(
γ̃ (t)

)
.

First we claim that c̃ = c.
In fact, from �̃ ⊃ � we have c̃ ≤ c. On the other hand, for any

γ̃ (t) =
(
s(t),γ1(t),γ2(t)

)
,

by definition we have

J̃
(
γ̃ (t)

)
= J

(
s(t) � γ (t)

)
,

and s(t) � γ (t) ∈ � is obvious, then

sup
t∈[0,1]

J̃
(
γ̃ (t)

) ≥ inf
γ∈�

sup
t∈[0,1]

J
(
γ (t)

)
.

By the definition of c̃, we have c̃ ≥ c, then c̃ = c. Because

J̃(s, u1, u2) = J̃(0, s � u1, s � u2),

we take a sequence γ̃n = (0,γ1,n,γ2,n) ∈ �̃ such that

c = lim
n→∞ sup

t∈[0,1]
J̃
(
γ̃n(t)

)
.

Moreover, using the fact that κ(x) > 0, we have

J̃
(
s, |u1|, |u2|

) ≤ J̃(s, u1, u2),

then we can assume γ1,n, γ2,n ≥ 0. By Theorem 3.2 in [10] (it is easy to check that the
conditions of Theorem 3.2 in [10] are satisfied by Lemma 4.2), we can get a P.S. sequence
(sn, ũ1,n, ũ2,n) of J̃ on R× S at level c. Moreover,

lim
n→∞|sn| + distH

(
(ũ1,n, ũ2,n), (γ1,n,γ2,n)

)
= 0.

So, we have sn → 0 and ũ–
1,n, ũ–

2,n → 0 in H1
r . Then, taking

(u1,n, u2,n) := (sn � ũ1,n, sn � ũ2,n),

we have the following lemma.

Lemma 4.3 (u1,n, u2,n) is a P.S. sequence of J(u1, u2) at level c on S .

Proof First we know that (sn, ũ1,n, ũ2,n) is a P.S. sequence of J̃(s, u1, u2), then for any
(φ1,φ2) ∈ H1

r × H1
r we have

(
∂u J̃(sn, ũ1,n, ũ2,n), (φ1,φ2)

)
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= e2sn

∫

R3
∇ũ1,n · ∇φ1 + ∇ũ2,n · ∇φ2

– e3sn

∫

R3
μ1ũ3

1,nφ1 + μ2ũ3
2,n + βũ1,nφ1ũ2

2,n + βũ2
1,nũ2,nφ2

–
∫

R3
κ
(
e–sn x

)
ũ1,nφ2 –

∫

R3
κ
(
e–sn x

)
ũ2,nφ1

=
∫

R3
∇u1,n · ∇(sn � φ1) + ∇u2,n · ∇(sn � φ2)

–
∫

R3
μ1u3

1,n(sn � φ1) + μ2u3
2,n(sn � φ1) + βu2

1,nu2,n(sn � φ2) + βu1,nu2
2,n(sn � φ1)

–
∫

R3
κ(x)u1,n(sn � φ2) –

∫

R3
κ(x)u2,n(sn � φ1)

=
(
dJ(u1,n, u2,n), (sn � φ1, sn � φ2)

)
,

where u = (u1, u2). Notice that –s � (s � φ) = φ, ∀s ∈R, we have

∂u J̃(sn, ũ1,n, ũ2,n)(–sn � φ1, –sn � φ2) = dJ(u1,n, u2,n)(φ1,φ2).

It is obvious that (φ1,φ2) ∈ T(u1,n ,u2,n)S if and only if (–sn �φ1, –sn �φ2) ∈ T(ũ1,n ,ũ2,n)S , see [6].
Since sn → 0, we have –sn � φi → φi, i = 1, 2, as n → ∞ in H1

r . Then, for n large enough,
there exist A1 > 0 and A2 > 0 such that

A1 <
‖(φ1,φ2)‖

‖(–sn � φ1, –sn � φ2)‖ < A2, (4.8)

where (φ1,φ2) �= (0, 0). Let ‖ · ‖� be the norm of the cotangent space (T(u1,u2)S)�. Thus, for
any (φ1,φ2) ∈ T(u1,n ,u2,n)S and (φ1,φ2) �= (0, 0), we have

∣
∣
∣
∣dJ|S (u1,n, u2,n)

(φ1,φ2)
‖(–sn � φ1, –sn � φ2)‖

∣
∣
∣
∣ ≤ ∥

∥(∂u J̃|S )(sn, ũ1,n, ũ2,n)
∥
∥

�
→ 0

as n → ∞. Take the supremum on both sides and notice (4.8), we have

A1
∥
∥dJ|S (u1,n, u2,n)

∥
∥

�
≤ ∥

∥(∂u J̃|S )(sn, ũ1,n, ũ2,n)
∥
∥

�
→ 0 as n → ∞.

From the fact that A1 > 0, we have

∥
∥dJ|S (u1,n, u2,n)

∥
∥

�
→ 0 as n → ∞.

On the other hand, we have

J(u1,n, u2,n) = J̃(sn, ũ1,n, ũ2,n) → c as n → ∞.

This finishes the proof. �

Lemma 4.4 If κ(x) and ∇κ(x) · x is bounded in R
3, then the P.S. sequence (u1,n, u2,n) ob-

tained in Lemma 4.3 of J(u1, u2) on S at level c is bounded in H.
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Proof Since (sn, ũ1,n, ũ2,n) is a P.S. sequence for J̃ , we have

∂

∂s
J̃(sn, ũ1,n, ũ2,n) → 0,

i.e.,

∫

R3
|∇u1,n|2 + |∇u2,n|2 –

3
4

∫

R3
μ1u4

1,n + μ2u4
2,n + 2βu2

1,nu2
2,n

+
∫

R3
∇κ

(
e–sn x

) · e–sn xũ1,nũ2,n → 0.
(4.9)

On the other hand, notice that J̃(sn, ũ1,n, ũ2,n) = J(u1,n, u2,n), we obtain

J(u1,n, u2,n) =
1
2

∫

R3
|∇u1,n|2 + |∇u2,n|2 –

1
4

∫

R3
μ1u4

1,n + μ2u4
2,n + 2βu2

1,nu2
2,n

–
∫

R3
κ
(
e–sn x

)
ũ1,nũ2,n → c.

(4.10)

Then, using the boundedness of κ(x), ∇κ(x) · x, (ũ1,n, ũ2,n) ∈ S , (4.9) and (4.10), we can
deduce that

∫

R3 |∇u1,n|2 + |∇u2,n|2 is bounded. Notice that (u1,n, u2,n) ∈ S , we get (u1,n, u2,n)
is bounded in H1

r × H1
r . �

Because (u1,n, u2,n) is bounded in H1
r × H1

r , there exists (ū1, ū2) ∈ H1
r × H1

r such that

(u1,n, u2,n) ⇀ (ū1, ū2) in H1
r × H1

r .

Lemma 4.5 Under the assumptions of Lemma 4.4, and we assume 1
3∇κ(x) · x + κ(x) ≥ 0,

then there exists C > 0 such that for n large we have

|∇u1,n|22 + |∇u2,n|22 ≥ C.

Proof By (4.9) and ũ–
1,n, ũ–

2,n → 0 in H1
r , we have

∫

R3
|∇u1,n|2 + |∇u2,n|2 –

3
4

∫

R3
μ1u4

1,n + μ2u4
2,n + 2βu2

1,nu2
2,n

+
∫

R3
∇κ

(
e–sn x

) · e–sn xũ+
1,nũ+

2,n = o(1)

and

1
2

∫

R3
|∇u1,n|2 + |∇u2,n| –

1
4

∫

R3
μ1u4

1,n + μ2u4
2,n + 2βu2

1,nu2
2,n

–
∫

R3
κ
(
e–sn x

)
ũ+

1,nũ+
2,n = c + o(1).

By (4.6), we have c > 0, thus

c + o(1) = J(u1,n, u2,n)
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=
1
6

∫

R3
|∇u1,n|2 + |∇u2,n|2 –

∫

R3

(
1
3
∇κ

(
e–sn x

) · e–sn x + κ
(
e–sn x

)
)

ũ+
1,nũ+

2,n

≤ 1
6

∫

R3
|∇u1,n|2 + |∇u2,n|2,

then, for n large enough and taking C = 3c, this finishes the proof. �

Because (u1,n, u2,n) is a P.S. sequence of J on S , for any (φ1,φ2) ∈ H1
r × H1

r , there exist
λ1,n, λ2,n such that, as n → ∞,

(
dJ|S (u1,n, u2,n), (φ1,φ2)

)

=
∫

R3
∇u1,n∇φ1 +

∫

R3
∇u2,n∇φ2 – μ1

∫

R3
u3

1,nφ1 – μ2

∫

R3
u3

2,nφ2

– β

∫

R3
u1,nu2

2,nφ1 – β

∫

R3
u2

1,nu2,nφ2 –
∫

R3
κ(x)u1,nφ2

–
∫

R3
κ(x)u2,nφ1 – λ1,n

∫

R3
u1,nφ1 – λ2,n

∫

R3
u2,nφ2

= o
(∥
∥(φ1,φ2)

∥
∥
)
.

(4.11)

From Sect. 3 we have

λ1,na2
1 =

∫

R3
|∇u1,n|2 – μ1

∫

R3
u4

1,n – β

∫

R3
u2

1,nu2
2,n –

∫

R3
κ(x)u1,nu2,n, (4.12)

λ2,na2
2 =

∫

R3
|∇u2,n|2 – μ2

∫

R3
u4

2,n – β

∫

R3
u2

1,nu2
2,n –

∫

R3
κ(x)u1,nu2,n, (4.13)

then it is easy to deduce that {λ1,n} and {λ2,n} are bounded. So we may assume

λ1,n → λ̄1,

λ2,n → λ̄2

by choosing subsequence if necessary.

Lemma 4.6 Under the conditions of Lemma 4.5, assume 2
3∇κ(x) ·x +κ(x) ≥ 0 and κ(x) > 0,

then at least one of λ̄i, i = 1, 2, is negative.

Proof Notice that ũ–
1,n → 0, ũ–

2,n → 0 in H1
r , (4.12), (4.13), and (4.9), we have

λ̄1a2
1 + λ̄2a2

2

= λ1,na2
1 + λ2,na2

2 + o(1)

=
∫

R3
|∇u1,n|2 + |∇u2,n|2 –

∫

R3
μ1u4

1,n + μ2u4
2,n + 2βu2

1,nu2
2,n

– 2
∫

R3
κ(x)u1,nu2,n + o(1)

= –
1
3

∫

R3
|∇u1,n|2 + |∇u2,n|2
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–
(∫

R3

(
4
3
∇κ

(
e–sn x

) · e–sn x + 2κ
(
e–sn x

)
)

ũ+
1,nũ+

2,n

)

+ o(1)

≤ –
1
3

∫

R3
|∇u1,n|2 + |∇u2,n|2 + o(1)

< –
1
3

C + o(1),

then one of λ̄1, λ̄2 is negative. �

Proof of Theorem 1.2. From the standard argument we can conclude that (λ̄1, λ̄2, ū1, ū2) is
a solution of the system

⎧
⎨

⎩

–�u1 – λ1u1 = μ1u3
1 + βu1u2

2 + κ(x)u2 in R
3,

–�u2 – λ2u2 = μ2u3
2 + βu2

1u2 + κ(x)u1 in R
3,

(4.14)

we just need to prove (u1,n, u2,n) → (ū1, ū2) strongly in H. From Lemma 3.6, it is sufficient
to prove that λ̄1 < 0 and λ̄2 < 0, Lemma 4.6, Lemma 3.8, and Lemma 3.8 make sure that
λ̄1 < 0 and λ̄2 < 0, which finishes the proof. �

Funding
This work is supported by the National Key R&D Program of China(2022YFA1005601); the National Natural Science
Foundation of China(12031015); partially supported by Shanghai Jiao Tong University Scientific and Technological
Innovation Funds (NSFC-12031012, NSFC-11831003); and the Institute of Modern Analysis-A Frontier Research Center of
Shanghai.

Data availability
The authors confirm that the data supporting the findings of this study are available within the article and its references.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no competing interests.

Author contributions
Author 1 (Zhaoyang Yun): Conceptualization, Funding Acquisition, Methodology, Investigation, Analysis, Writing - Original
Draft; Author 2 (Zhitao Zhang): Funding Acquisition, Resources, Supervision, Writing - Review & Editing.

Author details
1School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, P.R. China. 2Academy of
Mathematics and Systems Science, The Chinese Academy of Sciences, Beijing 100190, P.R. China. 3School of
Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China. 4School of Mathematical
Sciences, Jiangsu University, Zhenjiang 212013, P.R. China.

Received: 6 November 2023 Accepted: 19 January 2024

References
1. Ambrosetti, A., Colorado, E.: Bound and ground states of coupled nonlinear Schrödinger equations. C. R. Math. Acad.

Sci. Paris 342, 453–458 (2006)
2. Bartsch, T., Dancer, E.N., Wang, Z.Q.: A Liouville theorem, a-priori bounds, and bifurcating branches of positive

solutions for a nonlinear elliptic system. In: Calculus of Variations and Partial Differential Equations (2010)
3. Bartsch, T., de Valeriola, S.: Normalized solutions of nonlinear Schrödinger equations. Arch. Math. (Basel) 100(1), 75–83

(2013)
4. Bartsch, T., Jeanjean, L.: Normalized solutions for nonlinear Schrödinger systems. Proc. R. Soc. Edinb., Sect. A 148(2),

225–242 (2018)
5. Bartsch, T., Jeanjean, L., Soave, N.: Normalized solutions for a system of coupled cubic Schrödinger equations on R

3 . J.
Math. Pures Appl. 106(4), 583–614 (2016)

6. Bartsch, T., Soave, N.: A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and
systems. J. Funct. Anal. 272(12), 4998–5037 (2017)



Yun and Zhang Boundary Value Problems         (2024) 2024:25 Page 20 of 20

7. Bartsch, T., Soave, N.: Correction to: “A natural constraint approach to normalized solutions of nonlinear Schrödinger
equations and systems”. J. Funct. Anal. 272(12), 4998–5037 (2017). J. Funct. Anal. 275(2), 516–521 (2018)

8. Bartsch, T., Soave, N.: Multiple normalized solutions for a competing system of Schrödinger equations. Calc. Var.
Partial Differ. Equ. 58(1), 22 (2019)

9. Bartsch, T., Wang, Z.Q.: Note on ground states of nonlinear Schrödinger systems. J. Partial Differ. Equ. 19, 200–207
(2006)

10. Ghoussoub, N.: Duality and Perturbation Methods in Critical Point Theory. Cambridge Tracts in Mathematics, vol. 107.
Cambridge University Press, Cambridge (1993)

11. Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys.
68, 209–243 (1979)

12. Gou, T., Zhang, Z.: Normalized solutions to the Chern-Simons-Schrödinger system. J. Funct. Anal. 280(5), 108894
(2021)

13. Ikoma, N.: Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint
conditions. Adv. Nonlinear Stud. 14, 115–136 (2014)

14. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28(10),
1633–1659 (1997)

15. Li, K., Zhang, Z.T.: Existence of solutions for a Schrödinger system with linear and nonlinear couplings. J. Math. Phys.
57(8), 081504 (2016)

16. Li, Q., Nie, J., Zhang, W.: Existence and asymptotics of normalized ground states for a Sobolev critical Kirchhoff
equation. J. Geom. Anal. 33(4), 126 (2023)

17. Lin, T.C., Wei, J.C.: Ground state of n coupled nonlinear Schrödinger equations in R
n , n ≤ 3. Commun. Math. Phys.

255, 629–653 (2005)
18. Luo, H., Zhang, Z.: Normalized solutions to the fractional Schrödinger equations with combined nonlinearities. Calc.

Var. Partial Differ. Equ. 59(4), 143 (2020)
19. Luo, H.J., Zhang, Z.T.: Existence and nonexistence of bound state solutions for Schrödinger systems with linear and

nonlinear couplings. J. Math. Anal. Appl. 475, 350–363 (2019)
20. Noris, B., Tavares, H., Verzini, G.: Normalized solutions for nonlinear Schrödinger systems on bounded domains.

Nonlinearity 32, 1044–1072 (2019)
21. Qin, D., Tang, X., Zhang, J.: Ground states for planar Hamiltonian elliptic systems with critical exponential growth. J.

Differ. Equ. 308, 130–159 (2022)
22. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. J. Differ. Equ. 287, 341–359

(2017)
23. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case. J.

Funct. Anal. 279, 108610 (2020)
24. Tian, R.S., Zhang, Z.T.: Existence and bifurcation of solutions for a double coupled system of Schrödinger equations.

Sci. China Math. 58(8), 1607–1620 (2015)
25. Yun, Z.Y., Zhang, Z.T.: Normalized solutions to Schrödinger systems with linear and nonlinear couplings. J. Math. Anal.

Appl. 506, 125564 (2022)
26. Zhang, J., Zhang, W.: Semiclassical states for coupled nonlinear Schrödinger system with competing potentials. J.

Geom. Anal. 32(4), 114 (2022)
27. Zhang, X., Zhang, Z.: Distribution of positive solutions to Schrödinger systems with linear and nonlinear couplings. J.

Fixed Point Theory Appl. 22(2), 33 (2020)
28. Zhang, Z.T.: Variational, Topological, and Partial Order Methods with Their Applications. Springer, Heidelberg (2013)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Existence of normalized solutions for Schrodinger systems with linear and nonlinear couplings
	Abstract
	Mathematics Subject Classiﬁcation
	Keywords

	Introduction
	Notations
	Autonomous systems
	Nonautonomous systems
	Funding
	Data availability
	Declarations
	Ethics approval and consent to participate
	Competing interests
	Author contributions
	Author details
	References
	Publisher's Note


