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Abstract
In this research, we investigate the existence and multiplicity of solutions for fractional
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1 Introduction
Fractional differential equations’ theory has been widely employed in astronomy, biology,
economics, and other domains, such as described in [1, 2, 4, 8, 11–13, 15, 17, 19, 20, 26]. In
recent years, many authors have combined fractional derivative operators with problems
of p-Laplacian type, Kirchhoff-type, etc. [21–24]. Their work made important contribu-
tions to enriching the study of fractional derivative problems. Research has investigated
many difficulties of solutions of fractional differential equations on infinite intervals in
addition to those on finite intervals.

In [29], the authors studied the BVP
⎧
⎨

⎩

Dνw(ζ ) + h(ζ , w(ζ )) = 0, ζ ∈ (0,∞),ν ∈ (1, 2),

w(0) = 0, limζ→∞ Dν–1
0+ w(ζ ) = βw(ξ ).

(1)

The authors discovered the presence of solutions by employing the Leray–Schauder non-
linear theorem. In [25], Guotao Wang studied the BVP

⎧
⎪⎪⎨

⎪⎪⎩

Dδ
0+ w(ς ) + k(ς , w(ς )) = 0, 2 < δ ≤ 3,

w(0) = w′(0) = 0,

Dδ–1w(∞) = ρIγ w(
), γ > 0,

(2)

where ς ∈ K = [0,∞), k ∈ C(K × R,R), ρ ∈ R, 
 ∈ K . The author obtained the existence
and uniqueness of solutions by the monotone iterative technique. In [18], the Leggett–
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Williams fixed point theorem and the Guo–Krasnoselskii fixed point theorem were used
by Phollakrit Thiramanus et al. to investigate

⎧
⎪⎪⎨

⎪⎪⎩

HDδw(τ ) + k(τ )r(w(τ )) = 0, δ ∈ (1, 2), τ ∈ (1,∞),

w(1) = 0,
HDδ–1w(∞) =

∑n
p=1 ζpIγp w(υ),

(3)

where υ ∈ (1,∞), γp, p = 1, . . . , n, and ζp ≥ 0, p = 1, . . . , n are given constants. In [9], the
authors studied the existence of solutions to the problem

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ w(ζ ) + k(ζ )r(w(ζ )) = 0, ζ ∈ (0,∞),

w(0) = w′(0) = 0,

Dα–1w(∞) =
∑n–2

i=1 ςiw(δi),

(4)

where 2 < α < 3, 0 < δ1 < δ2 < · · · < δn–2 < ∞, ςi ≥ 0, i = 1, . . . , n – 2 satisfy 0 <
∑n–2

i=1 ςiδ
α–1
i <

�(α). From the Leggett–Williams fixed point theorem, the existence of at least three pos-
itive solutions was demonstrated. In [27], the authors investigated the family of BVPs

⎧
⎪⎪⎨

⎪⎪⎩

HDα
1+ w(θ ) + k(θ )h(θ , w(θ )) = 0, 2 < α < 3, θ ∈ (1,∞),

w(1) = w′(1) = 0,
HDα–1

1+ w(∞) =
∑p

m=1 αm
HIγm

1+ w(υ) + b
∑q

n=1 δnw(ζn),

(5)

where 1 < υ < ζ1 < ζ2 < · · · < ζp < ∞, b, αm, ζn ≥ 0, m = 1, . . . , p, n = 1, . . . , q are given
constants. Various fixed point theorems were used to prove the results. The generalized
Avery–Henderson fixed point theorem was used to demonstrate the presence of many
positive solutions to problem (5) in [28].

In this paper, motivated by the previous results, we investigate the BVP

⎧
⎪⎪⎨

⎪⎪⎩

Dδx(t) + b(t)r(t, x(t)) = 0, t ∈ [0,∞), m – 1 < δ ≤ m,

x(n)(0) = 0, n = 0, 1, . . . , m – 2,

Dδ–1x(∞) =
∑q

i=1 viIβi x(
) + λ
∑p

j=1 κjx(ςj),

(6)

where m ≥ 2, Dδ is the Riemann–Liouville fractional derivative of order δ, Dδ–1x(∞) =
limt→∞ Dδ–1x(t), Iβj is the Riemann–Liouville fractional integral of order βi > 0, i =
1, 2, . . . , q, 0 < 
 < ∞, vi, λ, κj, ςj ≥ 0, i = 1, . . . , q, j = 1, . . . , p are given constants; r : I ×R

+ →
R

+, with I = [0,∞), is continuous and b : I →R
+ is integrable, and

� = �(δ) –
q∑

i=1

vi
�(δ)

�(δ + βi)

δ+βj–1 – λ

p∑

j=1

κjς
δ–1
j �= 0.

Using the monotone iteration method, we prove that two solutions of problem (6) exist.
Using the Leggett–Williams fixed point theorem, we determine that problem (6) has at
least three solutions.

Compared with [27, 28], we use different methods to study multiple solutions. Com-
pared with [9, 18, 25, 27–29], we study fractional differential equations of arbitrary order



Zhou et al. Boundary Value Problems         (2024) 2024:26 Page 3 of 13

m ≥ 2. It is obvious that our problem is more general. Our boundary conditions have more
general forms and the boundary conditions of [9, 18, 25, 29] are our special cases. When
m = 2, vi = 0, λ = 1, j = 1, we know that problem (1) is a special case of problem (6). When
m = 3, i = 1, λ = 0, we have that problem (2) is a special case of problem (6). When λ = 0,
we obtain that the boundary conditions of problem (3) are a special case of the bound-
ary conditions of problem (6). When m = 3, vi = 0, λ = 1, j = 1, 2, . . . , p – 2, we get that
the boundary conditions of problem (4) are a special case of the boundary conditions of
problem (6).

In this paper, the following four conditions will be used:
(H1) r ∈ C(I ×R

+,R+) and r(t, ·) �≡ 0 on any subinterval of R+, and when x is bounded,
r(t, (1 + tδ–1)x) is bounded on R

+.
(H2) b : I →R

+ does not identically vanish on any subinterval of R+ and

0 <
∫ ∞

0
b(s) ds < ∞.

(H3) r is nondecreasing with respect to the second variable.
(H4) There exists a positive constant � such that

r
(
t,

(
1 + tδ–1)x

) ≤ �
1
�

∫ ∞
0 b(s) ds

for any (t, x) ∈ [0,∞) × [0,�].

Assumptions (H1) and (H2) will be applied in Lemma 3.2 and Theorem 3.5, while
(H1)–(H4) will be used in Theorem 3.4.

The remainder of this article is organized as follows. Section 2 contains the definitions
and lemmas required to prove our results. Section 3 presents the existence and multiplicity
results for the boundary value problem (6). Section 4 provides examples relevant to the
key findings of this paper.

2 Preliminaries
We present several definitions and lemmas here for the reader’s convenience, as they will
be utilized to prove our primary results.

Definition 2.1 (see [14, 16]) The Riemann–Liouville fractional derivative of order δ > 0
of a function h : (0,∞) →R is given by

Dδh(ς ) =
1

�(m – δ)

(
d

dς

)m ∫ ς

0

h(η)
(ς – η)δ–m+1 dη,

where m – 1 < ν ≤ m.

Definition 2.2 (see [14, 16]) The Riemann–Liouville fractional integral of order η > 0 of
a function h : (0,∞) →R is given by

Iηh(
) =
1

�(η)

∫ 


0
(
 – ς )η–1h(ς ) dς .
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Lemma 2.3 (see [5]) If 
, θ > 0, then

I

(
tθ

)
=

�(θ + 1)
�(
 + θ + 1)

t
+θ ,

D

(
tθ

)
=

�(θ + 1)
�(θ – 
 + 1)

tθ–
.

Lemma 2.4 If e ∈ C([0,∞),R), then the problem

⎧
⎪⎪⎨

⎪⎪⎩

Dδx(t) + e(t) = 0, m – 1 < δ ≤ m,

x(n)(0) = 0, n = 0, 1, . . . , m – 2,

Dδ–1x(∞) =
∑q

i=1 viIβi x(
) + λ
∑p

j=1 κjx(ςj)

(7)

has a unique solution

x(t) =
∫ ∞

0
�(t, s)e(s) ds,

where

�(t, s) = π (t, s, δ) +
tδ–1

�

q∑

i=1

viπ (
, s, δ + βi) +
tδ–1

�
λ

p∑

j=1

κjπ (ςj, s, δ),

π (t, s, δ) =
1

�(δ)

⎧
⎨

⎩

tδ–1 – (t – s)δ–1, 0 ≤ s ≤ t < ∞,

tδ–1, 0 ≤ t ≤ s < ∞.

(8)

Proof Since Dδx(t) + e(t) = 0, we obtain

x(t) = l1tδ–1 + l2tδ–2 + · · · + lmtδ–m – Iδe(t).

Due to x(n)(0) = 0, n = 0, . . . , m – 2, we have l2 = · · · = lm = 0, that is,

x(t) = l1tδ–1 – Iδe(t).

Since Dδ–1x(∞) =
∑q

i=1 viIβi x(
) + λ
∑p

j=1 κjx(ςj), we have

l1 =
1
�

∫ ∞

0
e(s) ds –

∑q
i=1 vi

��(δ + βi)

∫ 


0
(
 – s)δ+βi–1e(s) ds

–
λ

�

p∑

j=1

κj
1

�(δ)

∫ ςj

0
(ςj – s)δ–1e(s) ds

=
1

�(δ)

∫ ∞

0
e(s) ds +

∑q
i=1 vi

�

∫ ∞

0
π (
, s, δ + βi)e(s) ds

+
λ

�

p∑

j=1

κj

∫ ∞

0
π (ςj, s, δ)e(s) ds.
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Then

x(t) =
1

�(δ)

∫ ∞

0
tδ–1e(s) ds +

∑q
i=1 vitδ–1

�

∫ ∞

0
π (
, s, δ + βi)e(s) ds

+
λ

�
tδ–1

p∑

j=1

κj

∫ ∞

0
π (ςj, s, δ)e(s) ds –

1
�(δ)

∫ t

0
(t – s)δ–1e(s) ds

=
∫ ∞

0
π (t, s, δ)e(s) ds +

tδ–1

�

q∑

i=1

vi

∫ ∞

0
π (
, s, δ + βi)e(s) ds

+
tδ–1

�
λ

p∑

j=1

κj

∫ ∞

0
π (ςj, s, δ)e(s) ds

=
∫ ∞

0
�(t, s)e(s) ds.

The proof is complete. �

Lemma 2.5 If � > 0, the following properties apply to the Green function �(t, s) defined
by (8) for all (t, s) ∈ I × I :

(i) �(t, s) is nonnegative and continuous.
(ii) �(t, s) is increasing with respect to t.

(iii) �(t,s)
1+tδ–1 ≤ 1

�
.

(iv) �(t, s) ≤ 1
�

tδ–1.

Proof (i) According to the definition of �(t, s), this is clearly true.
(ii) We just have to prove that π (t, s, δ) increases as t increases. Let

η1(t) = tδ–1 – (t – s)δ–1, 0 ≤ s ≤ t < ∞,

η2(t) = tδ–1, 0 ≤ t ≤ s < ∞.

We have

η′
1(t) = (δ – 1)tδ–2 – (δ – 1)(t – s)δ–2 ≥ 0,

η′
2(t) = (δ – 1)tδ–2 ≥ 0.

Then

η1(t1) < η1(t2), η2(t1) < η2(t2), η2(t1) ≤ η2(s) = η1(s) ≤ η1(t2).

(iii) We have

�(t, s)
1 + tδ–1 =

π (t, s, δ)
1 + tδ–1 +

tδ–1

1 + tδ–1
1
�

q∑

i=1

viπ (
, s, δ + βi)

+
tδ–1

1 + tδ–1
1
�

λ

p∑

j=1

κjπ (ςj, s, δ) (9)



Zhou et al. Boundary Value Problems         (2024) 2024:26 Page 6 of 13

≤ 1
�(δ)

+
1
�

q∑

i=1

vi

δ+βi–1

�(δ + βi)
+

1
�

λ

p∑

j=1

κj
ςδ–1

j

�(δ)

=
1
�

.

(iv) We have

�(t, s) ≤ tδ–1

(
1

�(δ)
+

1
�

q∑

i=1

vi

δ+βi–1

�(δ + βi)
+

1
�

λ

p∑

j=1

κj
ςδ–1

j

�(δ)

)

= tδ–1 1
�

.

The proof is complete. �

Let X be a Banach space endowed with norm ‖ · ‖X . Let 0 < v < w be given, and let ϑ be a
nonnegative continuous concave functional on K . Define the convex sets Kμ and K(ϑ , v, w)
by Kμ = {x ∈ K : ‖x‖X < μ} and K(ϑ , v, w) = {x ∈ K : ϑ(x) ≥ v,‖x‖X ≤ w}.

Lemma 2.6 (see [6]) Let H : Kσ → Kσ be a completely continuous operator, and let ϑ be
a nonnegative continuous concave functional on K such that ϑ(x) ≤ ‖x‖ for all x ∈ Kσ .
Assume there exist 0 < τ1 < τ2 < τ3 ≤ σ such that

(B1) {x ∈ K(ϑ , τ2, τ3)|ϑ(x) > τ2} �= ∅ and ϑ(Hx) > τ2 for x ∈ K(ϑ , τ2, τ3);
(B2) ‖Hx‖ ≤ τ1 for ‖x‖ ≤ τ1;
(B3) ϑ(Hx) > τ2 for x ∈ K(ϑ , τ2,σ ) with ‖Hx‖ > τ3.

Then H has at least three fixed points x1, x2, and x3 such that

‖x1‖ < τ1, ς (x2) > τ2, ‖x3‖ > τ1, and ς (x3) < τ2.

3 Main results
Let X = {x ∈ C(I,R+) : supt∈I

|x(t)|
1+tδ–1 < ∞} be the Banach space with norm ‖x‖X =

supt∈I
|x(t)|

1+tδ–1 . We define a cone ϒ ⊂ X by

ϒ =
{

x ∈ X : x(t) ≥ 0,∀t ∈ I
}

,

and an operator � : ϒ → X by

�x(t) =
∫ ∞

0
�(t, s)b(s)r

(
s, x(s)

)
ds. (10)

It is simple to demonstrate that � : ϒ → ϒ .

Lemma 3.1 (see [3, 10]) Let � ⊂ X be a bounded set. Then � is relatively compact in X if
the following conditions hold:

(i) For any x ∈ �, x(t)
1+tα–1 is equicontinuous on any compact interval of [0,∞);

(ii) For any ε > 0, there exists a constant N > 0 such that

∣
∣
∣
∣

x(t1)
1 + tα–1

1
–

x(t2)
1 + tα–1

2

∣
∣
∣
∣ < ε

for any t1, t2 > N and x ∈ �.
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Lemma 3.2 (see [7]) If (H1) and (H2) hold, then � : ϒ → ϒ is completely continuous.

Remark 3.3 To prove that �x is equiconvergent at infinity, we will give another method.
For any ε > 0, there exists a constant N1 > 0 such that

0 <
∫ ∞

N1

b(s)Mλ ds < ε,

where

Mλ = sup
{

r
(
s,

(
1 + sδ–1)x

)
: (s, x) ∈ I × [0,λ]

}
.

Note

lim
t→∞

tδ–1

1 + tδ–1 = 1, lim
t→∞

π (t, N1, δ)
1 + tδ–1 = 0.

Then for the above ε > 0, there exist constants N2 > 0, N3 > N1 such that for any t1, t2 > N2,
we have

∣
∣
∣
∣

tδ–1
1

1 + tδ–1
1

–
tδ–1
2

1 + tδ–1
2

∣
∣
∣
∣ ≤

∣
∣
∣
∣1 –

tδ–1
1

1 + tδ–1
1

∣
∣
∣
∣ +

∣
∣
∣
∣1 –

tδ–1
2

1 + tδ–1
2

∣
∣
∣
∣ < ε

and for any t1, t2 > N3, 0 ≤ s ≤ N1, we have
∣
∣
∣
∣
π (t1, s, δ)
1 + tδ–1

1
–

π (t2, s, δ)
1 + tδ–1

2

∣
∣
∣
∣ ≤

∣
∣
∣
∣
π (t1, N1, δ)

1 + tδ–1
1

∣
∣
∣
∣ +

∣
∣
∣
∣
π (t2, N1, δ)

1 + tδ–1
2

∣
∣
∣
∣ <

ε

�(δ)
.

Choose N > max{N2, N3}. Then for any t1, t2 > N , we have
∣
∣
∣
∣
�x(t1)
1 + tδ–1

1
–

�x(t2)
1 + tδ–1

2

∣
∣
∣
∣ ≤

∫ ∞

0

∣
∣
∣
∣
�(t1, s)
1 + tδ–1

1
–

�(t2, s)
1 + tδ–1

2

∣
∣
∣
∣b(s)r

(
s, x(s)

)
ds

≤
∫ N1

0

∣
∣
∣
∣
�(t1, s)
1 + tδ–1

1
–

�(t2, s)
1 + tδ–1

2

∣
∣
∣
∣b(s)Mλ ds

+
∫ ∞

N1

∣
∣
∣
∣
�(t1, s)
1 + tδ–1

1
–

�(t2, s)
1 + tδ–1

2

∣
∣
∣
∣b(s)Mλ ds

<
ε

�

∫ N1

0
b(s)Mλ ds +

2
�

∫ ∞

N1

b(s)Mλ ds

<
(

1
�

∫ ∞

0
b(s)Mλ ds +

2
�

)

ε.

Thus, �x is equiconvergent at infinity.

Theorem 3.4 If (H1)–(H4) hold, then two explicit monotone iterative sequences can yield
two positive solutions x∗, y∗ of problem (6), namely

⎧
⎨

⎩

xn+1 =
∫ ∞

0 �(t, s)b(s)r(s, xn(s)) ds, x0(t) = 0,

yn+1 =
∫ ∞

0 �(t, s)b(s)r(s, yn(s)) ds, y0(t) = �tδ–1, t ∈ I,� > 0,
(11)

in the interval (0,�tδ–1].
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Proof We define W = {x ∈ X : ‖x‖X ≤ �}, while � is defined by (10). Then we show that
�(W ) ⊂ W . For any x ∈ W , by (H4) and (9), we have

‖�x‖X = sup
t∈I

∫ ∞

0

�(t, s)
1 + tδ–1 b(s)r

(
s, x(s)

)
ds

≤ �
1
�

∫ ∞
0 b(s) ds

1
�

∫ ∞

0
b(s) ds ≤ �.

Due to the definition of the operator � and assumption (H3), we have that � is a non-
decreasing operator. Define x0(t) = 0, x1 = �x0, x2 = �x1 = �2x0 for any t ∈ I . In view of
x0(t) = 0 ∈ W and �(W ) ⊂ W , we have x1 ∈ W , x2 ∈ W and

x1(t) = �x0(t) = �0(t) ≥ 0 = x0(t) for any t ∈ I.

Considering the nondecreasing nature of the operator �, we get

x2(t) = �x1(t) ≥ �x0(t) = x1(t) for any t ∈ I.

Define a sequence �xn = xn+1, n ∈N. Clearly, the sequence {xn}∞n=1 ⊂ W and it satisfies

xn+1(t) ≥ xn(t) for any t ∈ I, n ∈N. (12)

Because of the complete continuity of the operator �, there exists a subsequence
{xnk }∞k=1 ⊂ W , x∗ ⊂ W such that xnk → x∗, k → ∞. This, together with the monotone
nature of {xn}∞n=1, implies that limn→∞ xn = x∗. Since � is continuous and �xn = xn+1, we
have �x∗ = x∗, i.e., x∗ is a fixed point of the operator �.

Define y0(t) = �tα–1, y1 = �y0, y2 = �y1 = �2y0 for any t ∈ I . In view of y0(t) = �tα–1 ∈ W
and �(W ) ⊂ W , we have y1 ∈ W , y2 ∈ W . By Lemma 2.5 and (H4), we obtain

y1(t) = �y0(t) =
∫ ∞

0
�(t, s)b(s)r

(
s, y0(s)

)
ds

≤
∫ ∞

0
tδ–1b(s)

1
�

�
1
�

∫ ∞
0 b(s) ds

ds

≤ �tδ–1 = y0(t).

Due to the nondecreasing nature of the operator �, we have

y2(t) = �y1(t) ≤ �y0(t) = y1(t) for any t ∈ I.

Define a sequence �yn = yn+1, n ∈N. Clearly, the sequence {yn}∞n=1 ⊂ W and it satisfies

yn+1(t) ≤ yn(t) for any t ∈ I, n ∈N. (13)

As before, we can conclude that there exists y∗ ∈ W such that limn→∞ yn = y∗. Since � is
continuous and �yn = yn+1, we have �y∗ = y∗, i.e., y∗ is a fixed point of the operator �.

Since for any t ∈ I , r(t, ·) �≡ 0, 0 is not a solution of problem (6). According to the above
process, we know that x∗ and y∗ are two positive solutions of problem (6) in (0,�tδ–1],
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which can be established using two explicit monotonic iterative sequences (11), respec-
tively. �

Theorem 3.5 If (H1), (H2) hold, then there exist numbers δ1, δ2, δ3 > 0, and 0 < θ < 1 such
that 0 < δ1 < δ2 < δ2

θ
≤ δ3. In addition, assume

(A1) r(t, (1 + tδ–1)x) ≤ δ3M1, (t, x) ∈ I × [0, δ3], where M1 = ( 1
�

∫ ∞
0 b(s) ds)–1;

(A2) r(t, (1 + tδ–1)x) ≤ δ1M1, (t, x) ∈ I × [0, δ1];
(A3) r(t, (1 + tδ–1)x) ≥ δ2M2, (t, x) ∈ [ 1

k , k] × [δ2, δ3], where M2 = ( k1–δ

1+kδ–1

∫ k
1
k

b(s) ds)–1.
Then problem (6) has at least three positive solutions x∗

1, x∗
2, and x∗

3 such that

∥
∥x∗

1
∥
∥

X ≤ δ1, ω
(
x∗

2
) ≥ δ2,

∥
∥x∗

3
∥
∥

X ≥ δ1, and ω
(
x∗

3
)

< δ2.

Proof Let k > 1, ω(x) = mint∈[ 1
k ,k]

x(t)
1+tδ–1 , while � is defined by (10). The proof will be broken

down into four steps.
Step 1.
For any x ∈ ϒδ3 , by the condition (A1) and (9), we have

‖�x‖X = sup
t∈I

∫ ∞

0

�(t, s)
1 + tδ–1 b(s)r

(
s, x(s)

)
ds

= sup
t∈I

∫ ∞

0

�(t, s)
1 + tδ–1 b(s)r

(

s,
(
1 + sδ–1) x(s)

1 + sδ–1

)

ds

≤ δ3M1 sup
t∈I

∫ ∞

0

�(t, s)
1 + tδ–1 b(s) ds

≤ δ3M1
1
�

∫ ∞

0
b(s) ds = δ3.

Then � : ϒδ3 → ϒδ3 . According to Lemma 3.2, we get that � : ϒδ3 → ϒδ3 is completely
continuous.

Step 2.
Let x0(t) = 0.5(δ2 + δ2

θ
)(1 + tδ–1), then we obtain that

ω(x0) = 0.5
(

δ2 +
δ2

θ

)

> δ2

and

‖x0‖X = 0.5
(

δ2 +
δ2

θ

)

<
δ2

θ
,

which shows that

x0 ∈
{

x ∈ ϒ

(

ω, δ2,
δ2

θ

)∣
∣
∣ω(x) > δ2

}

,

and thus

{

x ∈ ϒ

(

ω, δ2,
δ2

θ

)∣
∣
∣ω(x) > δ2

}

�= ∅.
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By the condition (A3), Lemma 2.5, and (8), for any x ∈ ϒ(ω, δ2, δ2
θ

), we have

ω(�x) = min
t∈[ 1

k ,k]

∫ ∞

0

�(t, s)
1 + tδ–1 b(s)r

(
s, x(s)

)
ds

= min
t∈[ 1

k ,k]

∫ ∞

0

�(t, s)
1 + tδ–1 b(s)r

(

s,
(
1 + sδ–1) x(s)

1 + sδ–1

)

ds

≥
∫ ∞

0
min

t∈[ 1
k ,k]

�(t, s)
1 + tδ–1 b(s)r

(

s,
(
1 + sδ–1) x(s)

1 + sδ–1

)

ds

> δ2M2

∫ k

1
k

π ( 1
k , s, δ)

1 + kδ–1 b(s) ds = δ2. (14)

Step 3.
By the condition (A2) and (9), we have

‖�x‖X = sup
t∈I

∫ ∞

0

�(t, s)
1 + tδ–1 b(s)r

(
s, x(s)

)
ds

= sup
t∈I

∫ ∞

0

�(t, s)
1 + tδ–1 b(s)r

(

s,
(
1 + sδ–1) x(s)

1 + sδ–1

)

ds

≤ δ1M1
1
�

∫ ∞

0
b(s) ds = δ1.

Step 4.
Similar to (14), for any x ∈ ϒ(ω, δ2, δ3) and ‖�x‖X > δ2

θ
, by condition (A3), Lemma 2.5,

and (8), we have ω(�x) > δ2.
Conclusion.
Thus, by Lemma 2.6, problem (6) has at least three positive solutions x∗

1, x∗
2, and x∗

3 such
that ‖x∗

1‖X ≤ δ1, ω(x∗
2) ≥ δ2, ‖x∗

3‖X ≥ δ1, and ω(x∗
3) < δ2. �

4 Examples
Example 4.1 We consider the problem

⎧
⎪⎪⎨

⎪⎪⎩

D 3
2 x(t) + 1

(1+t)2 r(t, x(t)) = 0, t ∈ [0,∞),

x(0) = 0,

D 1
2 x(∞) =

∑2
i=1 viIβi x(
) + λκx(ς 1

2 ),

(15)

where

δ =
3
2

, m = 2, q = 2, p = 1, v1 = 1, v2 =
1
2

, � = 1,

β1 =
1
2

, β2 =
1
4

, 
 =
1
2

, λ =
1

100
, κ = 1, ς =

1
3

,

and

r
(
t, x(t)

)
=

x(t)
10(1 + t 1

2 )
,

b(t) =
1

(1 + t)2 .
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We can show that

� = �

(
3
2

)

–
2∑

i=1

vi
�( 3

2 )
�( 3

2 + βi)



3
2 +βi–1 –

1
100

1
3

1
2 ≈ 0.2219 > 0.

When x ∈ [0, 1], we have

r
(
t,

(
1 + t

1
2
)
x
) ≤ 1

10
<

1
1
�

∫ ∞
0 c(s) ds

≈ 0.2219 < 1.

Thus, we have that (H1)–(H4) hold. We can obtain that problem (15) has two positive
solutions x∗, y∗ in (0, tα–1] by Theorem 3.4, which can be approximated by the iterative
sequences

⎧
⎪⎨

⎪⎩

xn+1 =
∫ ∞

0 �(t, s)b(s)r(s, xn(s)) ds, x0(t) = 0,

yn+1 =
∫ ∞

0 �(t, s)b(s)r(s, yn(s)) ds, y0(t) = tδ–1, t ∈ I.

Example 4.2 We consider the problem

⎧
⎪⎪⎨

⎪⎪⎩

D 5
2 x(t) + e–tr(t, x(t)) = 0, t ∈ [0,∞),

x(0) = x′(0) = 0,

D 3
2 x(∞) =

∑2
i=1 viIβi x(
) + λκx(ς 3

2 ),

(16)

where

δ =
5
2

, m = 3, q = 2, p = 1, v1 =
1
3

, v2 =
1
4

,

β1 =
1
2

, β2 =
1
4

, 
 =
1
4

, k = 2, λ =
1

20
, κ =

1
50

, ς = 1,

and

r(t, x) =

⎧
⎪⎨

⎪⎩

x

(1+t
3
2 )(1+t)

, x < 1,

t
et + x

1+t
3
2

+ 15, x ≥ 1,

b(t) = e–t .

We have

M1 =
(

1
�

∫ ∞

0
b(s) ds

)–1

≈ 1.281 > 1,

M2 =
(

k1–α

1 + kα–1

∫ k

1
k

b(s) ds
)–1

≈ 11.7055.

Choosing δ1 = 1
2 , δ2 = 1.01, δ3 = 101, θ = 1

10 , we have

r
(
t,

(
1 + t

3
2
)
x
) ≤ 1

2
≤ δ1M1 ≈ 0.6405, (t, x) ∈ [0,∞) ×

[

0,
1
2

]

,
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r
(
t,

(
1 + t

3
2
)
x
) ≥ 16 ≥ δ2M2 ≈ 11.822555, (t, x) ∈

[
1
2

, 2
]

× [1.01, 101],

r
(
t,

(
1 + t

3
2
)
x
) ≤ 113.369 ≤ δ3M1 ≈ 129.381, (t, x) ∈ [0,∞) × [0, 101].

From Theorem 3.5, the BVP (16) has at least three positive solutions x∗
1, x∗

2, and x∗
3 such

that ‖x∗
1‖X ≤ 1

2 , ω(x∗
2) ≥ 1.01, ‖x∗

3‖X ≥ 1
2 , and ω(x∗

3) < 1.01.
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