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Abstract
In this paper, we consider a model problem arising from a classical planar Heisenberg
ferromagnetic spin chain:

–�u + V(x)u –
u√
1 – u2

�
√
1 – u2 = c|u|p–2u, x ∈R

N ,

where 2 < p < 2∗, c > 0 and N ≥ 3. By the cutoff technique, the change of variables
and the L∞ estimate, we prove that there exists c0 > 0, such that for any c > c0 this
problem admits a positive solution. Here, in contrast to the Morse iteration method,
we construct the L∞ estimate of the solution. In particular, we give the specific
expression of c0.
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1 Introduction
This paper is concerned with the existence of standing-wave solutions for quasilinear
Schrödinger equations of the form

izt = –�z + W (x)z – ρ
(|z|2)z – κ�l

(|z|2)l′
(|z|2)z, x ∈R

N , (1.1)

where W (x) is a given potential, κ is a real constant, and ρ , l are real functions of essen-
tially pure power forms. Quasilinear equations of the form (1.1) appear more naturally
in mathematical physics and have been derived as models of several physical phenom-
ena corresponding to various types of l. For instance, the case of l(s) = s is used for the
superfluid film equation in plasma physics [1]. In the case l(s) = (1 + s) 1

2 , (1.1) models the
self-channeling of a high-power ultrashort-wavelength laser in matter [2]. If l(s) = (1 – s) 1

2 ,
(1.1) also appears in the theory of the Heisenberg ferromagnetic spin chain. We refer to
[3–6] and their references for more details on this subject.

Here, our special interest is in the existence of standing-wave solutions, that is, solutions
of type φ(x, t) = exp(iFt)u(x), where F ∈R and u > 0 is a real function. It is well known that
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φ satisfies (1.1) if and only if the function u solves the following equation of the elliptic
type:

–�u + V (x)u – κ�l
(
u2)l′

(
u2)u = ρ

(
u2)u, x ∈R

N , (1.2)

where V (x) = W (x) + F is the new potential function. If we let l(s) = (1 – s) 1
2 , ρ(s) = ε′(1 –

s)– 1
2 and V (x) = λ + ε′, we obtain the equation

–�u + λu –
κu√

1 – u2
�

√
1 – u2 = ε′ u√

1 – u2
– ε′u, x ∈ R

N , (1.3)

which originally appears in the Heisenberg ferromagnetic spin chain. In the mathematical
literature, few results are known on (1.3). In a one-dimensional space, Brüll et al. [7] stud-
ied the ground states u for (1.3) with lim|x|→∞ u(x) = 0. For a higher-dimensional space,
in [4], Takeno and Homma constructed the expression of the solution to boundary value
problems for second-order nonlinear ordinary differential equations.

More recently, Wang in [8] considered the following quasilinear Schrödinger equation:

–�u + λu –
u√

1 – u2
�

√
1 – u2 = ε′ u√

1 – u2
– ε′u, x ∈ R

3. (1.4)

He generalized the result given in [7] to a three-dimensional space.
The main objective of the present paper is to study the following quasilinear Schrödinger

equation

–�u + V (x)u –
u√

1 – u2
�

√
1 – u2 = c|u|p–2u, x ∈R

N , (1.5)

that is, the case l(s) = (1 – s) 1
2 , ρ(s) = cs

p–2
2 . To the best of our knowledge, up to now, there

are no results for (1.5) on R
N for the superlinear case.

We observe that the critical point of the functional

I(u) =
1
2

∫

RN

[(
1 –

u2

1 – u2

)
|∇u|2 + V (x)u2

]
dx –

c
p

∫

RN
|u|p dx (1.6)

solves the Euler–Lagrange equation (1.5). From the variational point of view, there exist
two difficulties to overcome for this functional (1.6). One is that the functional is not well
defined in H1(RN ). The other is how to guarantee the positiveness of the principle part.
In order to overcome these two difficulties, we will focus on the following functional:

I0(u) =
1
2

∫

RN

[(
1 –

κu2

1 – κu2

)
|∇u|2 + V (x)u2

]
dx –

cκ
p–2

2

p

∫

RN
|u|p dx, (1.7)

where κ > 0 is a constant. Obviously, if uκ is a critical point of I0(u), then uκ solves the
equation

–�u + V (x)u –
u√

1 – κu2
�

√
1 – κu2 = cκ

p–2
2 |u|p–2u, x ∈ R

N . (1.8)
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For the solution uκ of (1.8), we rescale uκ = κ– 1
2 u. Then, u satisfies (1.5). Furthermore,

according to [9], (1.8) can be reformulated as the following problems of the form:

– div
(
g2(u)∇u

)
+ g(u)g ′(u)|∇u|2 + V (x)u = cκ

p–2
2 |u|p–2u, x ∈R

N , (1.9)

where g(t) =
√

1 – κt2

1–κt2 . It is obvious that g(t) is a singular function. Now, to avoid the
singularity, by using the cutoff technique introduced in [8], we continuously extend the
domain of the function g(t) to all of [0, +∞). More precisely, we consider the function

gκ (t) =

⎧
⎨

⎩

√
1 – κt2

1–κt2 if 0 ≤ t < 1√
θκ

;
√

2θ

(θ–1)2√
θκt + θ2–5θ+2

(θ–1)2 if t ≥ 1√
θκ

,
(1.10)

where θ > 5+
√

17
2 . Clearly, gκ (t) ∈ C1([0, +∞), [0, +∞)) and gκ (t) decreases in [0, +∞). Sub-

stituting this form for g(t) in (1.9), we obtain the following Schrödinger equation:

– div
(
g2
κ (u)∇u

)
+ gκ (u)g ′

κ (u)|∇u|2 + V (x)u = cκ
p–2

2 |u|p–2u, x ∈R
N (1.11)

and the critical point of the functional

Iκ (u) =
1
2

∫

RN

[
g2
κ (u)|∇u|2 + V (x)u2]dx –

cκ
p–2

2

p

∫

RN

(
u+)p dx (1.12)

satisfies the equation (1.11).
Here, the previously defined gκ (t) is obviously bounded satisfying 0 < a1 ≤ gκ (t) ≤ 1,

where a1 =
√

θ2–5θ+2
θ–1 . Hence, the functional Iκ (u) is regular and nonsmooth. For the exis-

tence and the L∞ estimate of the critical point of the functional (1.12), we follow the ideas
shown in [9, 10] and make the change of variables:

v = Gκ (u) =
∫ u

0
gκ (s) ds, u = G–1

κ (v). (1.13)

Thus, by using the change of variable (1.13), the nonsmooth functional Iκ (u) can be trans-
formed into a smooth functional

Jκ (v) =
1
2

∫

RN

[|∇v|2 + V (x)G–1
κ (v)2]dx –

cκ
p–2

2

p

∫

RN

(
G–1

κ (v)+)p dx (1.14)

and the quasilinear problem (1.11) is reformulated as a semilinear equation

–�v + V (x)
G–1

κ (v)
gκ (G–1

κ (v))
= cκ

p–2
2

(G–1
κ (v)+)p–1

gκ (G–1
κ (v))

, x ∈R
N . (1.15)

Consequently, in order to find the nontrivial solutions of (1.11), it suffices to show the
existence of the nontrivial solutions of (1.15). We also observe that if vκ is a critical point
of the functional Jκ (v), then uκ = G–1

κ (vκ ) is a solution of the problem (1.11). Hence, in this
way we only need to discuss the existence of the critical point vκ of the smooth functional
Jκ (v) by the critical-point theory. In what follows, we assume that

cκ
p–2

2 = 1
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only as a convenience. If we can prove that the critical point uκ of the functional (1.12)
satisfies

|uκ |∞ =
∣
∣G–1

κ (vκ )
∣
∣∞ <

1√
θκ

= θ– 1
2 c

1
p–2 , (1.16)

then this function uκ is good for what we want since gκ (u) = g(u) =
√

1 – κt2

1–κt2 under this
situation. That is, in this case, the functional (1.12) is exactly the functional (1.7) and thus
uκ is a weak solution of equations (1.8) and (1.9). Then, the function

u = κ
1
2 uκ = c– 1

p–2 uκ (1.17)

is the solution of (1.5).
Based on the description in the previous paragraph, the key step is to construct the es-

timate of |vκ |∞. Then, we can achieve the expression of c0 by the inequality (1.16) such
that, if c > c0, (1.16) holds and so u = c– 1

p–2 uκ solves the equation (1.5). To this aim, ac-
cording to the arguments in [11], we first obtain the H1 estimate of vκ . Then, combining
this H1 estimate, we construct the L∞ estimate |vκ |∞. We must point out explicitly that,
instead of the Morse iteration method used in [11], we use the method of converting inte-
gral inequalities into differential inequalities, which can be found in Lemma 5.1 on p. 71 in
Ladyzhenskaya and Ural’tseva [12] and is used to study the L∞ estimate of the nonlinear
elliptic equations on bounded domains, to construct the estimate of |vκ |∞. Moreover, all
the constants in this estimate are well known.

Throughout this paper, we assume the potential V (x) ∈ C1(RN ,R) satisfies
(V1) V (x) ≥ V0 > 0;
(V2) V (x) ≤ V∞

and we make use of the following notations: Let X be the completion of the space C∞
0 (RN )

with respect to the norm

‖u‖ =
[∫

RN

(|∇u|2 + V (x)u2)dx
] 1

2
.

By (V1) and (V2), X is equivalent to H1(RN ). The symbols |u|q and |u|∞ are used for the
norm of the space Lq(RN ) with 2 ≤ q < +∞ and q = ∞, respectively.

The corresponding result is as follows:

Theorem 1.1 For all θ > 5+
√

17
2 , let

c0 := θ
p–2

2 2bθ
–(p–2)(1+p(2∗–p))
1 C(p–2)(1+p(2∗–p))

N

(
2p

p – 2
J∞(v1)

)(p–2)(1+(p–2)(2∗–p))

, (1.18)

where b = (p – 2)(1 + 2∗ – p + 2
2∗–p ), p > 2, θ2

1 = θ2–5θ+2
(θ–1)2 , CN is the best Sobolev constant and

v1 is the least energy solution of the functional

J∞(v) =
1
2

∫

RN

[|∇v|2 + V∞θ–2
1 v2]dx –

1
p

∫

RN
|v|p dx.

Then, for c > c0, the quasilinear problem (1.5) admits a solution u under the conditions (V1)
and (V2).
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Furthermore, we obtain a Pohozaev identity for this class of quasilinear equations, which
is used to prove the nonexistence results of solution for (1.5), while we justify that p = 2∗

is the critical exponent for equation (1.5).

Theorem 1.2 Suppose p ≥ 2∗, |u| ≤ u0 < 1 for some u0 and V (x) satisfies 2V (x) + x ·
∇V (x) ≥ 0 for all x ∈R

N . If u ∈ C2(RN ) is a classical solution of (1.5), then u ≡ 0.

2 The modified problem
In this section, we consider the following equation

–�u + V (x)u –
u√

1 – κu2
�

√
1 – κu2 = cκ

p–2
2

(
u+)p–1, x ∈R

N and κ > 0. (2.1)

If we rescale the solution of (2.1) uκ = κ– 1
2 u, then u solves

–�u + V (x)u –
u√

1 – u2
�

√
1 – u2 = c

(
u+)p–1, x ∈R

N . (2.2)

In what follows, we will establish a positive solution of (2.1). To this aim, we first intro-
duce gκ (t) defined in (1.10) and focus on the following Schrödinger equation:

– div
(
g2
κ (u)∇u

)
+ gκ (u)g ′

κ (u)|∇u|2 + V (x)u = cκ
p–2

2
(
u+)p–1, x ∈ R

N . (2.3)

We will prove that there exists a positive solution uκ for (2.3) with |uκ | ≤ 1√
θκ

. Direct
calculation shows that uκ is indeed a solution of (2.1) and thus

√
κuκ is a solution of (2.2).

It is well known that (2.3) is the Euler–Lagrange equation associated with the energy
functional

Iκ (u) =
1
2

∫

RN

[
g2
κ (u)|∇u|2 + V (x)u2]dx –

cκ
p–2

2

p

∫

RN

(
u+)p dx. (2.4)

Thus, by using the change of variable (1.13) and recalling our assumption cκ
p–2

2 = 1, the
nonsmooth functional Iκ (u) can be transformed into a smooth functional

Jκ (v) =
1
2

∫

RN

[|∇v|2 + V (x)G–1
κ (v)2]dx –

1
p

∫

RN

(
G–1

κ (v)+)p dx (2.5)

and the quasilinear problem (2.3) is reformulated as a semilinear equation

–�v + V (x)
G–1

κ (v)
gκ (G–1

κ (v))
=

(G–1
κ (v)+)p–1

gκ (G–1
κ (v))

, x ∈R
N . (2.6)

Therefore, in order to find the positive solution of (2.3), it suffices to study the solutions
of (2.6) via the mountain-pass theorem. Thus, we need the following lemma to show some
properties of the inverse function G–1

κ (t).

Lemma 2.1 For any θ > 5+
√

17
2 , we have

(1). θ1 :=
√

θ2–5θ+2
θ–1 < gκ (t) ≤ 1 for all t ≥ 0;

(2). limt→0
G–1

κ (t)
t = 1;
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(3). limt→∞
G–1

κ (t)
t = 1

θ1
;

(4). t ≤ G–1
κ (t) ≤ 1

θ1
t for all t ≥ 0;

(5). – θ
(θ–1)(θ–2) ≤ t

gκ (t) g ′
κ (t) ≤ 0 for all t ≥ 0.

Proof This lemma is mainly from [8], here the proof is provided to readers only as a con-
venience. By the definition of gκ (t) and L’Hospital’s rule, properties (1)–(3) are obvious. By
(1), for t > 0, we have θ1t ≤ Gκ (t) ≤ gκ (0)t, which implies (4). Now, we prove the property
(5). If t < 1√

θκ
, we have

tg ′
κ (t)

gκ (t)
=

t(g2
κ (t))′

2g2
κ (t)

=
–κt2

(1 – κt2)(1 – 2κt2)
≥ –

θ

(θ – 1)(θ – 2)

by direct computation. If t ≥ 1√
θκ

, we also have

tg ′
κ (t)

gκ (t)
≥ –

θ

(θ – 1)(θ – 2)
. �

In the following lemma, we establish the geometric hypotheses of the mountain-pass
theorem.

Lemma 2.2 There exist ρ0, a0, such that Jκ (v) ≥ a0 for ‖v‖ = ρ0. Moreover, there exists
e ∈ H1(RN ) such that Jκ (e) < 0.

Proof By Lemma 2.1-(4) and Sobolev embedding, we have

Jκ (v) =
1
2

∫

RN

[|∇v|2 + V (x)G–1
κ (v)2]dx –

1
p

∫

RN

(
G–1

κ (v)+)p dx

≥ 1
2

∫

RN

[|∇v|2 + V (x)v2]dx –
θ

–p
1
p

∫

RN

(
v+)p dx

≥ 1
2
‖v‖2 – C‖v‖p.

Therefore, by choosing ρ0 small, we know that

a0 =
1
2
ρ2

0 – Cρ
p
0 > 0

and, hence,

Jκ (v) ≥ a0 for ‖v‖ = ρ0.

In order to prove the existence of e ∈ R
N such that Jκ (e) < 0, we fix ψ ∈ C∞

0 (RN , [0, 1])
with suppφ = B̄1. Thus, by Lemma 2.1-(4), we obtain

Jκ (tφ) =
t2

2

∫

RN

[|∇φ|2 + V (x)G–1
κ (tφ)2]dx –

1
p

∫

RN

(
G–1

κ (tφ)+)p dx

≤ t2

2

∫

RN

[|∇φ|2 + θ–2
1 V∞φ2]dx –

tp

p

∫

RN
φp dx.
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Since p > 2, it follows that Jκ (tφ) → –∞ as t → ∞. Then, the result follows considering
e = tφ for t large enough. �

In consequence of Lemma 2.2, we can apply the mountain-pass theorem without the
(PS)-condition found in [13] to obtain a (PS)cκ sequence {vn}, where cκ is the well-known
mountain-pass level associated with the function Jκ , that is,

Jκ (vn) → cκ and J ′
κ (vn) → 0 as n → ∞.

Lemma 2.3 The sequence {vn} is bounded.

Proof As {vn} ⊂ H1(RN ) is a Palais–Smale sequence, we know that

Jκ (vn) =
1
2

∫

RN
|∇vn|2 dx +

1
2

∫

RN
V (x)

∣∣G–1
κ (vn)

∣∣2 dx –
1
p

∫

RN

(
G–1

κ (vn)+)p dx

= cκ + o(1).
(2.7)

Moreover, for any φ ∈ H1(RN ), we have J ′
κ (vn)φ = o(1)‖φ‖, that is,

∫

RN

[
∇vn∇φ + V (x)

G–1
κ (vn)

gκ (G–1
κ (vn))

φ –
(G–1

κ (vn)+)p–1

gκ (G–1
κ (vn))

φ

]
dx = o(1)‖φ‖. (2.8)

Now, fixing φ = G–1
κ (vn)gκ (G–1

κ (vn)), it follows from Lemma 2.1-(5) that

∣
∣∇(

G–1
κ (vn)gκ

(
G–1

κ (vn)
))∣∣ ≤

[
1 +

G–1
κ (vn)

gκ (G–1
κ (vn))

g ′
κ

(
G–1

κ (vn)
)]|∇vn| ≤ |∇vn|. (2.9)

On the other hand, using Lemma 2.1-(1) and (4), we have

∣
∣G–1

κ (vn)gκ

(
G–1

κ (vn)
)∣∣ ≤ θ–1

1 |vn|. (2.10)

Combining (2.9) and (2.10), we see that φ ∈ H1(RN ) with ‖φ‖ ≤ θ–2
1 ‖vn‖. Thus, using φ =

G–1
κ (vn)gκ (G–1

κ (vn)) as a test function in (2.8), we derive that

o(1)‖vn‖ = J ′
κ (vn)G–1

κ (vn)gκ

(
G–1

κ (vn)
)

=
∫

RN

[(
1 +

G–1
κ (vn)

gκ (G–1
κ (vn))

g ′
κ

(
G–1

κ (vn)
))|∇vn|2 + V (x)

∣
∣G–1

κ (vn)
∣
∣2

–
(
G–1

κ (vn)+)p
]

dx

≤
∫

RN

[|∇vn|2 + V (x)
∣
∣G–1

κ (vn)
∣
∣2 –

(
G–1

κ (vn)+)p]dx.

(2.11)

Therefore, combining (2.7), (2.8), and (2.11), we infer the inequality

pcκ + o(1) + o(1)‖vn‖ = pJκ (vn) – J ′
κ (vn)G–1

κ (vn)gκ

(
G–1

κ (vn)
)

≥ p – 2
2

∫

RN

[|∇vn|2 + V (x)
∣
∣G–1

κ (vn)
∣
∣2]dx
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≥ p – 2
2

‖vn‖2,

which shows the boundedness of {vn}. �

Since {vn} is a bounded sequence in H1(RN ), there exist vκ ∈ H1(RN ) and a subsequence
of {vn}, still denoted by itself, such that

vn ⇀ vκ in H1(
R

N)
,

vn → vκ in Lq
loc

(
R

N)
for q ∈ [2, 2∗)

and

vn(x) → vκ (x) a.e. in R
N .

Proposition 2.1 The weak limit of vκ of {vn} is a nontrivial critical point of Jκ and Jκ (vκ ) ≤
cκ .

Proof To begin with, we first prove that vκ is a weak solution. To this aim, we must prove
that

J ′
κ (vκ )φ = 0, ∀φ ∈ H1(

R
N)

,

that is,

∫

RN

[
∇vκ∇φ + V (x)

G–1
κ (vκ )

gκ (G–1
κ (vκ ))

φ –
(G–1

κ (vκ )+)p–1

gκ (G–1
κ (vκ ))

φ

]
dx = 0, ∀φ ∈ H1(

R
N)

.

Since C∞
0 (RN ) is dense in R

N , we will show the last equality only for φ ∈ C∞
0 (RN ).

In what follows, for each R > 0, we consider φR ∈ C∞
0 (RN ) verifying

0 ≤ φR ≤ 1 for x ∈R
N ,

φR(x) = 1 for x ∈ BR(0)

and

φR(x) = 0, ∀x ∈ Bc
2R(0).

By [13], there is z ∈ Lq(B2R(0)) such that

|vn| ≤
∣
∣z(x)

∣
∣ a.e. in B2R(0).

Consequently,

G–1
κ (vn)

gκ (G–1
κ (vn))

vn → G–1
κ (vκ )

gκ (G–1
κ (vκ ))

vκ a.e. in B2R(0)



Cheng and Shen Boundary Value Problems         (2024) 2024:31 Page 9 of 18

and

(G–1
κ (vn)+)p–1

gκ (G–1
κ (vn))

vn → (G–1
κ (vκ )+)p–1

gκ (G–1
κ (vκ ))

vκ a.e. in B2R(0).

Moreover, by Lemma 2.1-(1) and (4),

∣
∣∣∣V (x)

G–1
κ (vn)

gκ (G–1
κ (vn))

vnφR

∣
∣∣∣ ≤ θ–2

1 V∞|vn|2|φR| ≤ θ–2
1 V∞

∣∣z(x)
∣∣2|φR|

and
∣∣
∣∣
(G–1

κ (vn)+)p–1

gκ (G–1
κ (vn))

vnφR

∣∣
∣∣ ≤ θ

–(p–1)
1 |vn|p|φR| ≤ θ

–(p–1)
1

∣
∣z(x)

∣
∣p|φR|.

Hence, by the Lebesgue Dominate Theorem, we have

∫

RN
V (x)

G–1
κ (vn)

gκ (G–1
κ (vn))

vnφR dx →
∫

RN
V (x)

G–1
κ (vκ )

gκ (G–1
κ (vκ ))

vκφR dx (2.12)

and
∫

RN

(G–1
κ (vn)+)p–1

gκ (G–1
κ (vn))

vnφR dx →
∫

RN

(G–1
κ (vκ )+)p–1

gκ (G–1
κ (vκ ))

vκφR dx. (2.13)

The same type of arguments shows the limits below

∫

RN
V (x)

G–1
κ (vn)

gκ (G–1
κ (vn))

vκφR dx →
∫

RN
V (x)

G–1
κ (vκ )

gκ (G–1
κ (vκ ))

vκφR dx (2.14)

and
∫

RN

(G–1
κ (vn)+)p–1

gκ (G–1
κ (vn))

vκφR dx →
∫

RN

(G–1
κ (vκ )+)p–1

gκ (G–1
κ (vκ ))

vκφR dx. (2.15)

Now, the above limits combined with J ′
κ (vn)(vnφ) = on(1) and J ′

κ (vn)(vκφ) = on(1) give

∫

RN
|∇vn – ∇vκ |2φR(x) dx → 0

and then it follows that
∫

BR(0)
|∇vn – ∇vκ |2 dx → 0.

Recalling that R is arbitrary and vn → vκ in L2
loc(RN ), we are able to conclude the vn → vκ

in H1
loc(RN ). Thereby,

J ′
κ (vn)φ → J ′

κ (vκ )φ, ∀φ ∈ C∞
0

(
R

N)
.

Since J ′
κ (vn)φ = on(1), the last limit yields J ′

κ (vκ )φ = 0 for all φ ∈ C∞
0 (RN ), that is, vκ is a

critical point for Jκ .
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Now, we will show that vκ �≡ 0. To this aim, we suppose that vκ = 0 and claim that in this
case {vn} is also a Palais–Smale sequence for functional Jκ ,∞ : H1(RN ) →R defined by

Jκ ,∞(v) =
1
2

∫

RN
|∇v|2 dx +

1
2

V∞
∫

RN

∣
∣G–1

κ (v)
∣
∣2 dx –

1
p

∫

RN

(
G–1

κ (v)+)p dx. (2.16)

On the other hand, we know that V (x) → V∞ as |x| → ∞, |G–1
κ (s)| ≤ θ–1

1 |s| and vn → 0 in
L2

loc(RN ), therefore

Jκ (vn) – Jκ ,∞(vn) =
1
2

∫

RN

[
V (x) – V∞

]∣∣G–1
κ (vn)

∣
∣2 dx → 0. (2.17)

Moreover, as |G–1(s)|
g(G–1(s)) ≤ θ–1

1 |s|, it follows that

sup
‖φ‖≤1

∣∣J ′
κ (vn)φ – J ′

κ ,∞(vn)φ
∣∣ = sup

‖φ‖≤1

∣
∣∣
∣

∫

RN

[
V (x) – V∞

] G–1
κ (vn)

gκ (G–1
κ (vκ ))

φ dx
∣
∣∣
∣ → 0. (2.18)

Next, we claim that for all R > 0, the vanishing

lim
n→∞ sup

y∈RN

∫

BR(y)
|vn|2 dx = 0 (2.19)

cannot occur. Suppose, by contradiction, that (2.19) occurs, then by Lions’ compactness
lemma [14], vn → 0 in Lq(RN ) for any q ∈ (2, 2∗). Jointly with Lemma 2.1, we derive that

lim
n→∞

∫

RN

(
G–1

κ (vn)+)p dx = 0

and

lim
n→∞

∫

RN

(G–1
κ (vn)+)p–1

gκ (G–1
κ (vn))

vn dx = 0.

Moreover, using the limits below

lim
s→0

1
s2

[∣
∣G–1

κ (s)
∣
∣2 –

G–1
κ (s)

gκ (G–1
κ (s)

s
]

= lim
s→∞

1
|s|p

[∣
∣G–1

κ (s)
∣
∣2 –

G–1
κ (s)

gκ (G–1
κ (s)

s
]

= 0,

we also have

lim
n→∞

[∣∣G–1
κ (vn)

∣∣2 –
G–1

κ (vn)
gκ (G–1

κ (vn)
vn

]
dx = 0.

Therefore,

2cκ + o(1) = 2Jκ (vn) – J ′
κ (vn)vn

=
∫

RN

[∣∣G–1
κ (vn)

∣∣2 –
G–1

κ (vn)
gκ (G–1

κ (vn))
vn

]
dx

–
2
p

∫

RN

(
G–1

κ (vn)+)p dx +
∫

RN

(G–1
κ (vn)+)p–1

gκ (G–1
κ (vn))

vn dx → 0,

which is a contradiction, since cκ ≥ a0 > 0.



Cheng and Shen Boundary Value Problems         (2024) 2024:31 Page 11 of 18

Thus, {vn} does not vanish and there exist α, R > 0 and {yn} ⊂R
N verifying

lim
n→∞

∫

BR(y)
|vn|2 dx ≥ α > 0. (2.20)

Setting ṽn = vn(x + yn) and using that {vn} is a Palais–Smale sequence for Jκ ,∞, we know
that {ṽn} is also a Palais–Smale sequence for Jκ ,∞. Therefore, there is ṽκ ∈ H1(RN ) such
that

ṽn → ṽκ in H1
loc

(
R

N)
and J ′

κ ,∞(ṽκ ) = 0.

Furthermore, by (2.20), we also have ṽκ �= 0. Henceforward, without loss of generality, we
assume that

ṽn(x) → ṽκ (x) and ∇ ṽn(x) → ∇ ṽκ (x) a.e. in R
N .

The last limit, together with Fatous’ Lemma, lead to

2cκ = lim sup
n→∞

[
2Jκ ,∞(ṽn) – J ′

κ ,∞(ṽn)G–1
κ (vn)gκ

(
G–1

κ (ṽn)
)]

= – lim sup
n→∞

[∫

RN

G–1
κ (ṽn)g ′

κ (G–1
κ (ṽn))

gκ (G–1
κ (ṽn))

|∇ ṽn|2 dx –
2 – p

p

∫

RN

(
G–1

κ (ṽn)+)p dx
]

≥ –
∫

RN

G–1
κ (ṽκ )g ′

κ (G–1
κ (ṽκ ))

gκ (G–1
κ (ṽκ ))

|∇ ṽκ |2 dx –
2 – p

p

∫

RN

(
G–1

κ (ṽκ )+)p dx

= 2Jκ ,∞(ṽκ ) – J ′
κ ,∞(ṽκ )G–1

κ (ṽκ )gκ

(
G–1

κ (ṽκ )
)

= 2Jκ ,∞(ṽκ ),

(2.21)

which shows that Jκ ,∞(ṽκ ) ≤ cκ . Now, following the arguments given in [15], if we define

ṽκ ,t(x) =

⎧
⎨

⎩
ṽκ (x/t) if t > 0;

0 if t = 0

and γ (t) = ṽκ ,t(x), we achieve

max
t≥0

Jκ ,∞
(
γ (t)

)
= Jκ ,∞(ṽκ )

and Jκ ,∞(γ (L)) < 0 for sufficiently large L > 1. Then, by the definition of cκ , there holds

cκ ≤ max
t∈[0,1]

Jκ
(
γ̂ (t)

)
:= Jκ

(
γ̂ (t̄)

)
< Jκ ,∞

(
γ̂ (t̄)

) ≤ max
t∈[0,1]

Jκ ,∞
(
γ (t)

)
= Jκ ,∞(ṽκ ) ≤ cκ ,

which is a contradiction. Thereby, vκ is a nontrivial critical point for Jκ . Moreover, repeat-
ing the same type of arguments explored in (2.21), we have that Jκ (vκ ) ≤ cκ . �

3 L∞ estimate
This section is mainly to show the L∞ estimate of the function vκ = Gκ (uκ ) obtained in
Proposition 2.1. To this aim, we need the following fact first to show the H1 estimate of
vκ .
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Lemma 3.1 The solution vκ satisfies ‖vκ‖2 ≤ 2pcκ
p–2 .

Proof As vκ is a critical point of Jκ , it follows that

pcκ = pJκ (vκ ) – J ′(vκ )G–1
κ (vκ )gκ

(
G–1

κ (vκ )
)

≥ p – 2
2

[∫

RN
|∇vκ |2 dx +

∫

RN
V (x)

∣∣G–1
κ (vκ )

∣∣2 dx
]

.

Then, by Lemma 2.1-(4),

pcκ ≥ p – 2
2

[∫

RN
|∇vκ |2 dx +

∫

RN
V (x)|vκ |2 dx

]
,

which implies that

‖vκ‖2 ≤ 2pcκ

p – 2
. �

From now on, we consider the functional

J∞(v) =
1
2

∫

RN

(|∇v|2 + V∞θ–2
1 v2)dx –

1
p

∫

RN

(
v+)p dx

and we denote c∞ the mountain-pass level associated with J∞, which is independent of κ .
Since Jκ (v) ≤ J∞(v), we deduce that cκ ≤ c∞. Consequently, by Lemma 3.1, the solution vκ

must satisfy the estimate

‖vκ‖2 ≤ 2pc∞
p – 2

. (3.1)

Now, we construct the estimate of |vκ |∞ via the following two lemmas.

Lemma 3.2 The solution vκ of the semilinear equation (2.6) satisfies

∫

Al

|vκ – l|dx ≤ 2C2
Nθ

–p
1 αp–2|Al|1+a,

where Al = {x ∈R
N : vκ (x) > l}, α = |vκ |2∗ , a = 1 – p

2∗ , and |Al| denotes the Lebesgue measure
of the set Al .

Proof For any φ ∈ H1(RN ), the solution vκ of (2.6) satisfies

∫

RN
∇vκ∇φ dx +

∫

RN
V (x)

G–1
κ (vκ )φ

gκ (G–1
κ (vκ ))

dx =
∫

RN

(G–1
κ (vκ )+)p–1φ

gκ (G–1
κ (vκ ))

dx. (3.2)



Cheng and Shen Boundary Value Problems         (2024) 2024:31 Page 13 of 18

By taking φ = (vκ – l)+ as a test function in (3.2) with l > 0, applying Lemma 2.1-(1) and
(4), we have

∫

Al

|∇vκ |2 dx ≤
∫

Al

(G–1
κ (vκ )+)p–1(vκ – l)+

gκ (G–1
κ (vκ ))

dx

≤ θ–1
1

∫

Al

∣
∣G–1

κ (vκ )
∣
∣p–1(vκ – l) dx

≤ θ–1
1

(∫

Al

∣
∣G–1

κ (vκ )
∣
∣2∗

dx
) p–1

2∗ (∫

Al

|v – l|2∗
dx

) 1
2∗

|Al|
2∗–p

2∗

≤ θ
–p
1 αp–2

(∫

Al

|vκ |2∗ dx
) 1

2∗ (∫

Al

|v – l|2∗ dx
) 1

2∗
|Al|

2∗–p
2∗ .

(3.3)

Combining the Sobolev inequality

(∫

Al

|vκ – l|2∗
dx

) 1
2∗

≤ CN

(∫

Al

|∇vκ |2 dx
) 1

2

and the Minkowski inequality, we have

(∫

Al

|vκ – l|2∗
dx

) 2
2∗

≤ C2
Nθ

–p
1 αp–2

[(∫

Al

|vκ – l|2∗
dx

) 1
2∗

+ lA
1

2∗
l

](∫

Al

|vκ – l|2∗
dx

) 1
2∗

|Al|
2∗–p

2∗

≤ C2
Nθ

–p
1 αp–2

[(∫

Al

|vκ – l|2∗
dx

) 2
2∗

|Al|
2∗–p

2∗

+ l|Al|1– p–1
2∗

(∫

Al

|vκ – l|2∗ dx
) 1

2∗ ]
.

(3.4)

Moreover, by the Hölder inequality, we have

l|Al| ≤
∫

Al

|vκ |dx ≤
(∫

Al

|vκ |2∗
dx

) 1
2∗

|Al|1– 1
2∗ ≤ α|Al|1– 1

2∗ ,

that is,

|Al| ≤
(

α

l

)2∗

. (3.5)

If we take l0 = α(2C2
Nθ

–p
1 αp–2)

1
2∗–p , we have

C2
Nθ

–p
1 αp–2|Al0 |

2∗–p
2∗ ≤ C2

Nθ
–p
1 αp–2

(
α

l0

)2∗–p

=
1
2

. (3.6)
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Consequently, combining (3.4) and (3.6), we conclude, if l > l0, that

(∫

Al

|vκ – l|2∗ dx
) 1

2∗
≤ 2C2

Nθ
–p
1 αp–2l|Al|1– p–1

2∗ . (3.7)

Thus, jointly with

∫

Al

|vκ – l|dx ≤
(∫

Al

|vκ – l|2∗
dx

) 1
2∗

|Al|1– 1
2∗ ,

we finally have

∫

Al

|vκ – l|dx ≤ 2C2
Nθ

–p
1 αp–2l|Al|1+a. (3.8)�

Lemma 3.3 The solution vκ of the semilinear equation (2.6) has the following estimate:

|vκ |∞ ≤ 21+ 1
a
(
2θ

–p
1 C2

N
)2∗–p

α1+(p–2)(2∗–p).

Proof Inspired by Lemma 5.1 of [12], we consider the function

f (l) =
∫

Al

|vκ – l|dx.

For this function, we have –f ′(l) = |Al|. Therefore, (3.8) can be rewritten as

f (l) ≤ 2C2
Nθ

–p
1 αp–2l

(
–f ′(l)

)1+a. (3.9)

If we integrate this inequality with respect to l from l0 to lmax := |vκ |∞, we obtain

l
a

1+a
max ≤ l

a
1+a
0 +

(
2C2

Nθ
–p
1 αp–2) 1

1+a
(
f (l0)

a
1+a – f (lmax)

a
1+a

)
.

Moreover, jointly with (3.5), recalling that l0 = α(2C2
Nθ

–p
1 αp–2)

1
2∗–p , we infer that

|Al0 |a ≤
(

α

l0

)2∗a

=
(
2C2

Nθ
–p
1 αp–2)–1

and then, by (3.8),

(
f (l0)

) a
1+a

(
2θ

–p
1 CN

) 1
1+a ≤ (

2C2
Nθ

–p
1 αp–2l0|Al0 |1+a) a

1+a
(
2θ

–p
1 CN

) 1
1+a = l

a
1+a
0 . (3.10)

Therefore, we have

l
a

1+a
max ≤ 2l

a
1+a
0 ,

which implies the desired inequality

|vκ |∞ = lmax ≤ 21+ 1
a
(
2θ

–p
1 C2

N
)2∗–p

α1+(p–2)(2∗–p)



Cheng and Shen Boundary Value Problems         (2024) 2024:31 Page 15 of 18

= 2b1
(
θ

–p
1 C2

N
)2∗–p

α1+(p–2)(2∗–p),

where b1 = 1 + 1
a + 2∗ – p. �

4 Proof of Theorem 1.1

Proof of Theorem 1.1 A direct consequence of Proposition 2.1 and Lemma 3.3 is that vκ =
Gκ (uκ ) solves (1.15) and has the estimate

|vκ |∞ ≤ 2b1
(
θ

–p
1 C2

N
)2∗–p

α1+(p–2)(2∗–p). (4.1)

Combining Lemma 2.1-(4) and (3.1), we infer that

|uκ |∞ ≤ θ–1
1 |vκ |∞ ≤ θ–1

1 2b1
(
θ

–p
1 C2

N
)2∗–p

α1+(p–2)(2∗–p)

≤ θ–1
1 2b1

(
θ

–p
1 C2

N
)2∗–p(CN‖vκ‖

)1+(p–2)(2∗–p)

≤ θ–1
1 2b1θ

–p(2∗–p)
1 C1+p(2∗–p)

N

(
2p

p – 2
J∞(v1)

)1+(p–2)(2∗–p)

.

(4.2)

Now, to ensure that

|uκ |∞ <
1√
θκ

= θ– 1
2 c

1
p–2 , (4.3)

we select

c0 = 2b1(p–2)θ
p–2

2 θ
–(p–2)(1+p(2∗–p))
1 C(p–2)(1+p(2∗–p))

N

(
2p

p – 2
J∞(v1)

)(p–2)(1+(p–2)(2∗–p))

.

Thus, inequality (4.3) can be satisfied if only c > c0. Obviously, equation (1.11) is indeed
equation (1.8) under the situation of |uκ |∞ < 1√

θκ
. Hence, uκ solves (1.8) and then u =

κ
1
2 uκ = c– 1

p–2 uκ is the solution of (1.5). Thus, we complete the proof. �

5 Proof of Theorem 1.2
In this section, we will prove the nonexistence results for equation (1.5). To this aim, we
first show a Pohozaev identity and we justify that the critical exponent for this class of
problems is 2∗.

Lemma 5.1 (Pohozaev identity). Suppose F(x, u, r) ∈ C1(RN ×R×R
N ) satisfies

div Fr(x, u,∇u) = Fu(x, u,∇u), (5.1)

where

Fr(x, u, r) =
(
Fr1 (x, u, r), Fr2 (x, u, r), . . . , FrN (x, u, r),

)
, r = (r1, r2, . . . , rN ),

Fri (x, u, r) =
∂F(x, u, r)

∂ri
, i = 1, 2, . . . , N
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and

Fu(x, u, r) =
∂F(x, u, r)

∂u
.

Then, if F(x, u,∇u), x ·Fx(x, u,∇u), and Fr(x, u,∇u) ·∇u ∈ L1(RN ), there holds the following
identity

N
∫

RN
F(x, u,∇u) dx +

∫

RN
x · Fx(x, u,∇u) dx –

∫

RN
Fr(x, u,∇u) · ∇u dx = 0. (5.2)

We omit the proof of this lemma, since it can be mainly found in [16].
To present the Pohozaev identity associated to (1.5), we rewrite equation (1.5) as

div

((
1 –

u2

1 – u2

)
∇u

)
–

u|∇u|2
(1 – u2)2 + V (x)u = c|u|p–2u. (5.3)

Thus, the integrands in (5.2) can be expressed as

F(x, u,∇u) =
1
2

(
1 –

u2

1 – u2

)
|∇u|2 +

V (x)
2

u2 –
c|u|p

p
,

x · Fx(x, u,∇u) =
1
2
(
x · ∇V (x)

)
u2

and

Fr(x, u,∇u) · ∇u =
(

1 –
u2

1 – u2

)
|∇u|2.

Moreover, if |u| ≤ u0 < 1, we have

∣
∣∣∣1 –

u2

1 – u2

∣
∣∣∣ ≤ C.

Consequently, we achieve the following lemma based on Lemma 5.1 under the conditions
|∇u|2, V (x)u2, (x · ∇V (x))u2, and up ∈ L1(RN ).

Lemma 5.2 Suppose that u ∈ C2(RN ) is a solution of (1.5) and |u| ≤ u0 < 1. Then,

N – 2
2

∫

RN

(
1 –

u2

1 – u2

)
|∇u|2 dx +

∫

RN

NV (x) + (x · ∇V (x))
2

u2 dx

=
cN
p

∫

RN
|u|p dx

(5.4)

if |∇u|2, V (x)u2, (x · ∇V (x))u2, and up ∈ L1(RN ).

Now, we show the nonexistence result of the solution for (1.5).
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Proof of Theorem 1.2 On the one hand, the Pohozaev identity associated to (1.5) is

∫

RN

(
1 –

u2

1 – u2

)
|∇u|2 dx +

1
N – 2

∫

RN

(
NV (x) +

(
x · ∇V (x)

))
u2 dx

=
η2∗

p

∫

RN
|u|p dx.

(5.5)

On the other hand, multiplying (5.3) by u and integrating it, we have

∫

RN

(
1 –

u2

1 – u2

)
|∇u|2 dx –

∫

RN

u2|∇u|2
(1 – u2)2 dx +

∫

RN
V (x)u2 dx = η

∫

RN
|u|p dx. (5.6)

Combining (5.5) and (5.6), it follows that

∫

RN

u2|∇u|2
(1 – u2)2 dx +

1
N – 2

∫

RN

(
2V (x) +

(
x · ∇V (x)

))
u2 dx

= η

(
2∗

p
– 1

)∫

RN
|u|p dx.

(5.7)

Thus, if p ≥ 2∗ and 2V (x) + (x · ∇V (x)) ≥ 0, we conclude that

∫

RN

u2|∇u|2
(1 – u2)2 dx = 0,

which implies that u = 0 and we complete the proof of Theorem 1.2. �
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