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Abstract
This paper provides a class of upper and lower solution definitions for second-order
coupled systems by transforming the fourth-order differential equation into a
second-order differential system. Then, by constructing a homotopy parameter and
utilizing the maximum principle, we propose an upper and lower solutions method
for studying a class of second-order coupled systems with Dirichlet boundary
conditions and obtain an existence result.
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1 Introduction
In 1893, Picard [1] introduced the theory of lower and upper solutions to demonstrate
the existence of solutions for scalar ordinary differential equations. In 1937, Nagumo [2]
proposed a classical upper and lower solutions theory for general differential equation

y′′(t) = ϕ
(
t, y(t), y′(t)

)
.

The methodology of upper and lower solutions has found extensive applications in
the analysis of boundary value problems associated with nonlinear differential equations
[3–9]. In addition, some scholars have also focused on how to apply upper and lower so-
lution methods to solve coupled differential systems [10–13], but currently, there are few
achievements in this type of research.

In 2016, by applying the upper and lower solutions method combined with Schauder’s
fixed point theorem, Talib, Asif, and Tunc [11] studied the coupled second-order system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–y1
′′(t) = ψ(t, y2(t)),

–y2
′′(t) = ϕ(t, y1(t)),

f (y1(0), y2(0), y1
′(0), y2

′(0), y1
′(1), y2

′(1)) = (0, 0),

g(y1(0), y2(0)) + (y1(1), y2(1)) = (0, 0),

(1)

where ψ ,ϕ ∈ C([0, 1] × R,R), f ∈ C(R6,R2), and g ∈ C(R2,R2). The equations in system
(1) are explicit functions of y1 and y2, respectively.
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Recently, Fonda et al. extended the method of upper and lower solutions to the planar
system

⎧
⎨

⎩
y1

′(t) = ψ(t, y1, y2),

y2
′(t) = ϕ(t, y1, y2).

(2)

In [12], they studied the existence of a solution to the periodic problem for system (2).
And in [13], system (2) with separated boundary conditions was studied for the existence
of a solution. However, their works are only studied in the first-order planar differential
systems.

As is well known, the elastic beam equation can be described by the following fourth-
order differential equation:

(
φ
(
y′′(t)

))′′ = ϕ
(
t, y, y′′), (3)

where φ(0) = 0, φ : K1 → K2 is an increasing homeomorphism between two intervals K1

and K2 containing 0. The upper solution Ā and the lower solution B of (3) satisfy

(
φ
(
Ā′′(t)

))′′ ≥ ϕ
(
t, Ā(t), Ā′′(t)

)
, and

(
φ
(
B′′(t)

))′′ ≥ ϕ
(
t, B(t), B′′(t)

)
.

We observed that (3) is equivalent to the following differential system:

⎧
⎨

⎩
y1

′′(t) = φ–1(y2(t)),

y2
′′(t) = ϕ̃(t, y1, y2),

which is a special case of a second-order coupled differential system, where ϕ̃(t, y1, y2) =
ϕ(t, y1,φ–1(y2)). Consider the upper solution Ā and the lower solution B whose second
derivatives take their values in the domain of φ. By defining functions y2Ā(t) = φ(Ā′′(t)) and
y2B(t) = φ(B′′(t)), the inequalities regarding upper and lower solutions can be transformed
into

y2Ā
′′(t) ≥ ϕ̃

(
t, Ā(t), y2Ā(t)

)
and y2B

′′(t) ≤ ϕ̃
(
t, B(t), y2B(t)

)
.

Therefore, inspired by the work above, in this article we propose a method of upper and
lower solutions to study the existence of solutions for second-order coupled system

(P)

⎧
⎪⎪⎨

⎪⎪⎩

y1
′′(t) = ψ(t, y1, y2),

y2
′′(t) = ϕ(t, y1, y2),

y1(a) = y1(b) = y2(a) = y2(b) = 0,

where ψ ,ϕ ∈ C([a, b] × R
2,R). Here, using the conversion of (3) as a guide, we give two

crucial definitions for problem (P).
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Definition 1 If there exist a function B ∈ C2[a, b] and a function vB ∈ C2[a, b] such that

⎧
⎪⎪⎨

⎪⎪⎩

ψ(t, B(t), y2(t)) ≤ B′′(t) for all y2 ≤ y2B(t), t ∈ [a, b],

ψ(t, B(t), y2(t)) ≥ B′′(t) for all y2 ≥ y2B(t), t ∈ [a, b],

y2B
′′(t) ≤ ϕ(t, B(t), y2B(t)) for all t ∈ [a, b]

(4)

and

B(a) ≤ 0, B(b) ≤ 0, y2B(a) ≥ 0, y2B(b) ≥ 0, (5)

then we say B is a lower solution for problem (P).

Definition 2 If there exist a function Ā ∈ C2[a, b] and a function vĀ ∈ C2[a, b] such that

⎧
⎪⎪⎨

⎪⎪⎩

ψ(t, Ā(t), y2(t)) ≤ Ā′′(t), for all y2 ≤ y2Ā(t), t ∈ [a, b],

ψ(t, Ā(t), y2(t)) ≥ Ā′′(t), for all y2 ≥ y2Ā(t), t ∈ [a, b],

y2Ā
′′(t) ≥ ϕ(t, Ā(t), y2Ā(t)), for all t ∈ [a, b],

(6)

and

Ā(a) ≥ 0, Ā(b) ≥ 0, y2Ā(a) ≤ 0, y2Ā(b) ≤ 0, (7)

then we say Ā is an upper solution for problem (P).

If y1 is both the upper and lower solution of problem (P), then (y1, y2) satisfies (P).
The structure of this paper is as follows. In Sect. 2, by constructing a homotopy param-

eter and using the maximum principle, we apply the upper and lower solutions method to
obtain the existence of a solution for problem (P). In Sect. 3, we provide two examples.

2 Existence result
We are committed to establishing the existence of a solution for the coupled second-order
problem (P) in this section.

Theorem 1 Suppose that there are Ā ∈ C2[a, b] and B ∈ C2[a, b], which are the upper and
lower solutions of problem (P), respectively, with B ≤ Ā, y2Ā ≤ y2B if g, f ∈ C([a, b] ×R

2,R)
satisfy the following assumptions:

(A1) ψ(t, s1, r) ≥ ψ(t, s2, r) for t ∈ [a, b], s1 ≤ s2 < ∞;

(A2) ϕ(t, s1, r) ≤ ϕ(t, s2, r) for t ∈ [a, b], s1 ≤ s2 < ∞;

(A3) ϕ(t, s, r1) ≥ ϕ(t, s, r2) for t ∈ [a, b], r1 ≤ r2 < ∞;

then problem (P) admits a solution (y1, y2) that satisfies

B(t) ≤ y1(t) ≤ Ā(t) and vĀ(t) ≤ y2(t) ≤ vB(t). (8)
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Proof First, we construct a truncation function as follows:

φ(y; u, v) =

⎧
⎪⎪⎨

⎪⎪⎩

v for y > v,

y for u ≤ y ≤ v,

u for y < u.

Define

ψ̄(t, y1, y2) = ψ
(
t,φ(y1, B, Ā),φ(y2, y2Ā, y2B)

)

and

ϕ̄(t, y1, y2) = ϕ
(
t,φ(y1, B, Ā),φ(y2, y2Ā, y2B)

)
,

then we consider the problem as

(P̄)

⎧
⎪⎪⎨

⎪⎪⎩

y1
′′(t) = ψ̄(t, y1, y2),

y2
′′(t) = ϕ̄(t, y1, y2),

y1(a) = y1(b) = y2(a) = y2(b) = 0.

If (P̄) has a solution that satisfies (8), then the solution of (P̄) is also the solution of (P).
Next we deduce the existence of a solution for (P̄) and prove that this solution satisfies (8).
The following proof is divided into two steps.

Step 1: Prove that there is a solution to problem (P̄).
Using λ ∈ [0, 1] as the homotopy parameter, we construct the problem

(Pλ)

⎧
⎪⎪⎨

⎪⎪⎩

y1
′′(t) = λy2 + (1 – λ)ψ̄(t, y1, y2),

y2
′′(t) = λy1 + (1 – λ)ϕ̄(t, y1, y2),

y1(a) = y1(b) = y2(a) = y2(b) = 0.

Notice that problem (P1) is a linear problem with only one trivial solution for λ = 1, and
(P0) is (P̄) for λ = 0.

We claim that there exists R > 0 such that for any λ ∈ [0, 1], ‖w‖∞ < R, where w = (y1, y2)
is the solution of problem (Pλ) and ‖w‖∞ = max

√
y12(t) + y22(t), t ∈ [a, b].

Rewrite problem (Pλ) as

⎧
⎪⎪⎨

⎪⎪⎩

y1
′′(t) = (1 – λ)(ψ̄(t, y1, y2) – y2) + y2,

y2
′′(t) = (1 – λ)(ϕ̄(t, y1, y2) – y1) + y1,

y1(a) = y1(b) = y2(a) = y2(b) = 0.
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By contradiction, we suppose limn→∞ ‖wn‖∞ = +∞, where wn = (y1n, y2n) is the solution
of problem (Pλn ). Let zn = wn

‖wn‖∞ , then zn = (pn, qn) solves the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

p′′(t) = 1
‖wn‖∞ (1 – λn)(ψ̄(t,‖wn‖∞p,‖wn‖∞q) – ‖wn‖∞q) + q(t),

q′′(t) = 1
‖wn‖∞ (1 – λn)(ϕ̄(t,‖wn‖∞p,‖wn‖∞q) – ‖wn‖∞p) + p(t),

p(a) = p(b) = q(a) = q(b) = 0.

Since zn ∈ C2([a, b],R2), we deduce ‖zn‖∞ = 1 and ‖z′
n‖∞ is bounded. We have that

z̃ = (p̃, q̃) with ‖z̃‖∞ = 1 and λ̃ ∈ [0, 1] by a compactness argument, such that the following
subsequence converges:

lim
n→∞‖zn – z̃‖∞ = 0, lim

n→∞λn = λ̃,

where z̃ ∈ C2([a, b],R2).
By the limit as n → ∞, we get that z̃ = (p̃, q̃) is a solution of the system

⎧
⎪⎪⎨

⎪⎪⎩

p̃′′(t) = q̃(t),

q̄′′(t) = p̃(t),

p̃(a) = p̃(b) = q̃(a) = q̃(b) = 0.

Since this problem only has a trivial solution, which contradicts ‖z̃‖∞ = 1, there is an R > 0
such that for every w of problem (Pλ) it satisfies ‖w‖∞ < R.

Define the linear operator L : C2([a, b],R2) → C([a, b],R2),

L

(
y1(t)
y2(t)

)

=

(
y1

′′(t)
y2

′′(t)

)

,

and the nonlinear operator Nλ : C2([a, b],R2) → C2([a, b],R2),

Nλ

(
y1(t)
y2(t)

)

=

(
λy2 + (1 – λ)ψ̄(t, y1, y2)
λy1 + (1 – λ)ϕ̄(t, y1, y2)

)

.

Therefore, problem (Pλ) is rewritten as

Lw = Nλw,

where w = (y1, y2). The operator Nλ is L-completely continuous by coincidence degree
theory [14], and the degree DL(L – Nλ, BR) is well defined and its value is independent of
λ ∈ [0, 1].

Since (P1) is a linear problem with only one trivial solution,

DL(L – N0, BR) = DL(L – N1, BR) = ±1.

Therefore problem (P̄) has a solution.
Step 2: Prove that the solution of problem (P̄) satisfies (8).
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To argue with contradictions, for a ≤ a1 ≤ b1 ≤ b, we assume that y2(t) > y2B(t) for every
t ∈ (a1, b1) and y2(t) ≤ y2B(t) for every t ∈ [a, b]/(a1, b1).

For every t ∈ [a, b], define H(t) = y2(t) – y2B(t). It follows that

H ′′(t) = y2
′′(t) – y2

′′
B(t) = ϕ̄

(
t, y1(t), y2(t)

)
– y2

′′
B(t).

Furthermore, by (A2) and (A3), one has

(1) For y1(t) < B(t), y2(t) > y2B(t), H ′′(t) = ϕ(t, B, y2B) – y2
′′
B(t) ≥ 0;

(2) For y1(t) ≥ B(t), y2(t) > y2B(t), H ′′(t) = ϕ(t, y1, y2B) – y2
′′
B(t) ≥ ϕ(t, B, y2B) – y2

′′
B(t) ≥ 0;

(3) For y1(t) < B(t), y2(t) ≤ y2B(t), H ′′(t) = ϕ(t, B, y2) – y2
′′
B(t) ≥ ϕ(t, B, y2B) – y2

′′
B(t) ≥ 0;

(4) For y1(t) ≥ B(t), y2(t) ≤ y2B(t), H ′′(t) = ϕ(t, y1, y2) – y2
′′
B(t) ≥ ϕ(t, B, y2B) – y2

′′
B(t) ≥ 0.

Hence, for every t ∈ [a, b], H ′′(t) ≥ 0. It follows from the convexity of H(t) and (5) that
y2(t) ≤ y2B(t) for every t ∈ [a, b], which contradicts our assumption. Similarly, for every
t ∈ [a, b], we obtain that y2(t) ≥ y2Ā(t).

To argue with contradictions, for a ≤ a2 ≤ b2 ≤ b, we assume that y1(t) < B(t) for every
t ∈ (a2, b2) and y1(t) ≥ B(t) for every t ∈ [a, b]/(a1, b1).

For every t ∈ [a, b], defining K(t) = y1(t) – B(t). It follows that

K ′′(t) = y1
′′(t) – B′′(t) = ψ̄(t, y1, y2) – B′′(t).

Furthermore, by (A1), one has

(1) For y1(t) < B(t), y2(t) ≤ y2B(t), K ′′(t) = ψ(t, B, y2) – B′′(t) ≤ 0;

(2) For y1(t) ≥ B(t), y2(t) ≤ y2B(t), K ′′(t) = ψ(t, y1, y2) – B′′(t) ≤ ψ(t, B, y2) – B′′(t) ≤ 0.

Hence, for every t ∈ [a, b], K ′′(t) ≤ 0. It follows from the concavity of K(t) and (5) that
y1(t) ≥ B(t) for every t ∈ [a, b], which contradicts our assumption. Similarly, for every t ∈
[a, b], we obtain that y1(t) ≤ Ā(t).

Therefore, the solution of problem (P̄) satisfies (8). By combining Step 1 and Step 2, we
can obtain problem (P) has a solution that satisfies (8). �

3 Some examples
Example 1 Consider the second-order coupled system

⎧
⎪⎪⎨

⎪⎪⎩

y1
′′ = 1

1+e–y2 + e– y1
10 + t,

y2
′′ = 1

1+e–y1 + e– y2
10 + t,

y1(0) = y1(1) = y2(0) = y2(1) = 0,

(9)

where t ∈ [0, 1]. We find Ā(t) = –4t2 +6 and B(t) = 4t2 –6 are the upper and lower solutions
of (9) respectively, and that vB(t) = –4t2 + 6 and vĀ(t) = 4t2 – 6 satisfy Theorem 1.

Since (9) satisfies all the assumptions in Theorem 1, we can get that problem (9) has a
solution that satisfies

4t2 – 6 ≤ y1(t) ≤ –4t2 + 6, 4t2 – 6 ≤ y2(t) ≤ –4t2 + 6.
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Example 2 Consider the second-order coupled system

⎧
⎪⎪⎨

⎪⎪⎩

y1
′′ = 1

1+e–y2 – y13

26 + t2,

y2
′′ = 1

1+e–y1 – y23

26 + t2,

y1(0) = y1(1) = y2(0) = y2(1) = 0,

(10)

where t ∈ [0, 1]. We find Ā(t) = –4t2 + sin π
2 t + 5 and B(t) = 4t2 – sin π

2 t – 5 are the upper
and lower solutions of (10) respectively, and that vB(t) = –3t2 + t + 4 and vĀ(t) = 3t2 – t – 4
satisfy Theorem 1.

Since (10) satisfies all the assumptions in Theorem 1, we can get that problem (10) has
a solution that satisfies

4t2 – sin
π

2
t – 5 ≤ y1(t) ≤ –4t2 + sin

π

2
t + 5, 3t2 – t – 4 ≤ y2(t) ≤ –3t2 + t + 4.
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