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Abstract
In this paper, a semipositone anisotropic p-Laplacian problem

–�−→
p
u = λf (u),

on a bounded domain with the Dirchlet boundary condition is considered, where
A(uq – 1) ≤ f (u) ≤ B(uq – 1) for u > 0, f (0) < 0 and f (u) = 0 for u≤ –1. It is proved that
there exists λ∗ > 0 such that if λ ∈ (0,λ∗), then the problem has a positive weak
solution uλ ∈ L∞(�) via combining Mountain-Pass arguments, comparison principles,
and regularity principles.
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1 Introduction
Mathematically, a positione is a particular kind of eigenvalue problem involving a nonlin-
ear function on the reals that is continuous, positive, and monotone. A semipositone is an
eigenvalue problem that would be a positone eigenvalue problem except that the nonlinear
function is not positive when its argument is zero.

Semipositone problems naturally arise in various studies. For example, consider the
Rozenwig–McArthur equations in the analysis of competing species where “harvesting”
takes place. The study of positive solutions to these problems, unlike the positone case,
turns into a nontrivial question as 0 is not a subsolution, making the method of sub-
supersolutions difficult to apply. Semipositone problems, again unlike positone problems,
give rise to the interesting phenomenon of symmetry breaking (see [8]).

Consider the nonlinear eigenvalue problems of the form
⎧
⎨

⎩

–�pu = λf (u) in �,

u = 0 on ∂�.
(1.1)

When f is positive and monotone, it is referred to in the literature as a positone prob-
lem. The case where f satisfies, f (0) < 0, f is monotone and eventually positive, is referred
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to in the literature as a semipositone problem. The study of positive solutions to semi-
postone problems is considerably more challenging, since the range of a solution must
include regions where f is negative as well as where f is positive. The study of semiposi-
tone problems was first formally introduced by Castro et al. in 1988 (see [7]) in the case of
Dirichlet boundary conditions, where several challenging differences were noted in their
study when compared to the study of positone problems.

Perera et al. [16] consider the p-superlinear semipositone p-Laplacian problem

⎧
⎪⎪⎨

⎪⎪⎩

–�pu = uq–1 – μ in �,

u > 0 in �,

u = 0 on ∂�

and proved the the existence of ground-state positive solutions (see [4–6, 9] for other
cases).

Alves et al. [2] prove the existence of a solution for the class of the semipositone problem

⎧
⎨

⎩

–�u = h(x)(f (u) – a) in R
N ,

u > 0 in R
N ,

via the variational method together with estimates that involve the Riesz potential (see
also [1, 10, 11, 21]).

Fu et al. [14] prove the existence of positive solutions for a class of semipositone prob-
lems with singular Trudinger–Moser nonlinearities. The proof is based on compactness
and regularity arguments.

Castro et al. [6] study the existence of positive weak solutions to the problem (1.1). Here,
we refer to [6] and study the existence of positive weak solutions to the problem

⎧
⎨

⎩

–�−→p u = λf (u) in �,

u = 0 on ∂�,
(1.2)

where –�−→p is the anisotropic p-Laplace operator, � is an open smooth bounded domain
in R

N , N ≥ 2 and the function f : R → R is a differentiable function with f (0) < 0 (semi-
positone), which implies that u = 0 is not a subsolution to (1.2), making the finding of
positive solutions rather challenging (see [15]).

We set −→p := (p1, . . . , pN ), where

1 < p1, p2, . . . , pN ,
N∑

i=1

1
pi

> 1,

p+ := max{pi : i = 1, . . . , N} and p– := min{pi : i = 1, . . . , N}.
Let p denote the harmonic means p = N/(

∑N
i=1

1
pi

), and define

p� :=
N

(
∑N

i=1
1
pi

) – 1
=

Np
N – p

and p∞ := max
{

p+, p�
}

.

Here and after, we assume p+ < p�. Thus, p∞ = p�:
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(H1) Suppose there exist q ∈ (p+ – 1, p� – 1), A > 0, B > 0 such that

⎧
⎨

⎩

A(uq – 1) ≤ f (u) ≤ B(uq – 1) for u > 0,

f (u) = 0 for u ≤ –1.
(1.3)

(H2) Assume an Ambrosetti–Rabinowitz-type condition, i.e., that there exist θ > p+ and
M ∈R such that

uf (u) ≥ θF(u) + M, (1.4)

where

F(u) =
∫ u

0
f (s) ds.

Remark 1.1 Equation (1.3) implies that there exist positive real numbers A1, B1 such that

F(u) ≤ B1
(|u|q+1 + 1

)
for all u ∈R (1.5)

and

F(u) ≥ A1
(|u|q+1 + 1

)
for all u ∈R. (1.6)

With respect to the above, the main result of this paper is Theorem 1.2. Our result ex-
tends the result of [5, Theorem 1.1] and [6, Theorem 1.1].

Theorem 1.2 There exists λ∗ > 0 such that if λ ∈ (0,λ∗), then the problem (1.2) has a pos-
itive weak solution uλ ∈ L∞(�).

The rest of the paper is organized as follows. In Sect. 2, the suitable function space that
is the anisotropic Sobolev space is recalled and necessary facts are also recalled. In Sect. 3,
we study the Mountain-Pass Theorem and Palais–Smale condition for the problem. In
Sect. 4, we present the proof of the main result, Theorem 1.2, which shows the existence
of a positive solution of the problem (1.2).

2 Function spaces
Here, we define the anisotropic Sobolev spaces (see [18–20] and references therein), to
which the solutions for our problems naturally belong, by

⎧
⎨

⎩

W 1,−→p (�) := {u ∈ W 1,1(�) :
∫

�
| ∂u
∂xi

|pi < ∞, i = 1, . . . , N},
W 1,−→p

0 (�) = W 1,−→p (�) ∩ W 1,1
0 (�)

(2.1)

with the norm

‖u‖
W 1,−→p (�)

:=
∫

�

∣
∣u(x)

∣
∣dx +

N∑

i=1

(∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi

dx
) 1

pi
.
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We consider W 1,−→p
0 (�) endowed with the norm

‖u‖
W 1,−→p

0 (�)
:=

N∑

i=1

(∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi

dx
) 1

pi

=
N∑

i=1

‖u‖W 1,pi
0 (�).

We recall the following theorem [13, Theorem 1].

Theorem 2.1 Let � ⊂R
N be an open bounded domain with a Lipschitz boundary. If

pi > 1, for all i = 1, . . . , N ,
N∑

i=1

1
pi

> 1,

then for all r ∈ [1, p∗], there is a continuous embedding W 1,−→p
0 (�) ⊂ Lr(�). For r < p∗, the

embedding is compact.

Definition 2.2 An element u ∈ W 1,−→p
0 (�) is called a weak solution to (1.2), if

N∑

i=1

∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi–2
∂u
∂xi

∂φ

∂xi
dx = λ

∫

�

f (u)φ dx (2.2)

for all φ ∈ W 1,−→p
0 (�).

Associated to (1.2) we have the functional Jλ : W 1,−→p
0 (�) →R defined by

Jλ(u) :=
N∑

i=1

1
pi

∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi

dx – λ

∫

�

F
(
u(x)

)
dx. (2.3)

Remark 2.3 Jλ is a functional of class C1 and the critical points of the functional Jλ are the
weak solutions of (1.2) (see [17] for a similar argument).

By the Mountain-Pass Theorem we can prove the existence of one solution of (1.2) and
then we show for the proper value of λ that the solution is positive.

3 Mountain-Pass Theorem and Palais–Smale condition
The next two lemmas prove that Jλ satisfies the geometric hypotheses of the Mountain-
Pass Theorem.

Lemma 3.1 Assume φ ∈ W 1,−→p
0 (�) denotes a positive differentiable function with

‖φ‖
W 1,−→p

0 (�)
= 1. There exists λ1 > 0 such that if λ ∈ (0,λ1), then Jλ(cλ–rφ) ≤ 0, where

r = 1
q+1–p+

> 0, c = ((N + 1)p–1
– A–1

1 ‖φ‖–q–1
q+1 )r and A1 is given by (1.6).



Razani and Figueiredo Boundary Value Problems         (2024) 2024:34 Page 5 of 13

Proof Since

‖φ‖
W 1,−→p

0 (�)
=

N∑

i=1

(∫

�

∣
∣
∣
∣
∂φ

∂xi

∣
∣
∣
∣

pi

dx
) 1

pi
= 1,

then
∫

�
| ∂φ

∂xi
|pi dx ≤ 1 for all i = 1, . . . , N . Also, pi > 1, therefore

∫

�

∣
∣
∣
∣
∂φ

∂xi

∣
∣
∣
∣

pi

dx ≤
(∫

�

∣
∣
∣
∣
∂φ

∂xi

∣
∣
∣
∣

pi

dx
) 1

pi
,

hence,

N∑

i=1

(∫

�

∣
∣
∣
∣
∂φ

∂xi

∣
∣
∣
∣

pi

dx
)

≤
N∑

i=1

(∫

�

∣
∣
∣
∣
∂φ

∂xi

∣
∣
∣
∣

pi

dx
) 1

pi
.

Let s = cλ–r , then by (1.6), we have

Jλ(sφ) =
N∑

i=1

∫

�

| ∂(sφ)
∂xi

|pi

pi
dx – λ

∫

�

F(sφ) dx

=
N∑

i=1

spi

pi

∫

�

∣
∣
∣
∣
∂φ

∂xi

∣
∣
∣
∣

pi

dx – λ

∫

�

F(sφ) dx

≤
∑N

i=1 spi

p–
– λ

∫

�

F(sφ) dx

≤
∑N

i=1 spi

p–
– λA1

∫

�

(
sq+1φq+1 – 1

)
dx

≤ Nsp+

p–
– λA1

∫

�

(
sq+1φq+1 – 1

)
dx

=
Nsp+

p–
– A1sq+1‖φ‖q+1

q+1λ + λA1|�|

=
{

Ncp+λ–rp+

p–
– A1cq+1λ–r(q+1)+1‖φ‖q+1

q+1

}

+ λA1|�|

≤ cp+

{
Nλ–rp+

p–
– A1cq+1–p+λ–r(q+1)+1‖φ‖q+1

q+1

}

+ λA1|�|.

(3.1)

Thus,

Jλ(sφ) ≤ cp+

{
Nλ–rp+

p–
–

N + 1
p–

λ–r(q+1)+1
}

+ λA1|�|

= cp+λ–rp+

{
N
p–

–
N + 1

p–
λ–r(q+1)+1+rp+

}

+ λA1|�|

= –
cp+λ–rp+

p–
+ λA1|�|.

(3.2)

Taking λ1 < min{1, (p–A1|�|c–p+ )
–1

(1+rp+) }, the lemma is proven. �
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Lemma 3.2 Assume r = 1
q+1–p+

> 0. There exists τ > 0, c1 > 0 and λ2 ∈ (0, 1) such that if
‖u‖W 1,p+

0 (�) = τλ–τ , then Jλ(u) ≥ c1(τλ–r)p+ for all λ ∈ (0,λ2).

Proof By the Sobolev embedding Theorem 2.1, there exists K1 > 0 such that if u ∈
W 1,p+

0 (�), then ‖u‖q+1 ≤ K1‖u‖W 1,p+
0 (�). Assume

τ = min
{(

2p+Kq+1
1 B1

)–r , c‖u‖W 1,p+
0 (�)

}
. (3.3)

If ‖u‖W 1,p+
0 (�) = τλ–r , then

Jλ(u) =
N∑

i=1

1
pi

∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi

dx – λ

∫

�

F(u) dx

≥ 1
p+

∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

p+

dx – λ

∫

�

F(u) dx

=
τλ–r

p+
– λ

∫

�

F(u) dx

≥ (τλ–r)p+

p+
– λ

∫

�

B1|u|q+1 dx – λ|�|B1

≥ (τλ–r)p+

p+
– λB1Kq+1

1 ‖u‖q+1
W 1,p+

0 (�)
– λ|�|B1

=
(τλ–r)p+

p+
– λB1Kq+1

1 τ (q+1)λ–r(q+1) – λ|�|B1

= λ–rp+

{
τ p+

2p+
– λ1+rp+ |�|B1

}

≥ λ–rp+ τ p+

4p+
,

(3.4)

where we have used that τ ≤ (2p+Kq+1
1 B1)–r (see (3.3)). Taking c1 = τp+

4p+
and λ2 =

τ
p+

1+rp+ (4p+B1|�|)– 1
1+rp+ , the lemma is proven. �

Next, using the Mountain-Pass Theorem we prove that (1.2) has a solution uλ ∈
W 1,−→p

0 (�).

Lemma 3.3 Let λ3 = min{λ1,λ2}. There exists c2 > 0 such that, for each λ ∈ (0,λ3), the
functional Jλ has a critical point uλ of mountain-pass type that satisfies Jλ(uλ) ≤ c2λ

–p+r .

Proof First, we show that Jλ satisfies the Palais–Smale condition.
Assume that {un}n is a sequence in W 1,−→p

0 (�) such that {Jλ(un)}n is bounded and
J ′
λ(un) → 0. Hence, there exists ν > 0 such that

〈
J ′
λ(un), un

〉 ≤ ‖un‖
W 1,−→p

0 (�)

for n ≥ ν . Thus,

–
N∑

i=1

∫

�

∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣

pi

dx –
N∑

i=1

(∫

�

∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣

pi) 1
pi

dx ≤ –λ

∫

�

f (un)un dx for n ≥ ν.
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Let K be a constant such that |Jλ(un)| ≤ K for all n = 1, 2, . . . . From (1.4), we obtain

N∑

i=1

1
pi

∫

�

∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣

pi

dx –
λ

θ

∫

�

f (un)un dx +
λ

θ
M|�|

≤
N∑

i=1

1
pi

∫

�

∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣

pi

dx – λ

∫

�

F(un) dx

≤ K .

From the last two inequalities we have

N∑

i=1

(
1
pi

–
1
θ

)∫

�

∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣

pi

dx –
N∑

i=1

1
θ

(∫

�

∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣

pi) 1
pi

dx ≤ K –
λ

θ
M|�|. (3.5)

Now, we consider two cases. Case (i): If (
∫

�
| ∂un

∂xi
|pi )

1
pi ≤ 1, for i = 1, . . . , N , then {un} is a

bounded sequence. Case (ii): If there exists 1 ≤ j ≤ N such that (
∫

�
| ∂un

∂xj
|pj )

1
pj > 1, then

(∫

�

∣
∣
∣
∣
∂un

∂xj

∣
∣
∣
∣

pj

dx
) 1

pj ≤
∫

�

∣
∣
∣
∣
∂un

∂xj

∣
∣
∣
∣

pj

dx.

This shows (3.5) can be written as

(
1

p+
–

1
θ

)(∫

�

∣
∣
∣
∣
∂un

∂xj

∣
∣
∣
∣

pj

dx
) 1

pj
–

N∑

i=1

1
θ

(∫

�

∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣

pi

dx
) 1

pi ≤ K –
λ

θ
M|�|.

This proves that {un} is a bounded sequence. Thus, without loss of generality, we may
assume that {un} converges weakly. Let u ∈ W 1,−→p

0 (�) be its weak limit. Since q < Np+
(N–p+) , by

the Sobolev embedding theorem we may assume that {un} converges to u in Lq(�). These
assumptions and Hölder’s inequality imply

∫

�

λf (un)(un – u) → 0. (3.6)

From (3.6) and limn→+∞ J ′
λ(un) = 0, we have

lim
n→+∞

N∑

i=1

∫

�

∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣

pi–2
∂un

∂xi

(
∂un

∂xi
–

∂u
∂xi

)

dx = 0. (3.7)

Using again that u is the weak limit of {un} in W 1,−→p
0 (�) we also have

lim
n→+∞

N∑

i=1

∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi–2
∂u
∂xi

(
∂un

∂xi
–

∂u
∂xi

)

dx = 0. (3.8)
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By Hölder’s inequality,

N∑

i=1

∫

�

(∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣

pi–2
∂un

∂xi
–

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi–2
∂u
∂xi

)(
∂un

∂xi
–

∂u
∂xi

)

dx

≥
N∑

i=1

∫

�

(∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣

pi

–
∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣

pi–1∣∣
∣
∣
∂u
∂xi

∣
∣
∣
∣ –

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi–1∣∣
∣
∣
∂un

∂xi

∣
∣
∣
∣ +

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi)

dx

=
N∑

i=1

(∫

�

(∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣

pi

+
∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi)

dx –
∫

�

∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣

pi–1∣∣
∣
∣
∂u
∂xi

∣
∣
∣
∣dx

–
∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi–1∣∣
∣
∣
∂un

∂xi

∣
∣
∣
∣dx

)

≥
N∑

i=1

[∫

�

∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣

pi

dx –
(∫

�

∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣

pi

dx
) pi–1

pi
(∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi

dx
) 1

pi

–
(∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi

dx
) pi–1

pi
(∫

�

∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣

pi

dx
) 1

pi
+

∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi

dx
]

=
N∑

i=1

{[(∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi

dx
) pi–1

pi
–

(∫

�

∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣

pi

dx
) pi–1

pi
]

×
[(∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi

dx
) 1

pi
–

(∫

�

∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣

pi

dx
) 1

pi
]}

≥ 0.

(3.9)

The relations (3.7)–(3.9) imply that

lim
n→∞

N∑

i=1

{[(∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi

dx
) pi–1

pi
–

(∫

�

∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣

pi

dx
) pi–1

pi
]

×
[(∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi

dx
) 1

pi
–

(∫

�

∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣

pi

dx
) 1

pi
]}

= 0.

This shows that for each i = 1, . . . , N

lim
n→∞

(∫

�

∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣

pi

dx
) 1

pi
=

(∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi

dx
) 1

pi
,

which implies that limn→∞ ‖un‖
W 1,−→p

0 (�)
= ‖u‖

W 1,−→p
0 (�)

. Since un ⇀ u, un → u in W 1,−→p
0 (�).

This proves that Jλ satisfies the Palais–Smale condition.
From (3.1) we obtain

max
{

Jλ(sφ) : s ≥ 0
} ≤

(
Np+

p–

)r(q+1) C1+p+r((q + 1)r(q–p+)+r – p+)
Dp+rp+(q + 1)r(q+1) λ–p+r + λA1|�|

:= c′
2λ

–p+r + λA1|�|
≤ c′

2λ
–p+r + λ–p+rA1|�|

:= c2λ
–p+r ,

(3.10)
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where C = max{∫
�

| ∂u
∂xi

|pi dx : for 1 ≤ i ≤ N} and D = A1‖φ‖q+1
q+1. With this estimate and

Lemma 3.2, the existence of uλ ∈ W 1,−→p
0 (�) such that ∇Jλ(uλ) = 0 and

c1
(
τλ–r)p+ ≤ Jλ(uλ) ≤ c2λ

–p+r (3.11)

follows by the Mountain-Pass Theorem. �

Remark 3.4 The solution uλ ∈ W 1,−→p
0 (�) is indeed in L∞(�) (see [12, Lemma 2.4]) and [3,

Sect. 4]).

Lemma 3.5 Let uλ be as in Lemma 3.3. Then, there is a positive constant M0 such that

M0λ
–r ≤ ‖uλ‖∞. (3.12)

Proof Note that there exists c1 > 0 such that J(uλ) ≥ c1λ
–rp+ . On the other hand, F(s) ≥

min F > –∞ and f (s)s ≤ B1(|s|q+1 + |s|) for all s ∈ R. Then, there is a constant C1 > 0 such
that

λ

∫

�

f (uλ)uλ dx =
N∑

i=1

∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi

dx

≥ p–

N∑

i=1

1
pi

∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi

dx

≥ p–J(uλ) + p–λ

∫

�

F(uλ) dx

≥ p–C1λ
–rp+ + p–|�|λmin F

≥ c1λ
–rp+ .

Thus, limλ→0 ‖uλ‖∞ = +∞. On the other hand, by (1.5),

λ

∫

�

f (uλ)uλ dx ≤ B1λ

∫

�

(|uλ|q+1 + |uλ|
)

dx

≤ B1λ

∫

�

(‖uλ‖q+1
∞ + ‖uλ‖∞

)
dx

≤ 2B1|�|λ‖uλ‖q+1
∞ ,

where we have used the fact that 0 < λ < 1. Finally, taking M0 = C1
2B1|�| , the lemma is

proven. �

Lemma 3.6 Let uλ be as in Lemma 3.3. Then, there exists c3 > 0 such that

N∑

i=1

∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi

dx ≤ c3λ
–rp+ (3.13)

for all λ ∈ (0,λ3).
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Proof By (1.4) and the definition of uλ,

λ

∫

�

θ – p+

θ
uλf (uλ) dx ≤ λ

∫

�

(
uλf (uλ) – p+F(uλ)

)
dx –

λp+M|�|
θ

=
N∑

i=1

∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi

dx – p+

∫

�

F(uλ) dx –
λp+M|�|

θ

≤ p+

( N∑

i=1

1
pi

∫

�

∣
∣
∣
∣
∂u
∂xi

∣
∣
∣
∣

pi

dx –
∫

�

F(uλ) dx

)

–
p+λM|�|

θ

≤ c2λ
–rp+ +

λp+M|�|
θ

≤ 2c2λ
–rp+ ,

(3.14)

where we have used 0 < λ < 1. Now, the result follows from (3.14) and the fact that uλ is a
weak solution of (1.2). �

4 Existence of a positive solution
Now, we can prove Theorem 1.2 as follows.

Proof Suppose there exists a sequence {λj}j, 1 > λj > 0 for all j, converging to 0 such that
the measure m({x ∈ �; uλj (x) ≤ 0}) > 0.

Letting wj =
uλj

‖uλj ‖∞ , we see that

–
N∑

i=1

‖uλj‖pi–1
∞

∂

∂xi

(∣
∣
∣
∣
∂wj

∂xi

∣
∣
∣
∣

pi–2
∂wj

∂xi

)

= λjf (uλj ). (4.1)

From Lemmas 3.5 and 3.6 there is a constant C3 such that

N∑

i=1

∫

�

∣
∣
∣
∣
∂wj

∂xi

∣
∣
∣
∣

pi

dx =
N∑

i=1

(
1

‖uλj‖∞

)pi ∫

�

∣
∣
∣
∣

∂uλj

∂xi

∣
∣
∣
∣

pi

dx

≤
N∑

i=1

1
(M0λ–r)pi

∫

�

∣
∣
∣
∣

∂uλj

∂xi

∣
∣
∣
∣

pi

dx

≤ M1
1

λ–rp+

N∑

i=1

∫

�

∣
∣
∣
∣

∂uλj

∂xi

∣
∣
∣
∣

pi

dx

≤ C3.

(4.2)

This shows that for each i = 1, . . . , N

∫

�

∣
∣
∣
∣
∂wj

∂xi

∣
∣
∣
∣

pi

dx ≤ c3 (4.3)

and therefore

‖wj‖
W 1,−→p

0 (�)
=

N∑

i=1

(∫

�

∣
∣
∣
∣
∂wj

∂xi

∣
∣
∣
∣

pi

dx
) 1

pi ≤ D3. (4.4)
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By [3, Proposition 4.1] (or [13, Theorem 2]) the sequence wj is uniformly bounded in
L∞(�). Therefore, one may denote its limit by ω.

Next, using comparison principles [12, Lemma 2.5], we prove that w(x) ≥ 0.
Let v0 ∈ W 1,p+

0 (�) be the solution of

⎧
⎨

⎩

–�p+ v0 = 1 in �,

v0 = 0, on ∂�.
(4.5)

Let Kj := λj min{f (t); t ∈R}‖uλj‖1–p+∞ . The solution vj of the equation

⎧
⎨

⎩

–�p+ vj = Kj in �,

v0 = 0, on ∂�,
(4.6)

is given by vj = (–Kj)
1

p+–1 v0.
Since λjf (uλj )‖uλj‖1–p+∞ ≥ Kj, it follows by the comparison principle in [12, Lemma 2.5]

that wj ≥ vj. Then, the fact that vj(x) → 0 as j → 0 implies that w(x) ≥ 0 for all x ∈ �.
Since, by hypothesis, q > p+ – 1, we have s = Np+r

(N–p+) > 1. This result, together with the
Sobolev embedding Theorem, (1.3) and Lemma 3.6, gives

∫

�

∣
∣f (uλj )

∣
∣s‖uλj‖s(1–p+)

∞ dx ≤ Bs2s–1
∫

�

(|uλj |(q+1–p+)s + 1
)

dx

≤ C
(‖uλj‖

Np+
N–p+

W 1,p+
0 (�)

+ 1
)

≤ C
(
c3λ

–r Np+
N–p+

j + 1
)
,

(4.7)

where C > 0 is a constant independent of j and, without loss of generality, we have assumed
‖uλj‖∞ ≥ 1. From (4.7) and the fact that rNp+

(sN–sp+) = 1 we see that {λjf (uλj )‖uλj‖(1–p+)
∞ } is

bounded in Ls(�), so we may assume that it converges weakly. Let z ∈ Ls(�) be the weak
limit of such a sequence. Since λj‖uλj‖(1–p+)

∞ → 0 as j → +∞ and f is bounded from below,
z ≥ 0. Now, if φ ∈ C∞

0 (�), then

N∑

i=1

∫

�

∣
∣
∣
∣
∂w
∂xi

∣
∣
∣
∣

pi–2〈
∂w
∂xi

,
∂φ

∂xi

〉

dx = lim
j→∞

N∑

i=1

∫

�

∣
∣
∣
∣
∂wj

∂xi

∣
∣
∣
∣

pi–2〈
∂wj

∂xi
,
∂φ

∂xi

〉

dx

= lim
j→∞

N∑

i=1

∫

�

‖uλj‖1–pi∞

∣
∣
∣
∣

∂uλj

∂xi

∣
∣
∣
∣

pi–2〈∂uλj

∂xi
,
∂φ

∂xi

〉

dx

≥ lim
j→∞‖uλj‖1–p+∞

N∑

i=1

∫

�

∣
∣
∣
∣

∂uλj

∂xi

∣
∣
∣
∣

pi–2〈∂uλj

∂xi
,
∂φ

∂xi

〉

dx

= lim
j→∞

∫

�

‖uλj‖1–p+∞ λjf (uλj )φ dx

=
∫

�

zφ dx.

(4.8)

Therefore, –�−→p w ≥ z. Since ‖wj‖∞ = 1, w = 0. By [12, Lemma 2.5], w > 0 in �.
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Therefore, since {wj}j converges w in L∞(�), for sufficiently large j, wj(x) > 0 for all x ∈ �.
Hence, uλj (x) > 0 for all x ∈ �, which contradicts the assumption that

m
({

x; uλj (x) < 0
})

> 0.

This contradiction proves Theorem 1.2. �
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