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Abstract
Over the years, the research of backward stochastic differential equations (BSDEs) has
come a long way. As a extension of the BSDEs, the BSDEs with time delay have played
a major role in the stochastic optimal control, financial risk, insurance management,
pricing, and hedging. In this paper, we study a class of BSDEs with time-delay
generators driven by Caputo fractional derivatives. In contrast to conventional BSDEs,
in this class of equations, the generator is also affected by the past values of solutions.
Under the Lipschitz condition and some new assumptions, we present a theorem on
the existence and uniqueness of solutions.

Keywords: Fractional backward stochastic differential equations; Caputo; Fractional
Brownian motion; Time-delay generator

1 Introduction
The fractional derivative introduces a memory effect, enabling the system to exert a long-
term influence on past inputs. Simultaneously, the delay is manifested as the system re-
sponse persists over time, eventually fully reflecting changes in the input after a certain pe-
riod has elapsed. Both these concepts effectively capture and describe the enduring mem-
ory correlation of a system. Because of their advantages in describing the time behavior
of a system or process, backward stochastic differential equations (BSDEs) with fractional
derivative or delay are widely used in many fields such as optimal control, finance, biology,
and physics.

The theory of BSDEs bridges the gap between randomness and determinism and was
first proposed by Bismut [2] in 1973 to explain a stochastic version of the process associ-
ated with Pontryagin’s maximum principle, but subsequent work has been carried out in
a linear context. In 1978, Bismut [3] introduced a class of nonlinear BSDEs (Riccati equa-
tions) and proved the existence and uniqueness of their solutions. In 1990, Peng and Par-
doux [19] solved the existence and uniqueness problem of the equations under Lipschitz
conditions and proposed a general form of BSDEs. In subsequent work, they established
a theoretical system of BSDEs, focusing on solving the structure and diffusion part of the
generator in the equation. This led to a series of results and studies (Bahlali et al. [1], Zhang
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et al. [24]), making this theory more perfect. Further, this theory itself has been developed
into many different branches (Ma et al. [17], Zhao et al. [26], Pardoux and Răşcanu [20]).

The fractional Brownian motion BH = {BH
t , t ≥ 0} (fBm) with Hurst parameter H (0 <

H < 1), proposed by Kolmogorov [15], is a central Gaussian process. Due to its favorable
autocorrelation and long-memory properties, it can serve as a valuable supplement to the
study of BSDEs. Therefore Hu and Peng [13] introduced fractional-order Brownian mo-
tion and studied general linear and nonlinear BSDEs driven by a fractional-order Brownian
motion. Under some mild assumptions, they established the existence and uniqueness of
understanding. In the case of nonlinear, BSDE is solved by obtaining an inequality lead-
ing to the fixed point theorem, and the existence and uniqueness of the solution is proved
when the Hurst parameter H ∈ ( 1

2 , 1). Maticiuc and Nie [18] then obtained some gen-
eral results for fractional-order BSDEs through a rigorous approach, extending the discus-
sion to fractional BSVIs. Borkowska [14] studied generalized BSDEs driven by a fractional
Brownian motion. Douissi et al. [9] proposed a new mean-field anticipation BSDE driven
by a fractional Brownian motion. Wen and Shi [23] studied the existence and uniqueness
of expected backward stochastic differential equations driven by a fractional Brownian
motion under the Lipschitz condition and a sufficiently small time horizon T . Li et al.
[16] derived a European option pricing formula based on the FSDE model with fractional
derivative dαf = �(1 + α)[df – f ′(x) dx]. Inspired by Li’s method, Chen et al. [4] combined
fractional derivatives and fractional differential equations and obtained a BSDE with Ca-
puto fractional derivative of the form

Yt = YT +
∫ T

t

(
α · (α – 1) · (T – s)α–2

�(1 + α)
F(s) – f (s)

)
ds

–
∫ T

t

z(s, T)
�(1 + α)

dBs, α = 2H ∈ (1, 2),

where � is the gamma function, f is the generator related to the present time, and B is a
standard Brownian motion. Chen et al. [4] constructed a new norm to obtain the existence
and uniqueness of the equation.

The mathematical delay method plays an important role in many fields such as stochastic
optimal control, financial risk, insurance management, pricing, and hedging. Delong and
Imkeller [7, 8] studied the following class of BSDEs with time-delay generators:

Y (t) = ξ +
∫ T

t
f (s, Ys, Zs) ds –

∫ T

t
Z(s) dW (s), t ∈ [0, T],

where (Ys, Zs) = (Y (s+u), Z(s+u)), –T ≤ u ≤ 0, and the generated elements can be time de-
pendent on the past values of solutions and weighted by a time-delay function. Examples
of BSDEs with time-delay generators, exhibiting either multiple solutions or no solution,
are provided, and some properties of the solutions of these BSDEs with time-delay genera-
tors are discussed. Subsequently, Wen [22] extended such fractional-order equations. The
existence and uniqueness of various BSDE models and their solutions have been proved
due to their excellent mathematical properties, broad application prospects, and deep con-
nection with partial differential equations (Zhang et al. [25], Zhuang [27], Delng et al. [6],
Peng and Yang [21]).
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As an extension of BSDEs, Caputo fractional backward stochastic differential equations
with delay driven by a fractional Brownian motion play an important role in stochastic
optimal control, financial risk, insurance management, pricing, and hedging. In particular,
for pricing problems in finance, by introducing the Caputo fractional derivative and lag or
delay term, the market reaction lag effect can be considered in the stock price model, and
the change of stock price can be described and predicted more accurately. However, to the
best of our knowledge, there have been no studies on such BSDEs. Therefore in this paper,
we mainly study the existence and uniqueness of such BSDEs. Specifically, we investigate
the following fractional-order BSDEs with a tiem-delay generator:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Yt = YT +
∫ T

t ( α(α–1)(T–s)α–2

�(1+α) F(s,ηs, Ys, Zs, Ys–δ1(s), Zs–δ2(s))

– f (s,ηs, Ys, Zs, Ys–δ3(s), Zs–δ4(s))) ds

–
∫ T

t
Zs

�(1+α) dBH
s , 0 ≤ t ≤ T ,

Yt = ϕt , Zt = ψt , –δ ≤ t < 0.

(1.1)

This paper is organized as follows: In Sect. 2, we introduce some conditions, theorems,
and hypotheses to facilitate the subsequent proof. In Sect. 3, we prove the existence and
uniqueness of solutions to the equations. The comparison theorem of the equations is
obtained in Sect. 4. In Sect. 5, we conclude our investigation.

2 Preliminaries
We first review some relevant definitions, lemma, and propositions and make some nec-
essary assumptions. For more specific content, we refer to Decreusefond and Ustunel [5],
Duncan et al. [10], and Hu [11].

2.1 Fractional Brownian motion
A fractional Brownian motion with Hurst parameter H ∈ (0, 1) is a zero-mean Gaussian
process BH = {BH

t , t ≥ 0} with covariance

E
(
BH

t BH
s
)

=
1
2
(
t2H + s2H + |t – s|2H)

.

When H = 1
2 , this process becomes a standard Brownian motion. When H ∈ (0, 1

2 ), time
series show a negative long-term dependence, that is, there is little correlation between
past and future values, and future changes are difficult to predict. Throughout the paper,
we only consider H ∈ ( 1

2 , 1), and the time series shows a positive long-term dependence.
Let (	,F ,P) be a complete probability space with filtration F is generated by an fBm

BH . For two continuous functions ξ and η on [0, T], we define the Hilbert scalar product
and norm

〈ξ ,η〉t =
∫ t

0

∫ t

0
φ(u – v)ξuηv du dv and ‖ξ‖t =

√〈ξ , ξ 〉t ,

where φ(x) = 2H(2H – 1)|x|2H–2 for x ∈ R. Under this Hilbert scalar product, we use �t

to represent the completion of a continuous function. Let PT be the set of all fractional
Brownian motion polynomials over [0, T]. The elements therein are represented as

F(ω) = f
(∫ T

0
ξ1(t) dBH

t , . . . ,
∫ T

0
ξn(t) dBH

t

)
,
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where ξi (i = 1, 2, . . . , n) are continuous functions on [0, T], and f is a polynomial of n vari-
ables.

The Malliavin derivative DH
s of a polynomial functional F is defined by

DH
s F =

n∑
j=1

∂f
∂xj

(∫ T

0
ξ1(t) dBH

t , . . . ,
∫ T

0
ξn(t) dBH

t

)
ξj(s), 0 ≤ s ≤ T .

The completion of PT represented by D
H
1,2 has the norm

‖F‖2
H,1,2 = E‖F‖T

2 + E
∥∥DH

s F
∥∥2

T .

We also have the derivative

D
H
t F =

∫ T

0
φ(t – u)DH

v F dv.

Proposition 2.1 (Hu [11], Proposition 6.25) Denote by L
1,2
H the space of all continuous

processes Fs : (	,F , P) → �t satisfying E[‖F‖2
T +

∫ T
0

∫ T
0 |DH

s Ft|2 ds dt] ≤ ∞. If Fs ∈ L
1,2
H ,

then the Itô-type stochastic integral
∫ T

0 F(t) dBH
t exists in L2(	,F ,P), and

E
(∫ T

0
F(t) dBH

t

)
= 0,

E
(∫ T

0
F(t) dBH

t

)2

= E
(‖F‖2

�t

)
+ E

∫ T

0

∫ T

0
D

H
s FtD

H
t Fs ds dt.

Proposition 2.2 (Hu [11], Theorem 10.3) For i = 1, 2, let gi(s) ∈ D
1,2
H , and l et fi and gi be

two real-valued processes satisfying E
∫ T

0 (|fi(s)|2 + |gi(s)|2) ds < ∞. We assume that DH
t fi(s)

and D
H
t gi(s) are continuously differentiable for almost all (s, t) ∈ [0, T]2 and ω ∈ 	. Suppose

that E[
∫ T

0
∫ T

0 |DH
t gi(s)|2 ds dt] < ∞. Denote

Gi(t) =
∫ T

0
fi(s) ds +

∫ T

0
gi(s) dBH

s , 0 ≤ t ≤ T .

Then

G1(t)G2(t) =
∫ t

0
G1(s)f2(s) ds +

∫ t

0
G1(s)g2(s) dBH

s +
∫ t

0
G2(s)f1(s) ds

+
∫ t

0
G2(s)g1(s) dBH

s +
∫ t

0
D

H
s G1(s)g2(s) ds +

∫ t

0
D

H
s G2(s)g1(s) ds.

Proposition 2.3 (Hu and Peng [13] and Maticiuc and Nie [18]) Let (Yt , Zt) ∈ Ṽ[–δ,T] ×
ṼH

[–δ,T] be the solution to the fractional BSDE (2.1), we have the relation

D
H
t Yt =

σ̂ (t)
σ (t)

Zt , 0 ≤ t ≤ T .

Therefore there exists a constant M > 0 such that

t2H–1

M
Zt ≤ D

H
t Yt =

σ̂t

σt
Zt ≤ Mt2H–1Zt , 0 ≤ t ≤ T .
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2.2 Caputo fractional derivative
In the studies of real financial markets, it appeared that the stochastic differential equation
of fractional Brownian motion can only describe the noise memory but cannot be used
to study the trend memory effect of the stock price. Subsequently, fractional derivatives
were introduced to describe the trend memory process, which is another effective tool to
describe the memory effect, for example, the Caputo fractional derivative [16] with Hurst
index H ∈ ( 1

2 , 1):

dαf = �(1 + α)
[
df – f ′(x) dx

]
, α = 2H .

Some of results for this Caputo fractional derivative are given in [16, Lemma 5]:

(1)
∫ t

0
f (x)

(
dxα

)
= α

∫ t

0
(t – x)α–1f (x) dx, 0 < α < 1,

(2)
∫ t

0
f (x)(dx)α = α(α – 1)

∫ t

0
(t – x)α–2F(x) dx, 1 < α < 2, F(t) =

∫ t

0
f (x) dx.

Combined with a linear stochastic differential equation, stochastic differential equation
with Caputo fractional derivative is derived:

dYt =
f (t, Yt , Zt)
�(1 + α)

(dt)α +
Zt

�(1 + α)
dBt + f (t, Yt , Zt) dt, 1 < α < 2, 0.5 < H < 1.

Integrating this equation in the interval [t, T] and then by combining the derivation
method of Caputo SDE and BSDE [4], we can get a Caputo fractional BSDE driven by
a fractional Brownian motion with time delay:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Yt = YT +
∫ T

t ( α(α–1)(T–s)α–2

�(1+α) F(s,ηs, Ys, Zs, Ys–δ1(s), Zs–δ2(s))

– f (s,ηs, Ys, Zs, Ys–δ3(s), Zs–δ4(s))) ds

–
∫ T

t
Zs

�(1+α) dBH
s , 0 ≤ t ≤ T ,

Yt = ϕt , Zt = ψt , –δ ≤ t < 0.

(2.1)

2.3 Assumptions and conditions
To prove our results, we make the following statement. First, we have

ηt = η0 +
∫ t

0
bs ds +

∫ t

0
σs dBH

s , 0 ≤ t ≤ T , (2.2)

where η0 is a constant, bt and σt are two bounded deterministic continuously differentiable
functions from [0, T] to R, and σs > 0. Then we have

‖σ‖2
t =

∫ t

0

∫ t

0
φ(u – v)σuσv du dv = H(2H – 1)

∫ t

0

∫ t

0
|u – v|2H–2σuσv du dv.

Denote d
dt (‖σ‖2

t ) = 2σ̂tσt and σ̂u =
∫ t

0 φ(u – v)σv dv. In addition, consider the following sets:

L2(Ft ;R) :=
{
ϕ : 	 →R|ϕ is Ft- measurable, E

[|ϕ|2] < ∞}
;
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L2
F (0, T ;R) :=

{
ϕ : [0, T] × 	 →R|ϕ is a progressively measurable process,

E
[∫ T

0

∣∣ϕ(t)
∣∣2

]
dt

]
< ∞

}
;

Ck,l([0, T] ×R
)

:=
{
ϕ(t, x) : [0, T] ×R →R|ϕ is k times differentiable with respect to t ∈ [0, T]

and l times continuously differentiable with respect to x ∈R
}

;

Ck,l
pol

(
[0, T] ×R

)
:=

{
ϕ(t, x)|ϕ ∈ Ck,l

pol
(
[0, T] ×R

)
,

and all derivatives of ϕ are of polynomial growth
}

;

V[0,T] :=
{
ϕ(t, x)|ϕ ∈ C1,3

pol
(
[0, T] ×R

)
with

∂ϕ

∂t
∈ C0,1

pol
(
[0, T] ×R

)}
.

Denote the completions of V[t1,t2] by Ṽ[t1,t2] and ṼH
[t1,t2] with the corresponding β-norms

‖ϕ‖β =
(

E
∫ t2

t1

eβt∣∣ϕ(t)
∣∣2 dt

) 1
2

, ‖μ‖β =
(

E
∫ t2

t1

eβtt2H–1∣∣μ(t)
∣∣2 dt

) 1
2

,

where β ≥ 0 is a constant; apparently, they are Banach spaces. In addition, we need to
make the following assumptions.

Assumption 2.1 δi, i = 1, 2, 3, 4, are R+-valued continuous functions on [0, T] such that
0 ≤ s – δi(s) ≤ s, where δ is a constant.

(A1) There exists L ≥ 0 such that for all t ∈ [0, T] and for all nonnegative integrable g ,

∫ T

t
g
(
s – δi(s)

)
ds ≤ L

∫ T

t–δ

g(s) ds, i = 1, 2, 3, 4.

(A2) The generator (F , f ): (F , f )(t, x, y, z, y′, z′) : [0, T] ×R
5 →R is a C0,1

pol-continuous
function, there exist C1, C2 ≥ 0 such that (F , f ) satisfies the following conditions: for
all t ∈ [0, T] and i = 1, 2, 3, 4, we have

∣∣F(t, x, y, z, yt–δi(·), zt–δi(·)) – F
(
t, x, y′, z′, y′

t–δi(·), z′
t–δi(·)

)∣∣2

≤ C1
(∣∣y – y′∣∣2 + t2H–1∣∣z – z′∣∣2 +

∣∣yt–δ(·) – y′
t–δ(·)

∣∣2

+ (t – δ)2H–1∣∣zt–δ(·) – z′
t–δ(·)

∣∣2)
∣∣f (t, x, y, z, yt–δi(·), zt–δi(·)) – f

(
t, x, y′, z′, y′

t–δi(·), z′
t–δi(·)

)∣∣2

≤ C2
(∣∣y – y′∣∣2 + t2H–1∣∣z – z′∣∣2 +

∣∣yt–δ(·) – y′
t–δ(·)

∣∣2

+ (t – δ)2H–1∣∣zt–δ(·) – z′
t–δ(·)

∣∣2).

3 Existence and uniqueness
We first investigate properties of the solutions. If, under hypothetical conditions, there
exists a pair of processes (Yt , Zt) satisfying equation (2.1), then we can derive that there
exists a solution to equation (2.1).
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Theorem 3.1 Let (F , f ) satisfy (A1) and (A2). Suppose ϕt ∈ Ṽ[–δ,T] and ψt ∈ Ṽ[–δ,T]. Then
BSDEs (2.1) admit a unique solution (Yt , Zt) ∈ Ṽ[–δ,T] × ṼH

[–δ,T].

Proof For given pair (y, z) ∈ Ṽ[–δ,T] × ṼH
[–δ,T], we consider the following BSDEs:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Yt = YT +
∫ T

t
α(α–1)(T–s)α–2

�(1+α) F(s,ηs, Ys, Zs, Ys–δ1(s), Zs–δ2(s))

– f (s,ηs, Ys, Zs, Ys–δ3(s), Zs–δ4(s)) ds

–
∫ T

t
Zs

�(1+α) dBH
s , 0 ≤ t ≤ T ;

Yt = ϕ(t), Zt = ψ(t), YT = g(XT ), –δ ≤ t < 0.

(3.1)

We define a mapping �: Ṽ[–δ,T] × ṼH
[–δ,T] → Ṽ[–δ,T] × ṼH

[–δ,T] such that �[(y., z.)] = (Y., Z.).
If we can prove that � is a compressed map, then we get the desired result. So, let us
complete the proof.

For two arbitrary elements (y., z.) and (y′., z′.) in Ṽ[–δ,T] × ṼH
[–δ,T], we have �[(y., z.)] =

(Y ., Z.) and �[(y′., z′.)] = (Y ′., Z′.). Define

ŷ. � y. – y′
., ẑ. � z. – z′

.

Ŷ. � Y. – Y ′
., Ẑ. � Z. – Z′

.

Then applying Itô s formula to eβt|Ŷt|2, by Proposition 2.2 we obtain

d
(
eβt|Ŷt|2

)
= βeβt|Ŷt|2 dt + 2eβt|Ŷt|d|Ŷt| + eβtd|Ŷt|2

= βeβt|Ŷt|2 dt – 2eβt|Ŷt|
∣∣∣∣α(α – 1)(T – t)α–2

(1+α)

∣∣∣∣|F̂t|dt + 2eβt|Ŷt||f̂t|

+
2eβt|Ŷt||Ẑt|

(1+α)
dBH

t +
2eβt

D
H
t |Ŷt||Ẑt|

�(1 + α)
dt.

Integrating over interval [t, T] and converting by deformation, we easily have

eβt|Ŷt|2 + β

∫ T

t
eβs|Ŷs|2 ds +

2
�(1 + α)

∫ T

t
eβs|Ŷs||Ẑs|dBH

s

+
2

�(1 + α)

∫ T

t
eβs

D
H
s |Ŷs||Ẑs|ds

= eβT |ŶT |2 + 2
∫ T

t
eβs

∣∣∣∣α(α – 1)(T – s)α–2

�(1 + α)

∣∣∣∣|Ŷs||F̂s|ds – 2
∫ T

t
eβs|Ŷs||f̂s|ds.

Here, because of the difficulty of integrating the term of the Malliavin derivative D
H
s |Ŷs|,

we need to transform it. According to the above equation and Proposition 2.3, we have

eβt|Ŷt|2 + β

∫ T

t
eβs|Ŷs|2 ds +

2
�(1 + α)

∫ T

t
eβs|Ŷs||Ẑs|dBH

s

+
2

M�(1 + α)

∫ T

t
eβss2H–1|Ẑs|2 ds

≤ eβT |ŶT |2 + 2
∫ T

t
eβs

∣∣∣∣α(α – 1)(T – s)α–2

�(1 + α)

∣∣∣∣|Ŷs||F̂s|ds – 2
∫ T

t
eβs|Ŷs||f̂s|ds.
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Taking the expectation on both sides and applying the inequality 2AB ≤ A2 + B2, we have

E
[

eβt|Ŷt|2 – eβT |ŶT |2 + β

∫ T

t
eβs|Ŷs|2 ds +

2
�(1 + α)

∫ T

t
eβs|Ŷs||Ẑs|dBH

s

+
2

M�(1 + α)

∫ T

t
eβss2H–1|Ẑs|2 ds

]

≤ E
[

2
∫ T

t
eβs

∣∣∣∣α(α – 1)(T – s)α–2

�(1 + α)

∣∣∣∣|Ŷs||F̂s|ds – 2
∫ T

t
eβs|Ŷs||f̂s|ds

]

= E
[

2
∫ T

t
eβs

∣∣∣∣α(α – 1)(T – s)α–2

�(1 + α)

∣∣∣∣|Ŷs|
∣∣F(s,ηs, ys, zs, ys–δ1(s), zs–δ2(s))

– F
(
s,ηs, y′

s, z′
s, y′

s–δ1(s), z′
s–δ2(s)

)∣∣ds

– 2
∫ T

t
eβs|Ŷs|

∣∣f (s,ηs, ys, zs, ys–δ3(s), zs–δ4(s)) – f
(
s,ηs, y′

s, z′
s, y′

s–δ3(s), z′
s–δ4(s)

)∣∣ds
]

≤ E
[

β

4

∫ T

t
eβs|Ŷs|2 ds +

4
β

∫ T

t
eβs

∣∣∣∣α(α – 1)(T – s)α–2

�(1 + α)

∣∣∣∣
2∣∣F(s,ηs, ys, zs, ys–δ1(s), zs–δ2(s))

– F
(
s,ηs, y′

s, z′, y′
s–δ1(s), z′

s–δ2(s)
)∣∣2 +

β

4

∫ T

t
eβs|Ŷs|2 ds

+
4
β

∫ T

t
eβs∣∣f (s,ηs, ys, zs, ys–δ3(s), zs–δ4(s))

– f
(
s,ηs, y′

s, z′
s, y′

s–δ3(s), z′
s–δ4(s)

)∣∣2 ds
]

= E
[

β

2

∫ T

t
eβs|Ŷs|2 ds +

4
β

∫ T

t
eβs

∣∣∣∣α(α – 1)(T – s)α–2

�(1 + α)

∣∣∣∣
2∣∣F(s,ηs, ys, zs, ys–δ1(s), zs–δ2(s))

– F
(
s,ηs, y′

s, z′
s, y′

s–δ1(s), z′
s–δ2(s)

)∣∣2 +
4
β

∫ T

t
eβs∣∣f (s,ηs, ys, zs, ys–δ3(s), zs–δ4(s))

– f
(
s,ηs, y′

s, z′
s, y′

s–δ3(s), z′
s–δ4(s)

)∣∣2 ds
]

. (3.2)

Since
∫ T

t
α(α–1)(T–s)α–2

�(1+α) ds = α(T–t)α–1

�(1+α) – (T – t), it is a continuous bounded function on
[t, T]. By assumptions (A1) and (A2) and Jensen’s inequality there exists a constant k > 0
such that

E
[

eβt|Ŷt|2 – eβT |ŶT |2 +
β

2

∫ T

t
eβs|Ŷs|2 ds +

2
�(1 + α)

∫ T

t
eβs|Ŷs||Ẑs|dBH

s

+
2

M�(1 + α)

∫ T

t
eβss2H–1|Ẑs|2 ds

]

≤ E
[

4k
β

∫ T

t
eβs∣∣F(s,ηs, ys, zs, ys–δ1(s), zs–δ2(s)) – F

(
s,ηs, y′

s, z′
s, y′

s–δ1(s), z′
s–δ2(s)

)∣∣2 ds

+
4
β

∫ T

t
eβs∣∣f (s,ηs, ys, zs, ys–δ3(s), zs–δ4(s)) – f

(
s,ηs, y′

s, z′
s, y′

s–δ3(s), z′
s–δ4(s)

)∣∣2 ds
]

≤ E
[(

4k
β

C1 +
4
β

C2

)∫ T

t–δ

eβs(|ŷs|2 + s2H–1|ẑs|2 + |ŷs–δ|2 + (s – δ)2H–1|ẑs–δ|2
)

ds
]
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≤ E
[(

4k
β

C1 +
4
β

C2

)
(L + 1)

∫ T

t–δ

eβs(|ŷs|2 + s2H–1|ẑs|2
)

ds
]

. (3.3)

Let t = 0 and multiply both sides by M�(1+α)
2 ; since �(1 + α) ∈ (1, 2), we get

E
[∫ T

0
eβs

(
βM

4
|Ŷs|2 + s2H–1|Ẑs|2

)
ds

]

≤ E
[∫ T

0
eβs

(
βM�(1 + α)

4
|Ŷs|2 + s2H–1|Ẑs|2

)
ds

]

≤ E
[(

4k
β

C1 +
4
β

C2

)
(L + 1)M

∫ T

–δ

eβs(|ŷ|2 + s2H–1∣∣ẑ2∣∣)ds
]

.

Denoting β = (4kC1 + 4C2)(L + 1)M + 4
M , we have

E
[∫ T

0
eβs(|Ŷs|2 + s2H–1|Ẑs|2

)
ds

]

≤ 1
2

E
[∫ T

–δ

eβs(|ŷs|2 + s2H–1|ẑs|2
)

ds
]

,

that is,

‖Ŷ , Ẑ‖β ≤ 1√
2
‖ŷ, ẑ‖β .

Therefore the map � is a strictly compressed mapping, which means that equation (3.1)
has a unique solution. �

Remark Note that in this paper, we assume that H ∈ ( 1
2 , 1). However, in this paper the

generators in fractional-order backward stochastic differential equations only consider
present and past time and do not include future time. Next, we make a supplement to the
scope of this study and expand the scope of the generator. Consider the following generator
for equations that include not only present and past time, but also future time:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Yt = ξt +
∫ T

t
α(α–1)(T–s)α–2

�(1+α) F(s, Ys–δ1(s), Zs–δ2(s), Ys, Zs, Ys+δ3(s), Zs+δ4(s))

– f (s, Ys–δ5(s), Zs–δ6(s), Ys, Zs, Ys+δ7(s), Zs+δs(s)) ds

–
∫ T

t
Zt

�(1+α) dBH
t , 0 ≤ t ≤ T ;

Y (t) = ξ (t), Z(t) = φ(t), T ≤ t ≤ T + δ.

(3.4)

Here we make the necessary assumptions:
(A3) δi, i = 1, 2, . . . , 8, are R+-valued continuous functions on [0, T] such that δi(·) ≤ δ,

where δ is a normal constant. There exist L′, L′′ ≥ 0 such that for all t ∈ [0, T] and
all nonnegative and integrable g ,

∫ T

t
g
(
s – δi(s)

)
ds ≤ L′

∫ T

t–δ

g(s) ds, i = 1, 2, . . . , 8,

∫ T

t
g
(
s + δi(s)

)
ds ≤ L′′

∫ T+δ

t
g(s) ds, i = 1, 2, . . . , 8.
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Assume that the generator (F , f )(ω, t, a, b, x, y, c, d) :
	 × [0, T] × L2(Fs′ ,R) × L2(Fs,R) ×R

2 × L2(Fr′ ,R) × L2(Fr ,R) → L2(Ft ,R), s′,
s ∈ [–δ, T], r′, r ∈ [0, T + δ], satisfies the following conditions:

(A4) There exists a constant D > 0 such that for all t ∈ [0, T],

∣∣(F , f )(t, a, b, x, y, c, d) – (F , f )
(
t, a′, b′, x, y, c′, d′)∣∣

≤ D
(∣∣a – a′∣∣ + tH– 1

2
∣∣b – b′∣∣ +

∣∣y – y′∣∣ + tH– 1
2
∣∣z – z′∣∣

+ EFt
{∣∣c – c′∣∣ + tH– 1

2
∣∣d – d′∣∣}),

(A5) E[
∫ T

t |F(t, 0, 0, 0, 0, 0, 0)|2 ds] < ∞, E[
∫ T

t |f (t, 0, 0, 0, 0, 0, 0)|2 ds] < ∞.

With the help of the above method, we have the existence and uniqueness of the solution
to equation (3.4).

4 Comparison theorem
In this section, we further study the properties of the solutions to the following Caputo-
driven fractional backward stochastic differential equations:

⎧⎪⎪⎨
⎪⎪⎩

–dYt = (( α(α–1)(T–t)α–2

�(1+α) )F(t,ηt , Yt , Zt , Yt–δ1(t)) – f (t,ηt , Yt , Zt , Yt–δ3(t))) dt

– Zt
�(1+α) dBH

t , 0 ≤ t ≤ T ;

Yt = ϕ(t), YT = g(XT ), –δ ≤ t < 0.

By Theorem 3.1 this equation has a unique solution in Ṽ[–δ,T] × ṼH
[–δ,T]. Next, we give

a comparison theorem of the equations studied in this paper based on Hu [12, Theo-
rem 12.3].

Theorem 4.1 For i = 1, 2, let gi(XT ) and ϕi(t) be continuously differentiable functions of
polynomial growth together with their derivatives. Assume that Fi(t, x, y, z, yδ),
∂Fi(t, x, y, z, yδ), fi(t, x, y, z, yδ), and ∂fi(t, x, y, z, yδ) are uniformly Lipschitz continuous with
respect to y and z and satisfy (A1) and (A2) in the interval [0, T] ×R

4. Moreover, assume
that F2 is increasing with respect to yδ and f2 is decreasing about yδ . If ϕ1(t) ≤ ϕ2(t) for all
t ∈ [–δ, 0] and

((
α(α – 1)(T – t)α–2

�(1 + α)

)
F1(t,ηt , Yt , Zt , Yt–δ1(t)) – f1(t,ηt , Yt , Zt , Yt–δ3(t))

)

≤
((

α(α – 1)(T – t)α–2

�(1 + α)

)
F2(t,ηt , Yt , Zt , Yt–δ1(t)) – f2(t,ηt , Yt , Zt , Yt–δ3(t))

)
,

yt–δ1(t), yt–δ3(t) ∈ L2
F [–δ, t],

then Y1(t) ≤ Y2(t).
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Proof First, consider the following BSDE with terminal condition:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–dY1(t) = (( α(α–1)(T–t)α–2

�(1+α) )F1(t,ηt , Y1(t), Z1(t), Y1(t – δ1(t))

– f1(t,ηt , Y1(t), Z1(t), Y1(t – δ3(t)))

– Z1(t)
�(1+α) dBH

t , 0 ≤ t ≤ T ,

Y1(t) = ϕ1(t), –δ ≤ t ≤ 0.

From Theorem 3.1 we know that this equation has a unique solution (Y1, Z1) ∈ V[–δ,T] ×
VH

[0,T]. Next, consider another equation

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–dY3(t) = (( α(α–1)(T–t)α–2

�(1+α) )F2(t,ηt , Y3(t), Z3(t), Y1(t – δ1(t))

– f2(t,ηt , Y3(t), Z3(t), Y1(t – δ3(t)))

– Z3(t)
�(1+α) dBH

t , 0 ≤ t ≤ T ,

Y3(t) = ϕ2(t), –δ ≤ t ≤ 0.

Obviously, the only solution to this equation is (Y3, Z3). Meanwhile, we have the following
assumptions: ϕ1(t) ≤ ϕ2(t), and

((
α(α – 1)(T – t)α–2

�(1 + α)

)
F1(t,ηt , Yt , Zt , Yt–δ1(t)) – f1(t,ηt , Yt , Zt , Yt–δ3(t))

)

≤
((

α(α – 1)(T – t)α–2

�(1 + α)

)
F2(t,ηt , Yt , Zt , Yt–δ1(t)) – f2(t,ηt , Yt , Zt , Yt–δ3(t))

)

yt–δ1(t), yt–δ3(t) ∈ L2
F [–δ, t].

According to Hu et al. [12, Theorem 12.3], we have

Y1(t) ≤ Y3(t) a.e., a.s.

In the same way, we set up the following equation:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–dY4(t) = (( α(α–1)(T–t)α–2

�(1+α) )F2(t,ηt , Y4(t), Z4(t), Y3(t – δ1(t))

– f2(t,ηt , Y4(t), Z4(t), Y3(t – δ3(t)))

– Z4(t)
�(1+α) dBH

t , 0 ≤ t ≤ T ;

Y4(t) = ϕ2(t), –δ ≤ t ≤ 0.

The unique solution to this equation is represented by (Y4, Z4) ∈ Ṽ[–δ,T] × ṼH
[0,T]. As

F2(t, x, y, z, yδ) is increasing with respect to yδ , f2(t, x, y, z, yδ) is decreasing with respect to
yδ , and Y1(t) < Y3(t), it follows that

((
α(α – 1)(T – t)α–2

�(1 + α)

)
F2

(
t,ηt , Y (t), Z(t), Y1

(
t – δ1(t)

))

– f2
(
t,ηt , Y (t), Z(t), Y1

(
t – δ3(t)

)))
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≤
((

α(α – 1)(T – t)α–2

�(1 + α)

)
F2

(
t,ηt , Y (t), Z(t), Y3

(
t – δ1(t)

))

– f2
(
t,ηt , Y (t), Z(t), Y3

(
t – δ3(t)

)))

yt–δ1(t), yt–δ3(t) ∈ L2
F [–δ, t].

Similarly,

Y3(t) ≤ Y4(t) a.e., a.s.

Finally, consider the following BSDEs for n = 5, 6, . . . :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–dYn(t) = (( α(α–1)(T–t)α–2

�(1+α) )F2(t,ηt , Yn(t), Zn(t), Yn–1(t – δ1(t))

– f2(t,ηt , Yn(t), Zn(t), Yn–1(t – δ3(t)))

– Zn(t)
�(1+α) dBH

t , 0 ≤ t ≤ T ,

Yn(t) = ϕ2(t), –δ ≤ t ≤ 0.

From the above we can conclude that

Y4(t) ≤ Y5(t) ≤ Y6(t) ≤ Y7(t) ≤ · · · ≤ Yn(t) ≤ · · · a.e., a.s.

Let us scale up the result so that we get a Cauchy sequence {Yn, Zn}n≥3. Denote Ŷn(t) =
Yn(t) – Yn–1(t) and Ẑn(t) = Zn(t) – Zn–1(t). From estimate (3.3), assumptions (A1) and (A2),
and Jensen’s inequality we have

E
[

eβt∣∣Ŷn(t)
∣∣2

– eβT ∣∣Ŷn(T)
∣∣2

+
β

2

∫ T

t
eβs∣∣Ŷn(s)

∣∣2
ds

+
2

M�(1+α)

∫ T

t
eβss2H–1∣∣Ẑn(s)

∣∣2
ds

]

≤ E[
4
β

∫ T

t
eβs

[
α(α – 1)(T – s)α–2

�(1 + α)

]2∣∣F(
s,ηs, Ỹn(s), Z̃n(s), Ỹn–1

(
s – δ1(s)

))

– F
(
s,ηs, Ỹn–1(s), Z̃n–1(s), Ỹn–2

(
s – δ1(s)

))∣∣2 ds +
4
β

∫ T

t
eβs∣∣f (s,ηs, Ỹn(s), Z̃n(s),

Ỹn–1
(
s – δ1(s)

))
– f

(
s,ηs, Ỹn–1(s), Z̃n–1(s), Ỹn–2

(
s – δ1(s)

))∣∣2 ds]

≤ 4
β

(kC1 + C2)E
[∫ T

t
eβs(∣∣Ŷn(s)

∣∣2
+ s2H–1∣∣Ẑn(s)

∣∣2)
ds +

∫ T

t–δ

eβs∣∣Ŷn–1(s)
∣∣2

ds
]

.

Then letting t = 0, multiplying both sides by M�(1+α)
2 , and noting that �(1 + α) ∈ (1, 2), we

have

E
[∫ T

0
eβs

(
βM

4
∣∣Ŷn(s)

∣∣2
+ s2H–1∣∣Ẑn(s)

∣∣2
)

ds
]

≤ 4M�(1 + α)
β

(kC1 + C2)
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× E
[∫ T

0
eβs(∣∣Ŷn(s)

∣∣2
+ s2H–1∣∣Ẑn(s)

∣∣2)
ds +

∫ T

–δ

eβs∣∣Ŷn–1(s)
∣∣2

ds
]

.

Denoting β = 16M�(1 + α)(kC1 + C2) + 4
M , we have

E
[∫ T

0
eβs

(
βM

4
∣∣Ŷn(s)

∣∣2
+ s2H–1∣∣Ẑn(s)

∣∣2
)

ds
]

≤ E
[∫ T

0
eβs(∣∣Ŷn(s)

∣∣2
+ s2H–1∣∣Ẑn(s)

∣∣2)
ds

]
+

1
4

E
[∫ T

–δ

eβs∣∣Ŷn–1(s)
∣∣2

ds
]

.

Therefore

E
[∫ T

0
eβs(∣∣Ŷn(s)

∣∣2
+ s2H–1∣∣Ẑn(s)

∣∣2)
ds

]

≤ 1
3

E
[∫ T

–δ

eβs∣∣Ŷn–1(s)
∣∣2

ds
]

≤ 1
3

E
[∫ T

–δ

eβs∣∣Ŷn–1(s)
∣∣2

ds +
∫ T

0
eβss2H–1∣∣Ẑn–1(s)

∣∣2
]

.

Hence

E
[∫ T

0
eβs(∣∣Ŷn(s)

∣∣2
+ s2H–1∣∣Ẑn(s)

∣∣2)
ds

]

≤
(

1
3

)n–4

E
[∫ T

–δ

eβs∣∣Ŷ4(s)
∣∣2

ds +
∫ T

0
eβss2H–1∣∣Ẑ4(s)

∣∣2
]

.

Obviously, (Ŷn)n≥4 and (Ẑn)n≥4 are Cauchy sequences in the Banach spaces Ṽ[–δ,T] and
ṼH

[0,T], respectively. Their limits are represented by (Yt , Zt) for all 0 ≤ t ≤ T . Therefore
(Yt , Zt) is a solution of the following fractional BSDE:

⎧⎪⎪⎨
⎪⎪⎩

–dYt = (( α(α–1)(T–t)α–2

�(1+α) )F2(t,ηt , Yt , Zt , Yt–δ1(t)) – f2(t,ηt , Yt , Zt , Yt–δ3(t))) dt

– Zt
�(1+α) dBH

t , 0 ≤ t ≤ T ,

Yt = ϕ2(t), –δ ≤ t < 0.

At the same time, by Theorem 3.1 on the uniqueness of the solution it is also the solution
of the following equation:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–dY2(t) = (( α(α–1)(T–t)α–2

�(1+α) )F2(t,ηt , Y2(t), Z2(t), Y2(t – δ1(t))

– f2(t,ηt , Y2(t), Z2(t), Y2(t – δ3(t)))

– Z2(t)
�(1+α) dBH

t , 0 ≤ t ≤ T ,

Y2(t) = ϕ2(t), –δ ≤ t ≤ 0.

Hence

Y (t) = Y2(t) a.s.
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Since

Y1(t) ≤ Y3(t) ≤ Y4(t) ≤ Y (t),

we get Y1(t) ≤ Y2(t), as desired, �

Remark Under assumptions (A3), (A4), and (A5), equation (3.4) is still applicable to the
above equation, and the comparison theorem of the equation is also valid.

Example To illustrate the results, consider the equation

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Yt = YT +
∫ T

t ( α(α–1)(T–s)α–2

�(1+α)
∫ s

0 (Y (u) + Z(u) + Y (u – δ3(u)) + Z(u – δ4(u))) du

– (Y (s) + Z(s) + Y (s – δ3(s))

+ Z(s – δ4(s)) ds –
∫ T

t
Zs

�(1+α) dBH
s , 0 ≤ t ≤ T ,

Yt = ϕt , Zt = ψt , –δ ≤ t < 0.

where for i = 1, 2, 3, 4, the generator satisfies (A1) and (A2). Suppose ϕt ∈ Ṽ[–δ,T] and ψt ∈
Ṽ[–δ,T]. Then BSDE (2.1) admits a unique solution (Yt , Zt) ∈ Ṽ[–δ,T] × ṼH

[–δ,T].

5 Conclusions
In this paper, we introduced the fractional derivative and time-delay generator into back-
ward stochastic differential equations. We obtained the existence and uniqueness of a so-
lution and gave an example to illustrate our results. However, the analytical solution to
BSDEs is not easy to get and becomes more difficult after the introduction of fractional
derivatives and time delays. Our future work will focus on the numerical solution of this
equation. At the same time, since fractional derivatives and time delay both provide ef-
fective mathematical tools for the study of complex systems and phenomena, it seems
interesting to explore their applications in finance.
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