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Abstract
We examine a Kirchhoff-type equation with nonlinear viscoelastic properties,
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1 Introduction
Analyzing nonlinear mathematical problems involves a distinct set of challenges and tech-
niques compared to linear problems [1, 2]. Nonlinear problems often manifest in various
scientific and engineering domains, and their analysis is crucial for gaining insights into
complex phenomena [3, 4]. The systematic examination of mathematical problems ne-
cessitates a methodical approach encompassing rigorous formulation, assessment of ex-
istence and uniqueness of solutions, linearization procedures, stability analyses, applica-
tion of numerical methodologies, bifurcation investigations, phase plane analyses, sen-
sitivity assessments, optimization strategies, and the validation and verification of out-
comes [5, 6]. This multifaceted framework is imperative for elucidating the intricate dy-
namics inherent in various systems across diverse scientific and engineering domains
[7].

The analysis of solutions to the Kirchhoff equation concerning viscoelastic materials
is paramount in comprehending the mechanical characteristics of such materials. These
solutions serve as a cornerstone in directing the design methodology, thereby ensuring the
dependability and efficacy of materials across diverse applications. In this current study,
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we examine the Kirchhoff equation provided below:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

vtt – N(t)�v(t) +
∫ t

0 f (t – �)�v(�) d� + μ1vt +
∫ τ2
τ1

μ2(s)vt(y, t – s) ds

= v|v|γ –2 ln |v|l, x ∈ �, 0 < t,

v(y, 0) = v0(y), vt(y, 0) = v1(y), y ∈ �,

vt(y, –t) = h0(y, t), y ∈ �, t ∈ (0, τ2),

v(y, t) = 0, (y, t) ∈ ∂� × (0,∞),

(1.1)

where

N(t) :=
(
ζ0 + ζ1‖∇v‖2

2 + σ
(∇v(t),∇vt(t)

)

M2(�)

)
.

In this expression, � belongs to the set of bounded domains in R
N and possesses a bound-

ary ∂� that is suitably smooth. γ ≥ 2, ζ0, ζ1, σ , μ1, l are positive constants. In addition to
this, the time delays are indicated by τ1, τ2 with 0 ≤ τ1 < τ2,while μ2 is an M∞ function
and f is a positive function.

In a physical sense, the connection between the stress and strain history in the beam
is influenced by a viscoelastic damping term inspired by Boltzmann theory. The kernel
of memory term in this context is represented by the function f , which is frequently dis-
cussed in the literature [8–16].

In [17], Balakrishnan and Taylor introduced a novel damping model known as Bala-
krishnan–Taylor damping, specifically addressing concerns related to the span problem
and the plate equation. Numerous studies have explored this damping phenomenon, as
documented in [11, 14, 15, 17–20, 35–37], and [21]. The occurrence of delay is a common
feature in various applications and practical problems, rendering many systems worthy
of investigation. Recently, several authors have directed their attention towards analyzing
the asymptotic behavior and stability of evolution systems incorporating time delay, as
discussed in the research [9–12, 15, 22–26], and [27].

The significance of logarithmic nonlinearity in physical system is emphasized by its in-
volvement in a wide range of topics and theories, encompassing symmetry, cosmology,
quantum mechanics, nuclear physics, and various applications including nuclear, optical,
and subterranean physics. Different authors have delved into such type of problem across
various domains, exploring aspects such as global solution existence, stability, blow-up,
and the growth of solutions, as documented in works such as [11, 19, 28–31], and [32–34].
Taking into account various elements, damping terms including the distributed delay
terms, logarithmic nonlinearity, Balakrishnan–Taylor damping, and memory term are in-
tegrated into a specific problem, along with the incorporation of

∫ τ2
τ1 μ2(s)vt(y, t – s) ds.

Further investigation is required to explore such type of novel and distinctive problem.
This diverges from the previously mentioned scenarios, and our objective is to shed light
on this unique problem.

Our work is structured as follows: In the subsequent section, we lay out the necessary
lemmas, concepts, and hypotheses. In Sect. 3, we state and prove the main blow-up solu-
tion results. We present the concluding remarks of our work in Sect. 4 of this work.
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2 Fundamental concepts
Here, to investigate our problem, we require certain materials. To begin with, we present
the following assumptions regarding β2 and f :

(H1) f : R+ →R+ represents nonincreasing B1 functions fulfilling

0 < f (t), ζ0 –
∫ ∞

0
f (�) d� = l > 0. (2.1)

(H2) μ2 : [τ1, τ2] →R is an M∞ function in a way that

(
2δ + 1

2

)∫ τ2

τ1

∣
∣μ2(s)

∣
∣ds < μ1, δ >

1
2

, (2.2)

with

(f ◦ ψ)(t) :=
∫

�

∫ t

0
f (t – �)

∣
∣ψ(t) – ψ(�)

∣
∣2 d�dy.

As in [27], we take the following:

x(y,ρ, s, t) = vt(y, t – sρ), (y,ρ, s, t) ∈ � × (0, 1) × (τ1, τ2) ×R+,

which satisfy

⎧
⎨

⎩

sxt(y,ρ, s, t) + xρ(y,ρ, s, t) = 0,

x(y, 0, s, t) = vt(y, t).
(2.3)

Then one can write (1.1) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vtt – N(t)�v(t) +
∫ t

0 f (t – �)�v(�) d� + μ1vt +
∫ τ2
τ1

μ2(s)x(y, 1, s, t) ds

= v|v|γ –2 ln |v|l,
sxt(y,ρ, s, t) + xρ(y,ρ, s, t) = 0,

v(y, 0) = v0(y), vt(y, 0) = v1(y), y ∈ �,

x(y,ρ, s, 0) = h0(y, sρ), in � × (0, 1) × (τ1, τ2),

v(y, t) = 0, (x, t) ∈ ∂� × (0,∞).

(2.4)

Here, the energy functional is introduced as follows.

Lemma 2.1 Let Q represent the energy functional given by

Q(t) =
1
2
‖vt‖2

2 +
1
2

(

ζ0 –
∫ t

0
v(�) d�

)
∥
∥∇v(t)

∥
∥2

2 +
ζ1

4
∥
∥∇v(t)

∥
∥4

2

+
1
2

(f ◦ ∇v)(t) +
l
γ

∥
∥v(t)

∥
∥γ

γ
–

1
γ

∫

�

|v|γ ln |v|l dy

+
1
2

∫

�

∫ 1

0

∫ τ2

τ1

s
∣
∣μ2(s)

∣
∣x2(y,ρ, s, t) ds dρ dy, (2.5)
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which satisfies

Q′(t) ≤ –B0

(

‖vt‖2
2 +

∫

�

∫ τ2

τ1

∣
∣μ2(s)

∣
∣x2(y, 1, s, t) ds dx

)

+
1
2
(
f ′ ◦ ∇v

)
(t)

–
1
2

f (t)
∥
∥∇v(t)

∥
∥2

2 –
σ

4

(
d
dt

{∥
∥∇v(t)

∥
∥2

2

}
)2

≤ 0. (2.6)

Proof By taking the inner product of (2.4)1 with vt and subsequently integrating over �,
we obtain

(
vtt(t), vt(t)

)

M2(�) –
(
N(t)�v(t), vt(t)

)

M2(�)

+
(∫ t

0
f (t – �)�v(�) d�, vt(t)

)

M2(�)
+ μ1(vt , vt)M2(�) (2.7)

+
(∫ τ2

τ1

μ2(s)x(y, 1, s, t) ds, vt(t)
)

M2(�)
–

(
lv|v|γ –2 ln |v|, vt(t)

)

M2(�) = 0.

Then a straightforward calculation yields

(
vtt(t), vt(t)

)

M2(�) =
1
2

d
dt

(∥
∥vt(t)

∥
∥2

2

)
, (2.8)

further simplification implies that

–
(
N(t)�v(t), vt(t)

)

M2(�)

= –
((

ζ0 + ζ1‖∇v‖2
2 + σ

(∇v(t),∇vt(t)
)

M2(�)

)
�v(t), vt(t)

)

M2(�)

=
(
ζ0 + ζ1‖∇v‖2

2 + σ
(∇v(t),∇vt(t)

)

M2(�)

)
∫

�

∇v(t).∇vt(t) dy

=
(
ζ0 + ζ1‖∇v‖2

2 + σ
(∇v(t),∇vt(t)

)

M2(�)

) d
dt

{
1
2

∫

�

∣
∣∇v(t)

∣
∣2 dy

}

=
d
dt

{
1
2

(

ζ0 +
ζ1

2
‖∇v‖2

2

)
∥
∥∇v(t)

∥
∥2

2

}

+
σ

4

{
d
dt

∥
∥∇v(t)

∥
∥2

2

}2

, (2.9)

with

(∫ t

0
f (t – �)�v(�) d�, vt(t)

)

L2(�)

=
∫ t

0
f (t – �)

(
�v(�), vt(t)

)

M2(�) d�

= –
∫ t

0
f (t – �)

[∫

�

∇v(y,�)∇v(y, t) dy
]

d�, (2.10)

and

–∇v(y,�).∇v(y, t) =
1
2

d
dt

{∣
∣∇v(y,�) – ∇v(y, t)(t)

∣
∣2} –

1
2

d
dt

{∣
∣∇v(y, t)

∣
∣2}. (2.11)
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Then we have

–
∫ t

0
f (t – �)

(∇v(�),∇vt(t)
)

M2(�) d�

= –
∫ t

0
f (t – �)

∫

�

[
1
2

d
dt

{∣
∣∇v(y,�) – ∇v(y, t)

∣
∣2}

]

dy ds.

–
∫ t

0
f (t – �)

∫

�

[
1
2

d
dt

{∣
∣∇v(y, t)

∣
∣2}

]

dy d�

=
1
2

∫ t

0
f (t – �)

[
d
dt

{∫

�

∣
∣∇v(y, t) – ∇v(y,�)

∣
∣2 dy

}]

d�

–
1
2

∫ t

0
f (t – �)

[
d
dt

{∥
∥∇v(y, t)

∥
∥2

2

}
]

dy d�. (2.12)

Using (2.1), one has

1
2

∫ t

0
f (t – �)

[
d
dt

{∫

�

∣
∣∇v(y, t) – ∇v(y,�)

∣
∣2 dy

}]

d�

=
1
2

d
dt

{∫ t

0
f (t – �)

[∫

�

∣
∣∇v(y, t) – ∇v(y,�)

∣
∣2 dy

]}

d�

–
1
2

∫ t

0
f ′(t – �)

[∫

�

∣
∣∇v(y, t) – ∇v(y,�)

∣
∣2 dy

]

d�

=
1
2

d
dt

(f ◦ ∇u)(t) –
1
2
(
f ′ ◦ ∇u

)
(t) (2.13)

and

–
1
2

∫ t

0
h(t – �)

[
d
dt

{∥
∥∇v(t)

∥
∥2

2

}
]

dy d�

= –
1
2

(∫ t

0
f (t – �) d�

)(
d
dt

{∥
∥∇v(t)

∥
∥2

2

}
)

dy

= –
1
2

(∫ t

0
f (�) d�

)(
d
dt

{∥
∥∇v(t)

∥
∥2

2

}
)

dy (2.14)

= –
1
2

d
dt

{(∫ t

0
f (�) d�

)
∥
∥∇v(t)

∥
∥2

2

}

+
1
2

f (t)
∥
∥∇v(t)

∥
∥2

2.

By substituting (2.13) and (2.14) into (2.12), we have

(∫ t

0
f (t – �)�v(�) d�, vt(t)

)

M2(�)

=
d
dt

{
1
2

(f ◦ ∇v)(t) –
1
2

(∫ t

0
f (�) d�

)
∥
∥∇v(t)

∥
∥2

2

}

–
1
2
(
f ′ ◦ ∇v

)
(t) +

1
2

f (t)
∥
∥∇v(t)

∥
∥2

2 (2.15)

and

–
(
lv|v|γ –2 ln |u|, vt(t)

)

M2(�) =
d
dt

{
l
γ

∥
∥v(t)

∥
∥γ

γ
–

1
γ

∫

�

|v|γ ln |v|l dy
}

. (2.16)
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Here, multiply x|μ2(s)| with equation (2.4)2 by x|μ2(s)| and integrate over � × (0, 1) ×
(τ1, τ2). Then applying (2.3)2, the following is obtained:

d
dt

1
2

∫

�

∫ 1

0

∫ τ2

τ1

s
∣
∣μ2(s)

∣
∣x2(y,ρ, s, t) ds dρ dy

= –
1
2

∫

�

∫ 1

0

∫ τ2

τ1

2
∣
∣μ2(s)

∣
∣xxρ ds dρ dy

= –
1
2

∫

�

∫ τ2

τ1

∣
∣μ2(s)

∣
∣
[
x2(y, 1, s, t) – x2(y, 0, s, t)

]
ds dy

=
1
2

(∫ τ2

τ1

|μ2(s) ds
)

‖ut‖2
2 –

1
2

∫

�

∫ τ2

τ1

∣
∣μ2(s)

∣
∣x2(y, 1, s, t) ds dy, (2.17)

and through the application of Young’s inequality, we obtain

(∫ τ2

τ1

μ2(s)x(y, 1, s, t) ds, vt(t)
)

M2(�)
≤ δ

(∫ τ2

τ1

|μ2(s) ds
)

‖vt‖2
2

+
1
4δ

∫

�

∫ τ2

τ1

∣
∣μ2(s)

∣
∣x2(y, 1, s, t) ds dy. (2.18)

By replacement (2.8)–(2.9) and (2.15)–(2.18) into (2.7), we find (2.5) and

Q′(t) ≤ –
(

μ1 –
(

δ +
1
2

)∫ τ2

τ1

∣
∣μ2(s)

∣
∣ds

)

‖vt‖2
2 (2.19)

–
(

2δ – 1
4δ

)∫

�

∫ τ2

τ1

∣
∣μ2(s)

∣
∣x2(y, 1, s, t) ds dy +

1
2
(
f ′ ◦ ∇v

)
(t)

–
1
2

f (t)
∥
∥∇v(t)

∥
∥2

2 –
σ

4

(
d
dt

{∥
∥∇v(t)

∥
∥2

2

}
)2

≤ 0. (2.20)

Thus, according to (2.2), we get(2.6), where B0 > 0. Hence, the proof is completed. �

Theorem 2.2 Let us consider that (2.1)–(2.2) hold true. For any v0, u1 ∈ F10(�) ∩ M2(�)
and f 0 ∈ M2(�, (0, 1)), one can find a weak solution v to (2.4) such that

v ∈ B
(
]0, P[, F1

0 (�)
) ∩ Q1(]0, P[, M2(�)

)
,

vt ∈ B
(
]0, T[, F1

0 (�)
) ∩ M2(]0, P[, M2(�, (0, 1)

))
.

Lemma 2.3 [34] One can find a constant b(�) > 0 in a manner that

(∫

�

|v|γ ln |v|l dy
) s

γ

≤ b
(∫

�

|v|γ ln |v|l dy + ‖∇v‖2
2

)

for any 2 ≤ s ≤ γ , provided that 0 ≤ ∫

�
|v|γ ln |v|l dy.
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Corollary 2.4 [34] One can find a constant b(�) > 0 in a way that

‖v‖2
2 ≤ c

[(∫

�

|v|γ ln |v|l dy
) 2

γ

+ ‖∇v‖
4
γ

2

]

,

provided that 0 ≤ ∫

�
|v|γ ln |v|l dy.

Lemma 2.5 [34] Let us take a constant b(�) > 0 in a way that

‖v‖s
γ ≤ b

(‖v‖γ
γ + ‖∇v‖2

2
)

for any v ∈ Mγ (�) and 2 ≤ s ≤ γ .

3 Blow-up result
Here, we establish the blow-up results for the solution of (2.4). First of all, the functional
is introduced as

F(t) = –Q(t) = –
1
2
‖vt‖2

2 –
1
2

(

ζ0 –
∫ t

0
f (�) d�

)
∥
∥∇v(t)

∥
∥2

2 –
ζ1

4
∥
∥∇v(t)

∥
∥4

2

–
1
2

(f ◦ ∇v)(t) –
l
γ

∥
∥v(t)

∥
∥γ

γ
+

1
γ

∫

�

|v|γ ln |v|l dy

–
1
2

∫

�

∫ 1

0

∫ τ2

τ1

s
∣
∣μ2(s)

∣
∣x2(y,ρ, s, t) ds dρ dy. (3.1)

Theorem 3.1 Assuming that (2.1)–(2.2) are satisfied, and given that Q(0) < 0, the solution
to problem (2.4) experiences a finite time blow-up.

Proof For the required proof, the following is obtained from (2.6):

Q(t) ≤ Q(0) ≤ 0; (3.2)

thus, we have

F
′(t) = –Q′(t) ≥ B0

(

‖vt‖2
2 +

∫

�

∫ τ2

τ1

∣
∣μ2(s)

∣
∣x2(y, 1, s, t) ds dy

)

, (3.3)

which implies that

F
′(t) ≥ B0

∥
∥vt(t)

∥
∥2

2 ≥ 0

F
′(t) ≥ B0

∫

�

∫ τ2

τ1

∣
∣μ2(s)

∣
∣x2(y, 1, s, t) ds dy ≥ 0. (3.4)

By (3.1), we have

0 ≤ F(0) ≤ F(t) ≤ 1
γ

∫

�

|v|γ ln |v|l dy. (3.5)

We set

L(t) = F
1–α(t) + ε

∫

�

vvt dy +
εμ1

2

∫

�

v2 dy +
σ

4
‖∇v‖4

2, (3.6)
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where ε > 0 will be assigned a specific value later, and

2(γ – 1)
γ 2 < α <

γ – 2
2γ

< 1. (3.7)

Multiplying v with (2.4)1 and taking the derivative of (3.6), the following is obtained:

L′(t) = (1 – α)F–α
F

′(t) + ε‖vt‖2
2 + ε

∫

�

|v|γ ln |v|l dy

– εζ0‖∇v‖2
2 – εζ1‖∇v‖4

2 + ε

∫

�

∇v
∫ t

0
f (t – �)∇v(�) d� dy

︸ ︷︷ ︸
J1

(3.8)

– ε

∫

�

∫ τ2

τ1

μ2(s)ux(y, 1, s, t) ds dy
︸ ︷︷ ︸

J2

.

Next, we have

J1 = ε

∫ t

0
h(t – �) d�

∫

�

∇v.
(∇v(�) – ∇v(t)

)
dy d� + ε

∫ t

0
f (�) d�‖∇v‖2

2

≥ ε

2

(∫ t

0
f (�) d�

)

‖∇v‖2
2 –

ε

2
(f ◦ ∇v) (3.9)

and, for δ1 > 0,

J2 ≥ –εμ1δ1‖u‖2
2 –

ε

4δ1

∫

�

∫ τ2

τ1

∣
∣μ2(s)

∣
∣x2(y, 1, s, t) ds dy. (3.10)

From (3.8), we find

L′(t) ≥ (1 – α)F–α
F

′(t) + ε‖vt‖2
2 + ε

∫

�

|v|γ ln |v|l dy

– εζ1‖∇v‖4
2 – ε[

(

ζ0 –
1
2

∫ t

0
f (�) d�

)

‖∇v‖2
2 –

ε

2
(f ◦ ∇v)

– εμ1δ1‖v‖2
2 –

ε

4δ1

∫

�

∫ τ2

τ1

∣
∣μ2(s)

∣
∣x2(y, 1, s, t) ds dy. (3.11)

At this point, by setting δ1 so that, for large κ to be specified later

1
4δ1B0

= κF–α(t),

by (3.4) and putting in (3.11), we get

L′(t) ≥ [
(1 – α) – εκ

]
F

–α
F

′(t) + ε‖vt‖2
2

–
ε

2
(f ◦ ∇v) – εζ1‖∇v‖4

2 – ε

(

ζ0 –
1
2

∫ t

0
f (�) d�

)

‖∇v‖2
2

– ε

(
μ1F

α(t)
4B0κ

)

‖v‖2
2 + ε

∫

�

|v|γ ln |v|l dy. (3.12)
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Now, for 0 < a < 1 and from (3.1), we have

ε

∫

�

|v|γ ln |v|l dy = εa
∫

�

|v|γ ln |v|l dy +
εγ (1 – a)

2
‖vt‖2

2 + εγ (1 – a)F(t)

+ ε
γ (1 – a)

2

(

ζ0 –
∫ t

0
f (�) d�

)

‖∇v‖2
2 + εl(1 – a)‖v‖γ

γ

+ ε
ζ1γ (1 – a)

2
‖∇v‖4

2 – ε
γ (1 – a)

2
((f ◦ ∇v)

+
εγ (1 – a)

2

∫

�

∫ 1

0

∫ τ2

τ1

s
∣
∣μ2(s)

∣
∣x2(y,ρ, s, t) ds dρ dy. (3.13)

Putting in (3.12), one has

L′(t) ≥ {
(1 – α) – εκ

}
F

–α
F

′(t) + εa
∫

�

|v|γ ln |u|l dy

+ ε

{
γ (1 – a)

2
+ 1

}

‖vt‖2
2 – ε

(
μ1F

α(t)
4B0κ

)

‖v‖2
2

+ ε

{
γ (1 – a)

2

(

ζ0 –
∫ t

0
f (�) d�

)

–
(

ζ0 –
1
2

∫ t

0
f (�) d�

)}

‖∇v‖2
2

+ εζ1

{
γ (1 – a)

2
– 1

}

‖∇v‖4
2 + ε

{
γ (1 – a)

2
–

1
2

}

(f ◦ ∇v)

+ εl(1 – a)‖v‖γ
γ + εγ (1 – a)F(t)

+
εγ (1 – a)

2

∫

�

∫ 1

0

∫ τ2

τ1

s
∣
∣μ2(s)

∣
∣x2(y,ρ, s, t) ds dρ dy. (3.14)

According to (3.5), Corollary 2.4, and Young’s inequality, we get

F
α(t)‖v‖2

2 ≤
(∫

�

|v|γ ln |v|l dy
)α

‖v‖2
2

≤ c
[(∫

�

|v|γ ln |v|l dx
)α+ 2

γ

+
(∫

�

|v|γ ln |v|l dy
)α

‖∇v‖
4
γ

2

]

≤ b
[(∫

�

|v|γ ln |v|l dy
) (αγ +2)

γ

+
(∫

�

|v|γ ln |v|l dy
) αγ

(γ –2)
+ ‖∇v‖2

2

]

.

(3.7) yields

2 < αγ + 2 ≤ γ and 2 <
αγ 2

γ – 2
≤ γ .

Hence, Lemma 2.3 gives

F
α(t)‖v‖2

2 ≤ c
(∫

�

|v|γ ln |v|l dy + ‖∇v‖2
2

)

. (3.15)

From (3.14) and (3.15), we have

L′(t) ≥ {
(1 – α) – εκ

}
F

–α
F

′(t) + ε

(

a –
bμ1

4B0κ

)∫

�

|u|γ ln |v|l dy
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+ ε

{
γ (1 – a)

2
+ 1

}

‖vt‖2
2 + εl(1 – a)‖v‖γ

γ + εγ (1 – a)F(t)

+ ε

{
γ (1 – a)

2

(

ζ0 –
∫ t

0
f (�) d�

)

–
(

ζ0 –
1
2

∫ t

0
f (�) d�

)

–
cμ1

2B0κ

}

‖∇v‖2
2

+ εζ1

{
γ (1 – a)

2
– 1

}

‖∇v‖4
2 + ε

{
γ (1 – a)

2
–

1
2

}

(f ◦ ∇v) (3.16)

+
εγ (1 – a)

2

∫

�

∫ 1

0

∫ τ2

τ1

s
∣
∣μ2(s)

∣
∣x2(y,ρ, s, t) ds dρ dy.

At this point, we take a > 0 small enough so that

�1 =
γ (1 – a)

2
– 1 > 0,

and we assume that

∫ ∞

0
f (�) d� <

γ (1–a)
2 – 1

γ (1–a)
2 – 1

2

=
2λ1

2λ1 + 1
(3.17)

gives

�2 =
{(

γ (1 – a)
2

– 1
)

–
(∫ t

0
f (�) d�

)(
γ (1 – a)

2
–

1
2

)}

> 0,

then we select κ in a way that

�3 = a –
cμ1

4C0κ
> 0,

�4 = �2 –
cμ1

4B0κ
> 0.

Finally, we set a and κ as fixed values and select ε to be sufficiently small fulfilling

�5 = (1 – α) – εκ > 0

and

L(0) > 0.

This implies that for some η > 0 estimate (3.14) becomes

L′(t) ≥ η

{

H(t) + ‖vt‖2
2 + ‖∇v‖2

2 + (f ◦ ∇v) + ‖v‖γ
γ +

∫

�

|v|γ ln |v|l dy

+ ‖∇v‖4
2 +

∫ 1

0

∫ τ2

τ1

s
∣
∣μ2(s)

∣
∣
∥
∥(x2(y,ρ, s, t)

∥
∥2

2 ds dρ

}

. (3.18)

Subsequently, employing the inequalities of Holder and Young, we obtain

∣
∣
∣
∣

∫

�

vvt dy
∣
∣
∣
∣

1
1–α ≤ c

[‖v‖ θ
1–α
γ + ‖vt‖

μ
1–α
2

]
, (3.19)
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where 1
μ

+ 1
θ

= 1. We take μ = 2(1 – α) to get

θ

1 – α
=

2
2(1 – α) – 1

≤ γ .

Further, for s = 2
2(1–α)–1 , estimate (3.19) gives

∣
∣
∣
∣

∫

�

vvt dx
∣
∣
∣
∣

1
1–α ≤ b

[‖v‖s
γ + ‖vt‖2

2
]
.

Then, Lemma 2.5 yields

∣
∣
∣
∣

∫

�

vvt dx
∣
∣
∣
∣

1
1–α ≤ c

[‖v‖γ
γ + ‖vt‖2

2 + ‖∇v‖2
2
]
. (3.20)

Hence,

L 1
1–α (t) =

(

F
1–α + ε

∫

�

vvt dy +
εμ1

2
‖v‖2

2 + ε
σ

4
‖∇v‖4

2

) 1
1–α

≤ c
(

F(t) +
∣
∣
∣
∣

∫

�

vvt dy
∣
∣
∣
∣

1
1–α

+ ‖v‖ 2
1–α
2 + ‖∇v‖ 4

1–α
2

)

≤ c
(
F(t) + ‖v‖γ

γ + ‖vt‖p+2
p+2 + ‖∇v‖2

2 + ‖∇v‖4
2 + ‖∇vt‖2

2
)

≤ c
(

F(t) + ‖v‖γ
γ + ‖vt‖2

2 + ‖∇v‖2
2 + ‖∇v‖4

2 + (f ◦ ∇v)

+
∫ 1

0

∫ τ2

τ1

s
∣
∣μ2(s)

∣
∣
∥
∥x2(y,ρ, s, t)

∥
∥2

2

)

ds dρ +
∫

�

|v|γ ln |v|l dy. (3.21)

Next, (3.18) and (3.21) implies

L′(t) ≥ �L 1
1–α (t) (3.22)

with � > 0, this relies on η and b only.
By integration of (3.22), we have

L α
1–α (t) ≥ 1

L –α
1–α (0) – � α

(1–α) t
.

Hence, L(t) blows up in time

P ≤ P∗ =
1 – α

�αLα/(1–α)(0)
.

The proof is completed. �

4 Conclusion
The examination of solutions to the Kirchhoff equation in the context of viscoelastic ma-
terials holds paramount significance. In our investigation, a Kirchhoff-type equation fea-
turing nonlinear viscoelastic properties, distinguished by distributed delay, logarithmic
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nonlinearity, and Balakrishnan–Taylor damping terms, was examined. Subsequent to ver-
ifying pertinent hypotheses, the manifestation of solution blow-up was conclusively es-
tablished.
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