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Abstract
In the present paper, we study stochastic stability and stochastic boundedness for the
stochastic differential equation (SDE) with multi-delay of third order. The derived
results extend and improve some earlier results in the relevant literature, which are
related to the qualitative properties of solutions to third-order delay differential
equations (DDEs) and SDEs with multi-delay. Two examples are given to illustrate the
results.

Mathematics Subject Classification: 34D20; 35B5; 34K50

Keywords: Delay differential equations (DDEs); Stochastic delay differential
equations (SDDEs); Multi-delay; Stochastic stability; Stochastic boundedness

1 Introduction
During the past several years, the DDEs and the differential equations (DEs) with multiple
delays have received more attention because of their widely applied backgrounds, such as
population ecology, heat exchanges, mechanics, and economics. Here, we can mention the
books by Burton [15], Hale [17], Hale and Verduyn Lunel [18], Iannelli [19] and numerous
researchers activities such that, Abdel-Razek et al. [1], Abou-El-Ela et al. [2], Ademola
and Arawomo [10], Ademola et al [11, 13], Mahmoud and Bakhit [24] Omeike [35, 36]
Remili and Beldjerd [37], Remili and Oudjedi [38–40], Remili [41], Tunç [43–48], and the
references therein.

Moreover, another kind of the DEs is the stochastic delay differential equations (SDDEs),
where relevant parameters are modeled as suitable stochastic processes; see the book by
Gikhman and Skorokhod [16]. The SDDE is a DE whose coefficients are random numbers
or random functions of the independent variable (or variables). It is the appropriate tool
for describing systems with external noise. The models of SDDEs play an important role
in a range of application areas, including biology, chemistry, epidemiology, mechanics,
microelectronics, economics, and finance. For example, in biology, we see that recently,
Fathalla A. Rihan [42] studied the SDDEs for the spread of Coronavirus Infection COVID-
19.
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Furthermore, SDDEs are crucial in ecology, epidemiology, and many other fields; see,
for example, Arnold [14], Mao [29–33], Øksendal [34], and references therein.

In the last few decades, the theory of SDDEs has attracted much attention, and nu-
merous papers have been published. Here, we can mention the works by Abou-El-
Ela et al. [3–7], Ademola [8], Ademola et al. [9, 12], Liu [21], Liu and Raffoul [22],
Luo [23], Mahmoud and Tunç [26–28], Tunç [49], Zhi and Liping [20], and the refer-
ences therein. Recently, Mahmoud and Bakhit [25] established the properties of solu-
tions for nonautonomous third-order stochastic differential equation with a constant de-
lay

x′′′(t) + a(t)f
(
x(t), x′(t)

)
x′′(t) + b(t)φ

(
x(t)

)
x′(t) + c(t)ψ

(
x(t – r)

)

+ g(t, x)w′(t) = p
(
t, x(t), x′(t), x′′(t)

)
.

The main purpose of this note is to establish new criteria for the uniformly stochastic
asymptotical stability (USAS) and uniformly stochastic boundedness (USB) for solutions
of the following more general third-order SDE with multi-delay as the form

[
h
(
x′(t)

)
x′′(t)

]′ +
(
ψ1

(
x, x′)x′)′ +

n∑

i=1

Qi
(
x
(
t – ri(t)

)
, x′(t – ri(t)

))

+
n∑

i=1

fi
(
x
(
t – ri(t)

))
+ αx

(
t – l(t)

)
w′(t) = ε

(
x, x′, x′′),

(1.1)

where ri(t) is continuously differentiable functions with 0 ≤ ri(t) ≤ γi, (i = 1, 2, . . . , n), γi > 0
are constants, ψ1, Qi, fi and ε are continuous functions in their respective arguments, with
Qi(x, 0) = Q(0, y) = 0 and fi(0) = 0. In addition, l(t) is a continuous function and defined
from [0,∞) to [0, l1]. w(t) ∈R

n is a standard Brownian motion.
Consider the following notations

�1(t) =
∂ψ1

∂x
dx
dt

+
∂ψ1

∂y
dy
dt

, h
(
x′(t)

)
= H(t),

�2(t) =
H ′(t)
H2(t)

and �3(t) =
(

ψ1(x, y)
H(t)

)′
.

Therefore, equivalent system of (1.1) can be written as

x′ = y,
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z

H(t)
– y�1(t) –
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–
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i
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(
t – l(t)

)
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(
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z
H(t)
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(1.2)
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Remarks
(1) Whenever αx(t – l(t))w′(t) = 0, and we consider the case that i = 1, then equation

(1.1) reduces to a DDE of third order discussed in [39].
(2) Suppose that α = 0, h(x′(t)) = g(x′′(t)), ψ1(x, x′) = h(x′(t)), and with i = 1 if we let

Q(x(t – r(t)), x′(t – r(t))) = (ϕ(x(t))x(t))′, then (1.1) can be reduced to the equation
studied in [41].

(3) In the case i = 1, α = 0 and if h(x′(t)) = 1, (ψ1(x, x′)x′)′ = f (x, x′)x′′, then equation
(1.1) specialises to that considered in [2]. Our results generalize all the previous
results.

(4) Whenever, h(x′(t)) = 1, (ψ1(x, x′)x′)′ = a(t)f (x(t), x′(t))x′′(t), and when i = 1,
Qi(x(t – ri(t)), x′(t – ri(t))) = b(t)φ(x(t))x′(t), fi(x(t – ri(t))) = c(t)ψ(x(t – r)), and
αx(t – l(t)) = g(t, x), then (1.1) reduces to the studied equation in [25]. Thus,
equation (1.1) generalizes the results obtained in [25]. Hence, our results include
and extend all the previous results.

2 Stability results
Let B(t) = (B1(t), . . . , Bm(t)) be an m-dimensional Brownian motion defined on the proba-
bility space. Consider an n-dimensional SDDE

dx(t) = N1(t, xt) dt + N2(t, xt) dB(t), xt(θ ) = x(t + θ ) – r ≤ θ ≤ 0, t ≥ t0, (2.1)

with initial value x(0) = x0 ∈ C([–r, 0];Rn). Suppose that N1 : R+ × R
n → R

n and N2 :
R

+ × R
n → R

n×m satisfy the local Lipschitz and the linear growth conditions. Hence,
for any given initial value x(0) = x0 ∈ R

n, it is known that equation (2.1) has a unique
continuous solution on t ≥ 0, which is known as x(t; x0) in this section. Suppose that
N1(t, 0) = 0 and N2(t, 0) = 0, for all t ≥ 0. Hence, the SDDE admits the zero solution
x(t; 0) ≡ 0.

Consider a functional W (t,ϕ) that can be represented in the form W (t,ϕ) = W (t,ϕ(0),
ϕ(s)), s < 0, for ϕ = xt , put

Wϕ(t,ϕ) = W (t,ϕ) = W (t, xt) = W
(
t, x, x(t + s)

)
, x = ϕ(0) = x(t), s < 0,

and suppose that the function Wϕ(t, x) has a continuous derivative with respect to t and
two continuous derivatives with respect to x.

Let C1,2(R+ ×R
n;R+) denote the family of nonnegative functionals W (t, xt) defined on

R
+ ×R

n, which are once continuously differentiable in t and twice continuously differen-
tiable in x.

By the Itô formula, we have

dW (t, xt) = LW (t, xt) dt + Wx(t, xt)N2(t, xt) dB(t),

where

LW (t, xt) = Wt(t, xt) + Wx(t, xt)N1(t, xt)

+
1
2

trace
[
NT

2 (t, xt)Wxx(t, xt)N2(t, xt)
]
,

(2.2)
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such that

Wx = (Wx1 , . . . , Wxn ), Wt(t, xt) =
∂W (t, xt)

∂t
,

Wx(t, xt) =
(

∂W (t, xt)
∂x1

, . . . ,
∂W (t, xt)

∂xn

)
.

Furthermore,

Wxx = (Wxixj )n×n =
(

∂2W (t, xt)
∂xixj

)

n×n
, i, j = 1, 2, 3, . . . , n.

Now, we will give some definitions

Definition 2.1 [32] The zero solution of (2.1) is said to be stochastically stable or stable
in probability if for every pair of ε ∈ (0, 1) and r > 0, there exists a δ = δ(ε, r) > 0 such that

P
{∣∣x(t; x0)

∣∣ < r for all t ≥ 0
} ≥ 1 – ε,

whenever |x0| < δ. Otherwise, it is said to be stochastically unstable.

Definition 2.2 [32] The zero solution of (2.1) is said to be stochastically asymptotically
stable if it is stochastically stable, and, moreover, for every ε ∈ (0, 1), there exists a δ0 =
δ0(ε) > 0, such that

P
{

lim
t→∞ x(t; x0) = 0

}
≥ 1 – ε,

whenever |x0| < δ0.

Definition 2.3 [22] (Stochastic boundedness) A solution x(t; t0, x0) of (2.1) is said to be
stochastically bounded, or bounded in probability, if it satisfies

Ex0
∥
∥x(t; t0, x0)

∥
∥ ≤ C

(‖x0‖, t0
)
, for all t ≥ t0,

where Ex0 denotes the expectation operator with respect to the probability law associated
with x0, and C : R+ ×R

+ →R
+ is a constant depending on t0 and x0. We say that solutions

of (2.1) are uniformly stochastically bounded if C is independent of t0.

Hypotheses Suppose that there exist positive constants a0, a, μ, D, C, bi, ci, di, Li, Mi,
Ni, Ai, Bi, Ci, Di, γi, H1, H2 and l1, such that

(h1) 1 < a ≤ ψ1(x, y) ≤ a0, y ∂ψ1
∂x ≤ 0 for all x, y ∈R.

(h2) Qi(x,y)
y ≥ bi > 0, y 
= 0; fi(x) ≥ dix with sup{f ′

i (x)} = ci
2 , fi(x) sgn x > 0 for x 
= 0 and

|f ′
i (x)| ≤ Li.

(h3) H1 ≤ H(t) ≤ H2 ≤ 1, H1(a – 1) ≥ 2μ.
(h4) | ∂Qi

∂x | ≤ Mi, | ∂Qi
∂y | ≤ Ni and ri(t) ≤ γi, r′

i(t) ≤ βi, 0 < βi ≤ 1.
(h5) abi – ci > 2Mi + 2bi + 6.
(h6) 0 < l(t) ≤ l1, |l′(t)| ≤ 1

2 .
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(h7) 2α2 ≤ 2H1di – H1(a + bi + 2).
(h8)

∫ ∞
–∞ | ∂ψ1(u,v)

∂u |du +
∫ ∞

–∞ | ∂ψ1(u,v)
∂v |dv ≤ D < ∞,

∫ ∞
–∞ |h′(u)|du ≤ C < ∞.

Theorem 2.1 Assuming that the hypotheses (h1)–(h8) hold true provided that

γi ≤ min

[{
2H1di – H1(bi + a + 1) – 2α2

2Ai

}
,
{

Bi(abi – ci – 2Mi – 2bi – 6)
4(μBiNi + Di)

}
,

{
BiH1(aH1 + 2H1μ + H1)

2(BiAi + Ci)

}]
,

where

Ai = H1(Mi + Li) + Ni,

Bi = 1 – βi,

Ci = Ni
(
(μ + 1)H1 + 1

)
,

Di = (Mi + Li)
{

H1(μ + 1) + μH1(1 – βi) + 1
}

,

(2.3)

with

μ =
n∑

i=1

abi + ci

4bi
.

Then, the zero solution of (1.1) is USAS.

Proof The main tool of the stability results is the continuously differentiable functional
W1 = W1(xt , yt , zt), defined as

W1 = exp

(
–

ω(t)
μ1

)
U1,

where

ω(t) =
∫ t

0
η1(s) ds, such that η1(t) =

∣∣�1(t)
∣∣ +

∣∣�2(t)
∣∣.

Considering ε ≡ 0, we can observe that the Lyapunov functional U1 = U1(xt , yt , zt),
where xt = x(t + s), s ≤ 0, can be written as follows

U1 = μ

n∑

i=1

∫ x

0
fi(ξ ) dξ + y

n∑

i=1

fi(x) + μ

∫ y

0
ψ1(x,η)ηdη

+
n∑

i=0

∫ y

0
Qi(x,η) dη + μyz +

1
2H(t)

z2 + x2 + xz

+
α2

H1

∫ t

t–l(t)
x2(s) ds +

n∑

i=1

λi

∫ 0

–ri(t)

∫ t

t+s
y2(θ ) dθ ds

(2.4)

+
n∑

i=1

δi

∫ 0

–ri(t)

∫ t

t+s
z2(θ ) dθ ds.
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Since the integrals
∫ t

t–l(t) x2(s) ds,
∫ 0

–ri(t)
∫ t

t+s y2(θ ) dθ ds and
∫ 0

–ri(t)
∫ t

t+s z2(θ ) dθ ds are posi-
tive, from the conditions (h1)–(h3), we conclude

U1 ≥ μ

n∑

i=1

∫ x

0
fi(ξ ) dξ + y

n∑

i=1

fi(x) +
1
2
μay2 +

1
2

y2
n∑

i=1

bi

+ μyz +
1
2

z2 + x2 + xz.

Therefore, we get

U1 ≥
n∑

i=1

1
2bi

(
biy + fi(x)

)2 +
(

μy +
z
2

)2

+
(

x +
z
2

)2

+
1
2
μ(a – 2μ)y2

+
n∑

i=1

1
2biy2

[
4
∫ x

0
fi(ξ )

{∫ y

0

(
μbi – f ′

i (ξ )
)
η dη

}
dξ

]
.

Since μ =
∑n

i=1
abi+ci

4bi
and sup{f ′(x)} = ci

2 , it follows that

a – 2μ =
n∑

i=1

abi – ci

2bi
> 0,

and

n∑

i=1

(
μbi – f ′

i (x)
) ≥

n∑

i=1

abi – ci

4
> 0.

Then, we get

n∑

i=1

1
2biy2

[
4
∫ x

0
fi(ξ )

{∫ y

0

(
μbi – f ′

i (ξ )
)
η dη

}
dξ

]
≥

n∑

i=1

abi – ci

4bi

∫ x

0
fi(ξ ) dξ ,

which tends to the following

U1 ≥
n∑

i=1

1
2bi

(
biy + fi(x)

)2 +
(

μy +
z
2

)2

+
(

x +
z
2

)2

+
1
2
μ

n∑

i=1

(
abi – ci

2bi

)
y2 +

n∑

i=1

abi – ci

4bi

∫ x

0
fi(ξ ) dξ .

(2.5)

Hence, there exists a positive constant E1, such that

U1 ≥ E1
(
x2 + y2 + z2). (2.6)

In view of the hypotheses (h1)–(h4) and the following inequalities

∫ 0

–ri(t)

∫ t

t+s
y2(θ ) dθ ds ≤ ‖y‖2

∫ t

t–ri(t)

(
θ – t + ri(t)

)
dθ ,
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∫ 0

–ri(t)

∫ t

t+s
z2(θ ) dθ ds ≤ ‖z‖2

∫ t

t–ri(t)

(
θ – t + ri(t)

)
dθ ,

and

∫ t

t–l(t)
x2(s) ds ≤ l(t)‖x‖2.

Therefore, we can write (2.4) as

U1 ≤ 1
2
μx2

n∑

i=1

Li + xy
n∑

i=1

Li +
1
2
μa0y2 +

1
2

y2
n∑

i=0

Mi + μyz +
1

2H1
z2

+ x2 + xz +
α2

H1
l(t)‖x‖2 +

n∑

i=1

(
λi‖y‖2 + δi‖z‖2)

∫ t

t–ri(t)

(
θ – t + ri(t)

)
dθ .

Since ri(t) ≤ γi and l(t) ≤ l1, with applying the estimate 2pq ≤ (p2 + q2), we find

U1 ≤
n∑

i=1

{
Li(μ + 1) + 3

2
+

α2

H1
l1

}
‖x‖2

+
n∑

i=1

{
μ(a + a0 + 1) + (Li + Mi) + γ 2

i λi

2

}
‖y‖2

+
n∑

i=1

{
1 + H1(μ + 1 + γ 2

i δi)
2H1

}
‖z‖2.

(2.7)

Then, there exists a positive constant E2, such that

U1 ≤ E2
(
x2 + y2 + z2). (2.8)

Now, using the equivalent system (1.2) with ε = 0 and the Itô formula (2.2), the derivative
of the Lyapunov functional U1 is given by

LU1 = y2
n∑

i=1

f ′
i (x) + μ

∫ y

0
y
∂ψ1(x,η)

∂x
ηdη +

n∑

i=1

∫ y

0

∂Qi(x,η)
∂x

ydη +
μ

H(t)
z2

–
(

μy2 +
1

H(t)
yz + xy

)
�1(t) – μy

n∑

i=1

Qi(x, y) –
ψ1(x, y)
(H(t))2 z2

–
ψ1(x, y)

H(t)
xz – x

n∑

i=1

Qi(x, y) – x
n∑

i=1

fi(x) + 2xy + yz

–
H ′(t)

2(H(t))2 z2 +
α2

H1
x2(t) –

α2

H1
x2(t – l(t)

)(
1 – l′(t)

)

+
α2

2H1
x2(t – l(t)

)
+ y2

n∑

i=1

λiγi + z2
n∑

i=1

δiγi

–
n∑

i=1

λi(1 – βi)
∫ t

t–ri(t)
y2(θ ) dθ –

n∑

i=1

δi(1 – βi)
∫ t

t–ri(t)
z2(θ ) dθ
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+
(

x + μy +
1

H(t)
z
)[ n∑

i=1

∫ t

t–ri(t)

{
∂Qi(x(s), y(s))

∂x
y(s)

+
∂Qi(x(s), y(s))

∂y
z(s)
H(s)

+ f ′(x(s)
)
y(s) ds

}]

.

Therefore, using the definition of �2(t) and considering the conditions (h1)–(h4) of The-
orem 2.1, we have

LU1 ≤ 1
2

y2
n∑

i=1

ci +
μ

H1
z2 –

(
μy2 +

1
H(t)

yz + xy
)

�1(t) +
y2

2

n∑

i=1

Mi –
1
2
�2(t)z2

– az2 – axz – xy
n∑

i=1

bi – x2
n∑

i=1

di + 2xy + yz +
α2

H1
x2(t) + y2

n∑

i=1

λiγi

+ z2
n∑

i=1

δiγi –
n∑

i=1

λi(1 – βi)
∫ t

t–ri(t)
y2(θ ) dθ

–
n∑

i=1

δi(1 – βi)
∫ t

t–ri(t)
z2(θ ) dθ

– μy2
n∑

i=1

bi +
(

x + μy +
1

H1
z
)[ n∑

i=1

∫ t

t–ri(t)

{∣∣
∣∣
∂Qi(x(s), y(s))

∂x

∣∣
∣∣y(s)

+
∣
∣∣
∣
∂Qi(x(s), y(s))

∂y

∣
∣∣
∣

z(s)
H(s)

+ f ′(x(s)
)
y(s) ds

}]

.

(2.9)

Suppose that

�(t) = –
(

μy2 +
1

H(t)
yz + xy

)
�1(t) –

1
2
�2(t)z2.

Using the Schwarz inequality |pq| ≤ 1
2 (p2 + q2) and (h3), we can write the above equation

as

�(t) ≤
(

μy2 +
1

2H1
y2 +

1
2H1

z2 +
1
2
(
x2 + y2)

)∣∣�1(t)
∣∣ +

1
2

z2∣∣�2(t)
∣∣.

Therefore, we get

�(t) ≤
{(

μ +
1

H1
+ 1

)∣∣�1(t)
∣∣ +

1
2
∣∣�2(t)

∣∣
}
(
x2 + y2 + z2)

≤
{(

μ +
1

H1
+ 1

)
+

1
2

}
(∣∣�1(t)

∣∣ +
∣∣�2(t)

∣∣)(x2 + y2 + z2).

For the positive constant E3, the last inequality becomes

�(t) ≤ E3η1(t)
(
x2 + y2 + z2),

where

E3 = max

{
1
2

,μ +
1

H1
+ 1

}
.
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It follows from (2.6) that

�(t) ≤ E3

E1
η1(t)U1. (2.10)

Thus, by (2.9), (2.10) and the fact that 2pq ≤ (p2 + q2), we obtain the following estimate

LU1 ≤ –
1

2H1

n∑

i=1

{
2H1di – H1(a + bi + 2) – 2α2 –

(
H1(Mi + Li) + Ni

)
γi

}
x2

–
n∑

i=1

{
μbi –

ci

2
–

Mi

2
–

bi

2
–

3
2

–
μ(H1(Mi + Li) + Ni)

2H1
γi – λiγi

}
y2

–
n∑

i=1

{
H1(a – 1) – 2μ

2H1
–

μ(H1(Mi + Li) + Ni)
2H2

1
γi – δiγi

}
z2 +

E3

E1
η1(t)U1

+
n∑

i=1

{
1

2H1
(Mi + Li)

(
H1(μ + 1) + 1

)
– (1 – βi)λi

}∫ t

t–ri(t)
y2(θ ) dθ

+
n∑

i=1

{
Ni

2H2
1

(
H1(μ + 1) + 1

)
– (1 – βi)δi

}∫ t

t–ri(t)
z2(θ ) dθ .

(2.11)

If we let

λi =
(Mi + Li){H1(μ + 1) + 1}

2H1(1 – βi)
,

and

δi =
Ni{H1(μ + 1) + 1}

2H2
1 (1 – βi)

.

We also have μbi – ci
2 = abi–ci

4 > 0 and H1(a – 1) ≥ 2μ; therefore, (2.11) becomes

LU1 ≤ –
1

2H1

n∑

i=1

{
2H1di – H1(a + bi + 2) – 2α2 –

(
H1(Mi + Li) + Ni

)
γi

}
x2

–
n∑

i=1

[
abi – ci – 2Mi – 2bi – 6

4

–
(Mi + Li){H1(μ + 1) + μH1(1 – βi) + 1} + μNi(1 – βi)

2H1(1 – βi)
γi

]
y2

–
n∑

i=1

{
H1(a – 1) – 2μ

2H1
–

(1 – βi)(H1(Mi + Li) + Ni) + Ni((μ + 1)H1 + 1)
2(1 – βi)H2

1
γi

}
z2

+
E3

E1
η1(t)U1.

Now, in view of (2.3), the last inequality becomes

LU1 ≤ –
1

2H1

n∑

i=1

{
2H1di – H1(a + bi + 2) – 2α2 – Aiγi

}
x2
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–
n∑

i=1

{
abi – ci – 2Mi – 2bi – 6

4
–

Di + μNiAi

2H1Bi
γi

}
y2

–
n∑

i=1

{
H1(a – 1) – 2μ

2H1
–

BiAi + Ci

2BiH2
1

γi

}
z2

+
E3

E1
η1(t)U1.

Hence, for the positive constant E4 > 0, we obtain

LU1 ≤ –E4
(
x2 + y2 + z2) +

E3

E1
η1(t)U1.

Now, if we let

σ1(t) = min
{

x′(0), x′(t)
}

, σ2(t) = max
{

x′(0), x′(t)
}

σ3(t) = min
{

x′′(0), x′′(t)
}

, σ4(t) = max
{

x′′(0), x′′(t)
}

,

then we get

ω(t) =
∫ t

0
η1(s) ds

=
∫ t

0

{∣∣�1(s)
∣∣ +

∣∣�2(s)
∣∣}ds

≤
∫ σ2(t)

σ1(t)

∣∣
∣∣
∂ψ1(u, v)

∂u

∣∣
∣∣du +

∫ σ4(t)

σ3(t)

∣∣
∣∣
∂ψ1(u, v)

∂v

∣∣
∣∣dv +

∫ σ2(t)

σ1(t)

∣∣
∣∣

H ′(u)
(H(u))2

∣∣
∣∣du

≤
∫ ∞

–∞

∣∣
∣∣
∂ψ1(u, v)

∂u

∣∣
∣∣du +

∫ ∞

–∞

∣∣
∣∣
∂ψ1(u, v)

∂v

∣∣
∣∣dv +

1
H2

1

∫ ∞

–∞

∣
∣h′(u)

∣
∣du.

From the condition (h6), it follows that

ω(t) ≤ D +
C

H2
1

< ∞. (2.12)

Because of

W1 = exp

(
–

ω(t)
μ1

)
U1, μ1 =

E1

E3
.

The stochastic derivative of the above equation is

LW1 ≤ exp

(
–

ω(t)
μ1

)(
LU1 –

E3

E1
η1(t)U1

)
.

Therefore, for the positive constant D1, we conclude that

LW1 ≤ –D1
(
x2 + y2 + z2). (2.13)

Hence, from the results (2.6), (2.8), and (2.13), all conditions of the Lemma of the stability
in [8, 14] are satisfied. Therefore, the proof of Theorem 2.1 is now complete. �
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3 Uniformly stochastically boundedness results
Theorem 3.1 Assume that the hypotheses (h1)–(h8) hold true and suppose that there exist
positive constants Fi, Ki, and m such that

Fi = a(a0 + 1) + H1(μ + 1) + 1)(Mi + Li)(a + 1) + (abi – ci)Li, (3.1)

and

Ki = H1(μ + 1) + 1 + a(a0 + 1) + H1(abi – ci)Ni. (3.2)

Furthermore, we assume that

α2 <
n∑

i=1

H1{(abi – ci + 1)di – (a + bi + 2)}
a + 1

,

and

∣∣ε
(
x, x′, x′′)∣∣ ≤ m.

Provided that the positive constant γi satisfies the following

γi ≤ min

[{
H1(H1(abi – ci + 1)di – H1(bi + a + H1) – (a + 1)α2)

(abi – ci + H1)Ai

}
,

{
H2

1 Bi(abi – ci + 2aci – 2Mi – 2bi – 6)
4(μBiNi(μH1 + aa0) + FiH1)

}
,

{
BiH1(H1(a + 1) – 2μ)
2(BiAi(a0 + 1) + Ki)

}]
.

Then, all solutions of (1.1) are USB.

Proof Here, consider ε 
= 0 and define the Lyapounov functional as follows

U(xt , yt , zt) = U1(xt , yt , zt) + U2(xt , yt , zt),

where U1 is defined in (2.4), and we define U2 as

U2 = a
ψ1(x, y)

H(t)

n∑

i=1

∫ x

0
fi(ξ ) dξ + aa0

∫ y

0
ψ1(x,η)ηdη + a

n∑

i=1

fi(x)y

+
1

2H1

n∑

i=1

bi(abi – ci)x2 +
1
2

n∑

i=1

ciy2 +
n∑

i=1

(abi – ci)
(

z
H1

+ a0y
)

x

+
a0

2H1
z2 +

aa0

H1
yz +

a
H1

α2
∫ t

t–l(t)
x2(s) ds.

(3.3)

Since
∫ t

t–l(t) x2(s) ds is nonnegative, recall the hypotheses (h1)–(h4), and then U2 becomes

U2 ≥ a2

H1

n∑

i=1

∫ x

0
fi(ξ ) dξ +

1
2

a2a0y2 + a
n∑

i=1

fi(x)y +
a0

2H1
z2 +

aa0

H1
yz
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+
1

2H1

n∑

i=1

bi(abi – ci)x2 +
1
2

n∑

i=1

ciy2 +
n∑

i=1

(abi – ci)
(

z
H1

+ a0y
)

x.

Furthermore, we have H2 ≤ H(t) ≤ H1 ≤ 1, 1
H1

≥ 1, so the above inequality leads to the
following

U2 ≥
n∑

i=1

a2

2ciy2

[
4
∫ x

0
fi(ξ ) dξ

{∫ y

0

(
ci – f ′

i (ξ )
)
}
η dη

]
+

n∑

i=1

1
2ci

(
ciy + afi(x)

)2

+
n∑

i=1

ci

2bi
(z + ay)2 +

n∑

i=1

(abi – ci)
2bi

{
bix + (z + ay)

}2.

(3.4)

Therefore, from (h2), we find

U2 ≥ a2

2

n∑

i=1

∫ x

0
fi(ξ ) dξ +

n∑

i=1

1
2ci

(
ciy + afi(x)

)2

+
n∑

i=1

ci

2bi
(z + ay)2 +

n∑

i=1

(abi – ci)
2bi

{
bix + (z + ay)

}2.

We can find a positive constant ϕ1 such that the last inequality gives

U2 ≥ ϕ1
(
x2 + y2 + z2). (3.5)

Thus, from (2.5) and (3.4), we conclude

U ≥
n∑

i=1

(
a2

2
+

abi – ci

4bi

)∫ x

0
fi(ξ ) dξ +

n∑

i=1

1
2ci

(
ciy + afi(x)

)2

+
n∑

i=1

ci

2bi
(z + ay)2 +

n∑

i=1

(abi – ci)
2bi

{
bix + (z + ay)

}2

+
n∑

i=1

1
2bi

(
biy + fi(x)

)2 +
(

μy +
z
2

)2

+
(

x +
z
2

)2

+
1
2
μ

(
abi – ci

2bi

)
y2.

Hence, for the positive constant ϕ2, we get

U(xt , yt , zt) ≥ ϕ2
(
x2 + y2 + z2). (3.6)

Since | ∂Qi
∂x | ≤ Mi, |f ′

i (x)| ≤ Li, a ≤ ψ1 ≤ a0 and H1 ≤ H(t) ≤ H2 ≤ 1, we can rewrite (3.3)
in the following form

U2 ≤ aa0

H1

n∑

i=1

Lix2 +
aa0

2
y2 +

a
2

n∑

i=1

Lixy +
1

H1

n∑

i=1

bi(abi – ci)x2

+
1
2

n∑

i=1

ciy2 +
(

z
H1

+ a0y
)

x
n∑

i=1

bi(abi – ci)

+
a0

2H1
z2 +

aa0

H1
yz +

a
H1

α2l(t)‖x‖2.
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Applying the inequality 2pq ≤ (p2 + q2) and using the condition 0 < l(t) ≤ l1, it tends to

U2 ≤ 1
2H1

n∑

i=1

{
aLi(1 + a0) + (abi – ci)(bi + 1 + a0H1) + 2aα2l1

}‖x‖2

+
1

2H1

n∑

i=1

{
aa0(H1 + 1) + H1

(
aLi + ci + a0(abi – ci)

)}‖y‖2

+
1

2H1

n∑

i=1

{
a0(a + 1) + abi – ci

}‖z‖2.

(3.7)

Then, with ϕ3 > 0, we have

U2(xt , yt , zt) ≤ ϕ3
(
x2 + y2 + z2). (3.8)

Combining the inequality (2.7) with (3.7), we conclude

U ≤ 1
2H1

n∑

i=1

{
Li

(
H1(μ + 1) + a(1 + a0)

)
+ (abi – ci)(bi + 1 + a0H1)

+ 3H1 + α2l1(2a + 1)
}‖x‖2 +

1
2H1

n∑

i=1

{
μaa0(H1 + 1)

+ a(a0 + 1) + (Li + Mi) + H1
(
aLi + ci + a0(abi – ci)

)
+ γ 2

i λi
}‖y‖2

+
1

2H1

n∑

i=1

{
H1(μ + 1) + 1 + a0(a + 1) + abi – ci + γ 2

i δi
}‖z‖2.

Hence, for the positive constant ϕ4, the last inequality gives

U(xt , yt , zt) ≤ ϕ4
(
x2 + y2 + z2). (3.9)

In view of the hypothesis of Theorem 3.1 and the Itô formula, the derivative of the Lya-
punov functional (3.3) with respect to the system (1.2) becomes

LU2 ≤ a
(

ψ1(x, y)
H(t)

)′ n∑

i=1

∫ x

0
fi(ξ ) dξ –

1
H1

�1(t)
n∑

i=1

(abi – ci)xy –
ayz
H1

�1(t)

–
aa0

H1
�1(t)y2 + aa0

∫ y

0
y
∂ψ1(x,η)

∂x
ηdη –

1
H1

n∑

i=1

(abi – ci)fi(x)x

–
a
2

n∑

i=1

ciy2 +
a

2H1
α2x2(t – l(t)

)
–

a
H1

α2x2(t – l(t)
)(

1 – l′(t)
)

+
a

H1
α2x2(t) +

m
H1

n∑

i=1

(abi – ci)|x| +
aa0m

H1
|y| +

a0m
H1

|z|

+

{
1

H1

n∑

i=1

(abi – ci)x +
aa0

H1
y +

a0

H1
z

}[ n∑

i=1

∫ t

t–ri(t)

{
∂Qi(x(s), y(s))

∂x
y(s)

+
∂Qi(x(s), y(s))

∂y
z(s)
H(s)

+ f ′(x(s)
)
y(s) ds

}]

.
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Now, we choose

�4(t) =a�3

n∑

i=1

∫ x

0
fi(ξ ) dξ –

1
H1

�1(t)
n∑

i=1

(abi – ci)xy –
ayz
H1

�1(t) –
aa0

H1
�1(t)y2.

Since |f ′
i (x)| ≤ Li, we obtain

∣∣�4(t)
∣∣ ≤ a

2
∣∣�3(t)

∣∣
n∑

i=1

Lix2 +
1

H1

∣∣�1(t)
∣∣

n∑

i=1

(abi – ci)|x||y|

+
a|y||z|

H1

∣
∣�1(t)

∣
∣ +

aa0

H1

∣
∣�1(t)

∣
∣y2.

Using the fact that 2pq ≤ (p2 + q2), we get

∣∣�4(t)
∣∣ ≤

n∑

i=1

{
1
2

Li +
1

H1
(abi – ci) +

a
H1

+
aa0

H1

}
(∣∣�1(t)

∣∣ +
∣∣�3(t)

∣∣)(x2 + y2 + z2).

If we let

η2(t) =
∣
∣�1(t)

∣
∣ +

∣
∣�3(t)

∣
∣,

then from (3.5), we conclude

∣
∣�4(t)

∣
∣ ≤ ϕ5

ϕ1
U2η2(t), (3.10)

where

ϕ5 = max

{
1
2

Li,
1

H1
(abi – ci) +

a
H1

+
aa0

H1

}
.

Considering the conditions l(t) ≤ 1
2 , y ∂ψ1(x,y)

∂x ≤ 0 and using equation (3.10), we find

LU2 ≤ ϕ5

ϕ1
η2(t)U2 –

1
H1

n∑

i=1

(abi – ci)fi(x)x –
a
2

n∑

i=1

ciy2

+
a

H1
α2x2(t) +

m
H1

n∑

i=1

(abi – ci)|x| +
aa0m

H1
|y| +

a0m
H1

|z|

+

{
1

H1

n∑

i=1

(abi – ci)x +
aa0

H1
y +

a0

H1
z

}[ n∑

i=1

∫ t

t–ri(t)

{
∂Qi(x(s), y(s))

∂x
y(s)

+
∂Qi(x(s), y(s))

∂y
z(s)
H(s)

+ f ′(x(s)
)
y(s) ds

}]

.
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Now, from the hypotheses (h2) and (h4), we obtain

LU2 ≤ ϕ5

ϕ1
η2(t)U2 +

{
1

H1

n∑

i=1

(abi – ci)|x| +
aa0

H1
|y| +

a0

H1
|z|

}

m

+

{ n∑

i=1

(abi – ci)di –
aα2

H1
–

n∑

i=1

(
(abi – ci)(H1(Mi + Li) + Ni)

2H2
1

γi

)}

x2

–

{
a
2

n∑

i=1

ci –
n∑

i=1

(
aa0(H1(Mi + Li) + Ni)

2H2
1

γi

)}

y2

+
a0

2H1

n∑

i=1

{(
H1(Mi + Li) + Ni

)
γi

}
z2

+
1

2H1

n∑

i=1

{
a0(Mi + Li)(a + 1) + (abi – ci)Li

}∫ t

t–ri(t)
y2(θ ) dθ

+
1

2H2
1

n∑

i=1

{
a(a0 + 1) + H1(abi – ci)

}∫ t

t–ri(t)
z2(θ ) dθ .

(3.11)

By compiling the above inequality with (2.11), from (3.1) and (3.2), we conclude

LU ≤
{

1
H1

n∑

i=1

(abi – ci + 1)|x| +
(

μ +
aa0

H1

)
|y| +

(a0 + 1)
H1

|z|
}

m +
E3

E1
η1(t)U1

+
ϕ5

ϕ1
η2(t)U2 –

{ n∑

i=1

(abi – ci + 1)di –
1
2

n∑

i=1

(a + bi + 2) –
(a + 1)α2

H1

–
n∑

i=1

(
(abi – ci + H1)Ai

2H2
1

γi

)}

x2 –

{ n∑

i=1

(
abi – ci + 2aci – 2Mi – 2bi – 6

4

)

–
n∑

i=1

(
(μH1 + aa0)Ai

2H2
1

γi – λiγi

)}

y2

–
1

2H1

{

H1(a + 1) – 2μ –
1

H1
(a0 + 1)

n∑

i=1

Aiγi – δiγi

}

z2

+
n∑

i=1

{
1

2H1
Fi – (1 – βi)λi

}∫ t

t–ri(t)
y2(θ ) dθ

+
n∑

i=1

{
1

2H2
1

Ki – (1 – βi)δi

}∫ t

t–ri(t)
z2(θ ) dθ .

We take

λi =
Fi

2H1(1 – βi)
and δi =

Ki

2H2
1 (1 – βi)

.

Therefore, from (2.3) and since Bi = (1 – βi), we obtain

LU ≤
{

1
H1

n∑

i=1

(abi – ci + 1)|x| +
(

μ +
aa0

H1

)
|y| +

(a0 + 1)
H1

|z|
}

m +
E3

E1
η1(t)U1
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+
ϕ5

ϕ1
η2(t)U2 –

{ n∑

i=1

(abi – ci + 1)di –
n∑

i=1

(a + bi + 1) –
(a + 1)α2

H1

–
n∑

i=1

(
(abi – ci + H1)Ai

2H2
1

γi

)}

x2 –
n∑

i=1

{
abi – ci + 2aci – 2Mi – 2bi – 6

4

–
(μH1 + aa0)Ai

2H2
1

γi –
Fi

2H1Bi
γi

}
y2

–

{
1

2H1

(
H1(a + 1) – 2μ

)
–

1
2H2

1

n∑

i=1

(a0 + 1)BiAi + Ki

Bi
γi

}

z2.

Therefore, we can write the above inequality as follows

LU ≤ E3

E1
η1(t)U1 +

ϕ5

ϕ1
η2(t)U2 – ζ

(
x2 + y2 + z2) + κζ

(|x| + |y| + |z|)

=
E3

E1
η1(t)U1 +

ϕ5

ϕ1
η2(t)U2 –

ζ

2
(
x2 + y2 + z2)

–
ζ

2
{(|x| – κ

)2 +
(|y| – κ

)2 +
(|z| – κ

)2} +
3ζ

2
κ2

≤ E3

E1
η1(t)U1 +

ϕ5

ϕ1
η2(t)U2 –

ζ

2
(
x2 + y2 + z2) +

3ζ

2
κ2, for some κ , ζ > 0,

where

κ = m max

{
abi – ci + 1,μ +

aa0

H1
,

a0 + 1
H1

}
.

From (2.8) and (3.8), we obtain the following estimate

�5(t) =
E3

E1
η1(t)U1 +

ϕ5

ϕ1
η2(t)U2

≤ E3

E1
η1(t)E2

(
x2 + y2 + z2) +

ϕ5

ϕ1
η2(t)ϕ3

(
x2 + y2 + z2)

≤ ϕ6
(∣∣η1(t)

∣∣ +
∣∣η2(t)

∣∣)(x2 + y2 + z2),

where

ϕ6 = max

{
E2E3

E1
,
ϕ3ϕ5

ϕ1

}
.

According to inequality (3.6), we conclude

�5(t) ≤ ϕ6

ϕ2

(∣∣η1(t)
∣
∣ +

∣
∣η2(t)

∣
∣)U .

It follows that

LU ≤ ϕ6

ϕ2

(∣∣η1(t)
∣
∣ +

∣
∣η2(t)

∣
∣)U –

ζ

2
(
x2 + y2 + z2) +

3ζ

2
κ2. (3.12)
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Define the Lyapunov functional W2(xt , yt , zt) as follows

W2 = exp

{
–

ϕ6

ϕ2
η3(t)

}
U(xt , yt , zt),

where

η3(t) =
∫ t

0

{
η1(t) + η2(t)

}
dη.

Then, from the hypotheses h1 and h3 and (2.12), we conclude

η3(t) =
∫ t

0

(
η1(s) + η2(s)

)
ds ≤ D +

C
H2

1
+

∫ t

0

{∣∣�1(s)
∣∣ +

∣∣�3(s)
∣∣}ds

≤ 2D +
C

H2
1

+
1

H1

∫ σ2(t)

σ1(t)

∣∣
∣∣
∂ψ1(u, v)

∂u

∣∣
∣∣du +

1
H1

∫ σ4(t)

σ3(t)

∣∣
∣∣
∂ψ1(u, v)

∂v

∣∣
∣∣dv

+
a0

H2
1

∫ σ2(t)

σ1(t)

∣∣H ′(u)
∣∣du

≤ 2D +
C

H2
1

+
1

H1

∫ ∞

–∞

∣
∣∣
∣
∂ψ1(u, v)

∂u

∣
∣∣
∣du +

1
H1

∫ ∞

–∞

∣
∣∣
∣
∂ψ1(u, v)

∂v

∣
∣∣
∣dv

+
a0

H2
1

∫ ∞

–∞

∣∣h′(u)
∣∣du.

It follows form (h8) that

η3(t) ≤ D
(

2 +
1

H1

)
+

C
H2

1
(a0 + 1) < ∞.

Then, the stochastically derivative of W2 becomes

LW2 = exp

{
–

ϕ6

ϕ2
η3(t)

}{
LU –

ϕ6

ϕ2

(∣∣η1(t)
∣
∣ +

∣
∣η2(t)

∣
∣)U

}
.

Hence, from (3.12), we find

LW2 ≤ M
{

–
ζ

2
(
x2 + y2 + z2) +

3ζ

2
κ2

}
, for some M > 0. (3.13)

Thus, from inequalities (3.6) and (3.9) and by taking ν(t) = ζ /2, ρ4(t) = (3ζ /2)κ2 and
n = 2, we see that the conditions (i) and (ii) of Lemma 2.4 in [8, 14] are satisfied. As well
as we can test that the condition (iii) is satisfied with q1 = q2 = n = 2 with ρ3 = 0. Then, all
conditions of Lemma 2.4 in [8, 14] are achieved.

So, with ν(t) = ζ /2, β(t) = (3ζ /2)κ2, n = 2, and ρ3 = 0, we note that

∫ t

t0

{
ρ3ν(u) + ρ4(u)

}
e–

∫ t
u ν(s) ds du = (3ζ /2)κ2

∫ t

t0

e– ζ
2

∫ t
u ds du ≤ 3κ2,

for all t ≥ t0 ≥ 0. Thus, condition (2.4) [8] holds. Now, since

gT =
(
00 – αx

(
t – l(t)

))
,
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Ux = (U1)x + (U2)x

= μ

n∑

i=1

fi(x) +
n∑

i=1

fi(x) + 2x + z +
aψ ′

i (x, y)
H(t)

n∑

i=1

∫ x

i=0
fi(ξ ) dξ

+
aψi(x, y)

H(t)

n∑

i=1

fi(ξ ) +
n∑

i=1

bi

H1
(abi – ci)x +

n∑

i=1

(abi – ci)
(

z
H1

+ a0y
)

,

Uy = (U1)y + (U2)y

=
n∑

i=1

fi(x) + μψi(x, y)y +
n∑

i=1

Qi(x, y) + μz + aa0ψ1(x, y)y

+ a
n∑

i=1

fi(x) + a0xy
n∑

i=1

ci +
n∑

i=1

abi – ci +
aa0

H1
z,

Uz = (U1)z + (U2)z = μy +
1

H(t)
z + x +

x
H1

n∑

i=1

(abi – ci)x +
a

H1
z +

aa0

H1
y,

we have

∣∣Uxi (t, x)Gik(t, x)
∣∣ ≤ α

[{
H1(μ + 1) + 3 + a(a0 + 1)

2H1

}
x2(t – l(t)

)

+
(

H1 +
∑n

i=1 (abi – ci)
2H1

)
x2 +

(
μ + aa0

2

)
y2

+
(

a + 1
2H1

)
z2

]
:= χ (t).

Thus, condition (2.3) in [8, 14] is satisfied. Using Lemma 2.4 in [8, 14], we find that all
solutions of (1.1) are USB, and we can also conclude

Ex0
∥
∥x(t, t0, x0)

∥
∥ ≤ {

Cx2
0 + 3κ2} 1

2 , for all t ≥ t0 ≥ 0.

Hence, the proof of Theorem 3.1 is now complete. �

4 Examples and discussion
Example 4.1 In a particular case n = 1, consider the following third-order SDDE

{(
3
4

+
1
4

e–4x′
)

x′′
}′

+
{(

19 +
π

2
+ arctan

(
xx′)

)
x′

}′
+ 9x

(
t – r(t)

)
x′(t – r(t)

)

+ sin
(
x
(
t – r(t)

)
x′(t – r(t)

))
+ 25x

(
t – r(t)

)

+
x(t – r(t))

1 + x(t – r(t))
+

1
4

sin

(
x
(

t –
1
2

e–t
))

= 0.

(4.1)

The equivalent system of (4.1) is

x′ = y,

y′ =
z

3
4 + 1

4 e–4y
,
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z′ = –
(

19 +
π

2
+ arctan(xy)

)
z

3
4 + 1

4 e–4y

– y
(

–y2

1 + x2y2 –
x

1 + x2y2
z

3
4 + 1

4 e–4y

)
–

(
9xy + sin (xy)

)
(4.2)

+
∫ t

t–r(t)

(
9y(s) + y(s) cos

(
x(s)y(s)

))
y(s) ds

+
∫ t

t–r(t)

(
9y(s) + y(s) cos

(
x(s)y(s)

)) z(s)
3
4 + 1

4 e–4y(s)
ds –

{
25x +

x
1 + x4

}

+
∫ t

t–r(t)

{
25x(s) +

1 – 2x4(s)
1 + x4(s)

}
ds –

1
4

sin

(
x
(

t –
1
4

et
))

.

Comparing equation (1.2) with (4.2), we have

h(y) =
3
4

+
1
4

e–4y, then
3
4

≤ h(y) ≤ 1.

Therefore, we get

H1 =
3
4

, H2 = 1.

The derivative of h(y) is

h′(y) = –e–4y.

Then, we find

∫ ∞

–∞

∣∣–e–4v∣∣dv = 2
∫ ∞

0

∣∣e–4v∣∣dv =
1
2

= C < ∞. (4.3)

We can see that Fig. 1 illustrates the behavior of h(y) in the interval x ∈ [0, 50].

Figure 1 Trajectory of h(y)
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We also have the function

ψ1(x, y) = 19 +
π

2
– arctan(xy), so 19 ≤ ψ1(x, y) ≤ 19 +

π

2
,

then, we get a = 19 and a0 = 19 + π
2 .

We also obtain

∂ψ1(x, y)
∂x

=
–y

1 + x2y2 , so y
∂ψ1(x, y)

∂x
=

–y2

1 + x2y2 ≤ 0,

and

∂ψ1(x, y)
∂y

=
–x

1 + x2y2 .

Therefore, we can conclude

∫ ∞

–∞

∣∣∣
∣

–v
1 + u2v2

∣∣∣
∣du +

∫ ∞

–∞

∣∣∣
∣

–u
1 + u2v2

∣∣∣
∣dv = 2π = D < ∞. (4.4)

Figure 2 shows the behavior of the function ψ1(x, y) through the interval x ∈ [–4, 4],
y ∈ [–4, 4], and also it shows that y ∂ψ1

∂x < 0, for all x, y.
The function

Q(x, y) = 9xy + sin(xy), Q(0, y) = Q(x, 0) = 0

fulfills

Q(x, y)
y

= 9x +
sin(xy)

y
≥ 8 = b.

Figure 2 Trajectory of ψ1(x, y), y
∂ψ1
∂x
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Figure 3 Trajectory of ∂Q(x,y)
∂y , ∂Q(x,y)

∂x and Q(x,y)
y

The derivatives of Q(x, y) are defined as follows

∂Q(x, y)
∂x

= 9y + y cos(xy), so
∣
∣∣
∣
∂Q(x, y)

∂x

∣
∣∣
∣ ≤ 10 = M,

∂Q(x, y)
∂y

= 9x + x cos(xy), so
∣∣
∣∣
∂Q(x, y)

∂y

∣∣
∣∣ ≤ 10 = N .

For the behavior of the functions ∂Q(x,y)
∂y , ∂Q(x,y)

∂x , and Q(x,y)
y , see Fig. 3.

Now, the function

f (x) = 25x +
x

1 + x4 , then
f (x)

x
= 25 +

1
1 + x4 ≥ 25 = d.

It follows that

f ′(x) = 25 +
1 – 2x4

(1 + x4)2 ,
∣
∣f ′(x)

∣
∣ ≤ 26 = L.

Therefore, we find

sup
{

f ′(x)
}

= 26 =
c
2

.

Figure 4 gives the path of f (x)
x , f ′(x).

Finally, we obtain

αx
(
t – l(t)

)
=

1
4

sin

(
x
(

t –
1
2

e–t
))

,

so α =
1
4

and l(t) =
1
2

e–t , then
∣∣l′(t)

∣∣ =
1
2

e–t ≤ 1
2

.

Figure 5 shows the behavior of the stochastic term 1
4 sin(x(t – 1

2 et)), and it also shows
that |l′(t)| < 1

2 on the interval [0, 30].
Now, we have

μ =
ab + c

4b
= 6.38, then ab – c = 100 > 0,
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Figure 4 Path of f (x)
x , f ′(x)

Figure 5 Trajectory of the stochastic term

and

2M + 2b + 6 = 42, so ab – c > 2M + 2b + 6.

Since α2 = 1
16 , we have

2α2 =
1
8

< 2H1d – H1(a + b + 2) = 15.75,

and

H1(a – 1) = 13.5 > 2μ.

Suppose that β = 1
2 , then we conclude

LU1 ≤(10.42 – 24.67γ )x2 – (14.5 – 585.89γ )y2 – (0.49 – 125.06γ )z2 +
E3

E1
η1(t)U1.
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Therefore, we get

γ ≤ min(0.42, 0.025, 0.004).

Hence all hypotheses of Theorem 2.1 are achieved, then the zero solution of (4.1) is
USAS.

Example 4.2 Consider the following SDDE

{(
3
4

+
1
4

e–4x′
)

x′′
}′

+
{(

19 +
π

2
+ arctan

(
xx′)

)}′

+ 9x
(
t – r(t)

)
x′(t – r(t)

)

+ sin
(
x
(
t – r(t)

)
x′(t – r(t)

))
+ 25x

(
t – r(t)

)

+
x(t – r(t))

1 + x(t – r(t))
+

1
4

sin

(
x
(

t –
1
2

et
))

= ε
(
x, x′, x′′).

(4.5)

Using the estimates in Example 4.1, we get

H1 =
3
4

, H2 = 1, a = 19, a0 = 19 +
π

2
,

b = 8, M = N = 10,

c = 52, d = 25, L = 26, μ = 6.38 and α =
1
4

.

Since

H1{(ab – c + 1)d – (a + b + 2)}
a + 1

= 97.425,

then we get

α2 <
H1{(ab – c + 1)d – (a + b + 2)}

a + 1
.

Let m = 0.01, so we obtain

LU ≤ – (84.83 – 3313.56γ )x2 – (508.5 – 27499.62γ )y2

– (1.49 – 1395.63γ )z2 + 1.35|x| + 4.48|y| + 0.25|z|,

provided that

γ < min(0.025, 0.019, 0.0001).

If we take ζ = 0.2 and m = 0.01, then we find

κ = 0.01 max{134.67, 447.92, 24.57} ∼= 4.48.
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Now, we can satisfy the condition (ii) of Theorem 2.2 in [28] by taking

ν = 0.1 and ρ4(t) =
(

3ζ

2

)
κ2 = 6.04, with n = 2.

Then, since q1 = q2 = n = 2, we get all assumptions of Theorem 2.2 [28] are satisfied.
It follows from the above estimates, the following inequality holds

∫ t

t0

{
ρ3ν(u) + ρ4(u)

}
e
∫ u

t0
ν(s) ds du ≤ 3κ2 = 60.2, for all t ≥ t0 ≥ 0.

And we also get

∣
∣Uxi (t, x)Gik(t, x)

∣
∣ ≤ 1

4
(
239.13x2(t – l(t)

)
+ 67.17x2 + +168.77y2 + 13.33z2)

:= χ (t).

Hence, Lemma 2.4 in [28] implies that the zero solution of (4.5) is USB.
Now, in view of Figs. 6 and 7, we find that the behavior for the solutions of (4.2) and (4.5)

are asymptotically stable, such that the Figs. 6 and 7 illustrate the behavior of the solution,
when α = 0.25 and α = 1, respectively. We note that, when α is increased, the stochasticity

Figure 6 The behavior of the solutions with α = 0.25

Figure 7 The behavior of the solutions with α = 1
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Figure 8 The behavior of the solutions with sin(x(t – 1
2 e

–t )) = 1 and α = 0.25

Figure 9 The behavior of the solutions with sin(x(t – 1
2 e

–t )) = 1 and α = 1

becomes more pronounced. On the other hand, if we take the function sin(x(t – 1
2 e–t)) = 1,

then we get Figs. 8 and 9, with α = 0.25 and α = 1, respectively.
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