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Abstract
In this paper we are concerned with an inverse problem with Robin boundary
conditions, which states that, when the potential on [0, 1/2] and the coefficient at the
left end point are known a priori, a full spectrum uniquely determines its potential on
the whole interval and the coefficient at the right end point. We shall give a new
method for reconstructing the potential for this problem in terms of the Mittag-Leffler
decomposition of entire functions associated with this problem. The new
reconstructing method also deduces a necessary and sufficient condition for the
existence issue.
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1 Introduction
Consider the Sturm–Liouville operator L given by

–u′′ + q(x)u = λ2u, x ∈ [0, 1], (1.1)

with the Robin boundary conditions

u′(0) – h1u(0) = 0, (1.2)

u′(1) + h2u(1) = 0, (1.3)

where q ∈ L2[0, 1] is real-valued and h1, h2 are real constants.
In 1978, Hochstadt and Lieberman [6] proved the remarkable uniqueness theorem,

which proved that, if the potential q(x) ∈ L1[0, 1] in equation (1.1) together with real
constants h1, h2 in (1.2)–(1.3) is known a priori on the half-interval (1/2, 1), then the
spectrum σ = {λ2

n}+∞
n=0 alone is sufficient for the unique specification of q(x) on (0, 1/2).

The Hochstadt–Lieberman problem was the first half-inverse problem. Various aspects
of this so-called half-inverse spectral problem were investigated in [3, 7, 12, 13] and other
works. In [12, 13], Martinyuk and Pivovarchik studied this type problems with Dirichlet
and Robin boundary conditions respectively for a potential q ∈ L2[0, 1]. They proposed a
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method of recovering the potential on the whole interval and obtained the necessary and
sufficient conditions of the Hochstadt–Lieberman problem solvability. Buterin [3] proved
the uniqueness theorem for this half-inverse spectral problem for a second-order differ-
ential pencil with spectral parameter dependent boundary conditions by Weyl function.
Using the transformation operator and the properties of Riesz basis, the necessary and suf-
ficient conditions of the Hochstadt–Lieberman problem solvability have been obtained in
[7] for singular potentials from the space W –1

2 (0, 1). Furthermore, a reconstruction algo-
rithm was provided.

Our main goal in this paper is to provide a new method for reconstructing potentials
on the half-interval [1/2, 1] and h2 for the above inverse spectral problem. We also give a
necessary and sufficient condition for the existence issue.

Let u+(x,λ) be the solution of equation (1.1) satisfying the initial conditions u+(1,λ) = 1
and u′

+(1,λ) = –h2. In order to solve the half-inverse problem by finding the functions
u+(1/2,λ) and u′

+(1/2,λ), the method we use is to employ the Mittag-Leffler expansion for
meromorphic functions, which has been used in [14] to uniquely reconstruct the potential
for the interior transmission eigenvalue problem and the Sturm–Liouville problem with
the potential function known on the subinterval (0, a) (a < 1/2) [15], respectively. This can
help us to use the Levin–Lyubarski interpolation formula to find the unknown u+(1/2,λ)
and u′

+(1/2,λ). Moreover, this decomposition also provides a well-suited situations for uti-
lizing the Levin–Lyubarski interpolation formula to our problem. Let us mention that our
reconstructing process also deduces the existence condition of solutions for the above
half-inverse spectral problem. In fact, the necessary and sufficient conditions are similar
to the conditions of Pivovarchik [12, 13]. The difference is the method by which the func-
tions u+(1/2,λ) and u′

+(1/2,λ) are constructed. Let us mention that our method can also
be used to treat the case where potential q is known a priori on the interval [0, a] with
a < 1/2 (see [8, 14] and the references therein).

Throughout this paper, we denote by La the class of entire functions of exponential type
≤ a that belong to L2(–∞,∞) for real λ [10].

The paper is organized as follows. In Sect. 2 we give some preliminaries that will be
needed subsequently. Section 3 presents our main results for inverse problems.

2 Preliminaries
In this section, we recall the spectral characteristics of the operator L and give some the-
orems we will use.

Let u–(x,λ) be the solution of equation (1.1) satisfying the initial conditions u–(0) = 1
and u′

–(0) = h1. According to [11], one knows that

u–(x,λ) = cosλx + K1(x, x, h1)
sinλx

λ
–

∫ x

0

∂

∂t
K1(x, t, h1)

sinλt
λ

dt, (2.1)

where

K1(x, t, h1) = h1 + K̃1(x, t) – K̃1(x, –t) + h1

∫ x

t

(
K̃1(x, s) – K̃1(x, –s)

)
ds,

and K̃1(x, t) is the solution of the integral equation

K̃1(x, t) =
1
2

∫ x+t
2

0
q(s) ds +

∫ x+t
2

0
dα

∫ x–t
2

0
q(α + β)K̃1(α + β ,α – β) dβ . (2.2)
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The solution K̃1(x, t) possesses partial derivatives of first order with ∂
∂t K̃1(x, t) ∈ L2[0, 1/2]

and ∂
∂x K̃1(x, t) ∈ L2[0, 1/2]. Moreover,

K̃1(x, x) =
1
2

∫ x

0
q(t) dt, and K̃1(x, 0) = 0. (2.3)

By using (2.1) we infer

u–(1/2,λ) = cos(λ/2) +
h1 + K1

λ
sin(λ/2) +

ψ–,0(λ)
λ

,

u′
–(1/2,λ) = –λ sin(λ/2) + (h1 + K1) cos(λ/2) + ψ–,1(λ),

(2.4)

where K1 = K̃1(1/2, 1/2) defined by (2.3) and ψ–,j ∈L1/2 for j = 0, 1.
On the other hand, we denote by u+(x,λ) the solution of (1.1) satisfying the initial condi-

tions u+(1,λ) = 1 and u′
+(1,λ) = –h2. One knows that u+(x,λ) has a similar representation

as (2.1):

u+(x,λ) = cosλ(1 – x) +
K2(x, x, h2)

λ
sinλ(1 – x)

–
∫ 1

x

∂

∂t
K(x, t, h2)

sinλ(1 – t)
λ

dt, (2.5)

where the function K2(x, t, h2) satisfies the expression similar to (2.2). This gives the
asymptotics of u+(x,λ) by

u+(1/2,λ) = cos(λ/2) +
K2 + h2

λ
sin(λ/2) +

ψ+,0(λ)
λ

,

u′
+(1/2,λ) = λ sin(λ/2) – (K2 + h2) cos(λ/2) + ψ+,1(λ),

(2.6)

where K2 = 1
2
∫ 1

1/2 q(t) dt and ψ+,j ∈L1/2 for j = 0, 1.
The eigenvalues {λ2

n}+∞
n=0 of problem (1.1)–(1.3) coincide with the zeros of

�(λ) = u′
–(1,λ) + h2u–(1,λ), (2.7)

which are called the characteristic function of (1.1)–(1.3). From (2.1), �(λ) has the follow-
ing representation:

�(λ) = –λ sinλ + (h1 + K1 + h2 + K2) cosλ + ψ̂(λ), (2.8)

where ψ̂ ∈ L1. It is known that the function �(λ) is entire in λ of type 1. The eigenvalues
{λ2

n}+∞
n=0 behave asymptotically as follows:

λn = nπ +
1

nπ
(h1 + K1 + h2 + K2) +

αn

n
(2.9)

as n → ∞, where {αn}+∞
n=0 ∈ l2, which implies that

h2 + K2 = π lim
n→+∞ n

(
λn – (n – 1)π

)
– (h1 + K1). (2.10)
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Moreover, the specification of the spectrum {λ2
n}+∞

n=0 uniquely determines the characteristic
function �(λ) by the formula [4, Theorem 1.1.4]:

�(λ) =
(
λ2

0 – λ2) ∞∏
n=1

λ2
n – λ2

n2π2 . (2.11)

We write the Mittag-Leffler theorem [1, Theorem 3.6.2] for the case of simple poles as
follows.

Theorem 2.1 Assume that F(z) is a meromorphic function and has only simple poles
{zj}j∈Z with zj distinct and |zj| → ∞ as j → ∞. Let cj be the residues of poles zj of F(z).
If

∑
j∈Z

|cj|
|zj| < ∞, (2.12)

then there exists an entire function f (z) such that

F(z) = f (z) +
∑
j∈Z

cj

z – zj
, (2.13)

where the series in the right-hand side of (2.13) converges uniformly on every bounded set
of C not containing the points {zj}j∈Z.

The following theorem [9, Theorem A] is corresponding to sine type functions, which
plays an important role in our paper.

Theorem 2.2 (Levin–Lyubarski interpolation formula) Let f be a sine type function with
indicator diagram of width 2a, and {zk}k∈Z be the set of its zeros. Then, for any sequence
{ck}k∈Z ∈ lp with 1 < p < ∞, the interpolation series

φ(λ) = f (λ)
∑
k∈Z

ck

ḟ (zk)(λ – zk)
(2.14)

converges uniformly on any compact subsets in C and also in the norm of Lp(–∞,∞) on
the real axis, which belongs to La.

3 Inverse spectral problem
In this section, we show the way of recovering q on [1/2, 1] and give conditions of the
existence of the solution in an implicit form.

Denote by v–(x,λ) the solution of (1.1) satisfying the initial conditions v–(0,λ) = 0 and
v′

–(0,λ) = 1. We infer

v–(1/2,λ) =
1
λ

sin(λ/2) +
K1 + h1

λ2 cos(λ/2) +
ϕ–,0(λ)

λ2 ;

v′
–(1/2,λ) = cos(λ/2) –

K1 + h1

λ
sin(λ/2) +

ϕ–,1(λ)
λ

,
(3.1)

where ϕ+,j ∈L1/2 for j = 0, 1.
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We denote by {μn}n∈Z the zeros of u–(1/2,λ), then

μn = (2n – 1)π +
K1 + h1

nπ
+

κn

n
, (3.2)

as n → ∞, where {κn}n∈Z ∈ l2. It is easy to say that v–(1/2,λ)�(λ)
u–(1/2,λ) is meromorphic and has

only simple poles {μn}n∈Z. Let en be the residues of v–(1/2,λ)�(λ)
u–(1/2,λ) at μn. One has

en =
v–(1/2,μn)�(μn)

u̇–(1/2,μn)
(3.3)

with u̇– = ∂u–/∂λ. By virtue of (2.4), (2.8), and (2.9), we have

en =
K2 + h2 – K1 – h1

nπ
+

ζn

n
, (3.4)

where {ζn}n∈Z ∈ l2, which together with (3.2) yields {en/μn}n∈Z ∈ l1.
By Mittag-Leffler expansion, there exists an entire function a0(λ) such that

v–(1/2,λ)�(λ)
u–(1/2,λ)

= a0(λ) +
∑
n∈Z

en

λ – μn
. (3.5)

Denote by

b0(λ) = u–(1/2,λ)
∑
n∈Z

en

λ – μn
. (3.6)

Substituting (3.6) into (3.5), we arrive at

v–(1/2,λ)�(λ) = a0(λ)u–(1/2,λ) + b0(λ). (3.7)

It is easy to see that a0(λ) and b0(λ) are real-valued functions when λ ∈R.

Lemma 3.1 Let a0(λ) and b0(λ) be defined by (3.5) and (3.6), respectively. If we assume
that

ϕ0(λ) = λ
(
a0(λ) + 1 – cosλ

)
+ (h1 + K1 + h2 + K2) sinλ,

ϕ1(λ) = λb0(λ) – (h1 + K1 – h2 – K2) sin(λ/2),
(3.8)

then ϕ0(λ) ∈L1 and ϕ1(λ) ∈L1/2.

Proof Recall that {μn}n∈Z are the zeros of u–(1/2,λ), then (3.7) yields

b0(μn) = v–(1/2,μn)�(μn). (3.9)
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By virtue of the second equation of (3.8) together with (3.9) and using the asymptotic
formulae (3.1) and (2.8) we get

ϕ1(μn) = μn

[
v–(1/2,μn)�(μn) –

h1 + K1 – h2 – K2

μn
sin(μn/2)

]

= μn

[
1
2

cos(3μn/2) –
1
2

cos(μn/2) +
h2 + K2

2μn
sin(3μn/2)

–
4h1 + 4K1 – h2 – K2

2μn
sin(μn/2)

]
. (3.10)

Using (3.2) we get

cos(3μn/2) = (–1)n–1 3(K1 + h1)
2nπ

+
αn

n
,

cos(μn/2) = (–1)n (K1 + h1)
2nπ

+
ξn

n
,

sin(3μn/2) = (–1)n + ϑn,

sin(μn/2) = (–1)n–1 + δn,

(3.11)

where {αn}n∈Z,n�=0, {ξn}n∈Z,n�=0, {ϑn}n∈Z,n�=0, and {δn}n∈Z,n�=0 all belong to l2. Substituting
(3.11) into (3.10), we obtain

{
ϕ1(μn)

}
n∈Z ∈ l2. (3.12)

The function u–(1/2,λ) is of sine type, i.e., there exist positive numbers m, M, and p such
that

me
1
2 |Imλ| ≤ ∣∣u–(1/2,λ)

∣∣ ≤ Me
1
2 |Imλ|

for |Imλ| > p. Taking into account (3.12), we use the Levin–Lyubarski interpolation the-
orem (see Theorem 2.2 for details) and choose {μn}n∈Z as the nodes of interpolation for
finding the function ϕ1(λ):

ϕ1(λ) = u–(1/2,λ)
∑
n∈Z

ϕ1(μn)
u̇–(1/2,μn)(λ – μn)

. (3.13)

Note that u–(1/2,λ) is a sine type function with the indicator diagram of width 1, thus
ϕ1(λ) ∈L1/2 according to Theorem 2.2.

On the other hand, note that {λn}n∈Z are the zeros of �(λ). In virtue of (3.7) we have

ϕ0(λn) =λn

[
–

b0(λn)
u–(1/2,λn)

+ 1 – cosλn –
h1 + K1 + h2 + K2

λn
sinλn

]
. (3.14)
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It should be noted from (2.9) that

sin(λn/2) =

⎧⎨
⎩

(–1)k h1+K1+h2+K2
nπ

+ αn
n , if n = 2k + 1,

(–1)k+1 + αn
n , if n = 2k,

cos(λn/2) =

⎧⎨
⎩

(–1)k + βn
n , if n = 2k + 1,

(–1)k+1 h1+K1+h2+K2
nπ

+ βn
n , if n = 2k,

(3.15)

and

sinλn = (–1)n–1 h1 + K1 + h2 + K2

nπ
+ ϑn,

cosλn = (–1)n–1 + δn.
(3.16)

Substituting (3.15)–(3.16) into (3.14), one obtains

{
ϕ0(λn)

}
n∈Z ∈ l2. (3.17)

Let �(λ) = �(λ)/(λ0 – λ). It is easy to see that �(λ) belongs to sine type functions. We
choose {λn}n∈Z as the nodes of interpolation for finding the function ϕ0(λ):

ϕ0(λ) = �(λ)
∑
n∈Z

ϕ0(λn)
�̇(λn)(λ – λn)

. (3.18)

From (2.8), one knows that �(λ) is a sine type function with the indicator diagram of width
2, thus ϕ0(λ) ∈L1 by Theorem 2.2. Moreover, from (3.8) we have

a0(λ) = –1 + cosλ + (h1 + K1 + h2 + K2)
sinλ

λ
+

ϕ0(λ)
λ

,

b0(λ) = (h1 + K1 – h2 – K2)
sin(λ/2)

λ
+

ϕ1(λ)
λ

.
(3.19)

�

Lemma 3.2 Let a0(λ) and b0(λ) be defined by (3.5) and (3.6), respectively. If we write

b1(λ) = v′
–(1/2,λ)�(λ) – a0(λ)u′

–(1/2,λ), (3.20)

then

u+(1/2,λ) = u–(1/2,λ) – b0(λ)

u′
+(1/2,λ) = u′

–(1/2,λ) – b1(λ).
(3.21)

Proof It should be noted that

v′
–(1/2,λ)u–(1/2,λ) – v–(1/2,λ)u′

–(1/2,λ) = 1. (3.22)

From (3.20) and (3.7), by simple computation we have

b1(λ)u–(1/2,λ) – b0(λ)u′
–(1/2,λ) = �(λ). (3.23)
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Note that

�(λ) = u′
–(1/2,λ)u+(1/2,λ) – u–(1/2,λ)u′

+(1/2,λ) (3.24)

and |b0(λ)| < |u–(1/2,λ)|. (3.24) together with (3.23) yields that there exists h(λ) satisfying

u+(1/2,λ) + b0(λ)
u–(1/2,λ)

=
u′

+(1/2,λ) + b1(λ)
u′

–(1/2,λ)
= h(λ). (3.25)

By virtue of (2.4) and (2.6), for |λ – μn| > 0, we have

lim
λ→∞

u+(1/2,λ) + b0(λ)
u–(1/2,λ)

= 1,

thus h(λ) = 1. It follows that (3.21) remains true from (3.25). This completes the proof. �

By the above arguments, we have recovered the functions b0(λ), a0(λ) and then b1(λ) in
terms of the given mixed spectral data consisting of q on [0, 1/2], h1, and the set σ of eigen-
values of Sturm–Liouville problems. Thus we can reconstruct u+(1/2,λ) and u′

+(1/2,λ)
by (3.21), and hence q on (1/2, 1) via the Gelfand–Levitan–Marchenko method [11]. The
method of reconstructing the potential q(x) on the half-interval [1/2, 1] and constant h2

can be summarized as follows.

Algorithm Let the input data set D = {q(x) ∈ L2[0, 1/2],σ = {λ2
n}+∞

n=0, h1} be given.
(1) Compute h2 + K2 in virtue of (2.10) and construct �(λ) in terms of (2.11).
(2) Compute the functions u–(1/2,λ), u′

–(1/2,λ), v–(1/2,λ), and v′
–(1/2,λ).

(3) Determine the sequences ϕ1(μn) by (3.10), then construct the function ϕ1(λ) in
virtue of (3.13).

(4) Construct b0(λ) in virtue of the second formula of (3.19) and compute the
sequence b0(λn).

(5) Determine the sequence ϕ0(λn) by (3.14), then construct the function ϕ0(λ) in
virtue of (3.18).

(6) Construct a0(λ) in terms of the first formula of (3.19).
(7) Construct the function b1(λ) by (3.20).
(8) Reconstruct u+(1/2,λ) and u′

+(1/2,λ) by (3.21).
(9) Reconstruct the function q on (1/2, 1) from the zeros of u+(1/2,λ) and u′

+(1/2,λ)
via the Gelfand–Levitan–Marchenko method [11].

(10) Compute h2 = K2 + h2 –
∫ 1

1/2 q(x) dx.

Let us mention that (u+/u′
+)(

√
λ) belongs to the Nevanlinna class, i.e., (u+/u′

+)(
√

λ):
C+ → C+ is analytic with C+ being the open complex upper half-plane [10]. Our recon-
structing process also deduces the following conclusion for the existence problem.

Theorem 3.3 Assume that a real function q– ∈ L2[0, 1/2] is known together with the real
constant h1. Let a set of numbers {λ2

n}∞n=0 be given and satisfy the following asymptotics:

λn = nπ +
A

nπ
+

αn

n
, (3.26)
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where A ∈ R and {αn}∞n=0 ∈ l2. Let u–(x,λ) be the solution of (1.1) with the potential q = q–

on [0, 1/2], which satisfies the initial conditions u–(0) = 1, u′
–(0) = h, and let u+(λ) and û+(λ)

be given by

u+(λ) = u–(1/2,λ) – b0(λ),

û+(λ) = u′
–(1/2,λ) – b1(λ),

(3.27)

with b0(λ) and b1(λ) being defined by (3.19) and (3.20), respectively.
Then there exists a unique real-valued function q+ ∈ L2[1/2, 1] and a real constant h2

such that the spectrum σ of problem (1.1)–(1.3) with potential q = q– on [0, 1/2] and q = q+

on [1/2, 1] coincides with the sequence {λ2
n}+∞

n=0 if and only if the function u+/û+(
√

λ) belongs
to the Nevanlinna class.

Proof Suppose that there exists a real-valued function q ∈ L2(0, 1) such that {λ2
n}+∞

n=0 is the
spectrum of the Sturm–Liouville operator defined by (1.1)–(1.3). Then, by the above dis-
cussion, u+(1/2,λ) = u+(λ) and u′

+(1/2,λ) = û+(λ). In this situation, it is known [5, 11] that
(u+/û+)(

√
λ) is the Weyl m-function [5] of Sturm–Liouville equation (1.1), which ensures

that the function (u+/û+)(
√

λ) belongs to the Nevanlinna class.
Since the spectrum σ = {λ2

n}+∞
n=0 of the operator L is given, by (2.10) and (2.11) one obtains

K2 + h2 and �(λ). If a real-valued function q– ∈ L2(0, 1/2) is known a priori, then both
functions u–(1/2,λ) and u′

–(1/2,λ) are also known. Thus by (3.13) and (3.19) we obtain
b0(λ) and from Lemma 3.2 we obtain b1(λ). We therefore obtain u+(λ) and û+(λ) from
(3.27):

u+(λ) = u–(1/2,λ) – b0(λ)

= cos(λ/2) +
h2 + K2

λ
sin(λ/2) +

ψ+,0(λ)
λ

and

û+(λ) = u′
–(1/2,λ) – b1(λ)

= λ sin(λ/2) – (h2 + K2) cos(λ/2) + ψ+,1(λ).

Here one knows that ψ+,j(λ) ∈ L1/2 for j = 0, 1 by computing from (3.20) and above for-
mulae since ψ–,j(λ) ∈ L1/2, ϕ0(λ) ∈ L1, and ϕ1(λ) ∈ L1/2. It is easy to see that their zeros,
denoted by {αn,D}n∈Z and {αn,N }n∈Z, satisfy the following conditions:

αn,D = (2n + 1)π +
K2 + h2

2nπ
+

βn

n
,

αn,N = 2nπ +
K2 + h2

2nπ
+

β̂n

n
,

(3.28)

where {βn}n∈Z and {β̂n}n∈Z belong to l2. Furthermore, if (u+/û+)(
√

λ) belongs to the Nevan-
linna class, then its zeros {α2

n,D}+∞
n=0 and poles {α2

n,N }+∞
n=0 are interlacing:

–∞ < α2
0,N < α2

0,D < α2
1,N < α2

1,D < · · · .
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Moreover, by (3.28) it is easy to check that the sequences {( αn,D
2π

)2}+∞
n=0 and {( αn,N

2π
)2}+∞

n=0 satisfy
the conditions of Theorem 3.4.3 in [11]. By Borg’s two-spectra theorem [2] there exists a
unique real-valued function q+ ∈ L2(1/2, 1) such that {α2

n,D}+∞
n=0 and {α2

n,N }+∞
n=0 are exactly

the Dirichlet–Dirichlet spectrum (under the boundary conditions y(1/2) = 0 = y(1)) and
the Dirichlet–Neumann spectrum (under the boundary conditions y(1/2) = 0 = y′(1)) of
two Sturm–Liouville operators defined on (1/2, 1) with potential q+. On the other hand, it
is easy to see that the known σ is the spectrum of Sturm–Liouville operators defined by
(1.1)–(1.3) with potential q = q– on (0, 1/2) a.e. and q = q+ on (1/2, 1). This completes the
proof. �

Appendix
In this section, we supply the details of Marchenko’s uniqueness theorem and Borg’s two
spectra theorem.

Let us introduce the Weyl–Titchmarsh m-function for the operator L(q, h1, h2) as

m(x,λ) =
u′

+(x,λ)
u+(x,λ)

. (A.1)

Denote by m̃(x,λ) by the Weyl–Titchmarsh m-function for the operator L(q̃, h1, h̃2).

Theorem A.1 (Marchenko’s uniqueness theorem) If m(a,λ) = m̃(a,λ), then q(x) = q̃(x) on
[a, 1].

Theorem A.2 (Borg’s two spectra theorem) Let h2 �= h3. If the two spectra σ (q, h1, h2) and
σ (q, h1, h3) are known a priori, then q(x) on [0, 1] is uniquely determined.
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