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Abstract

The present research work investigates some new results for a fractional generalized
Sturm-Liouville-Langevin (FGSLL) equation involving the ¥ -Caputo fractional
derivative with a modified argument. We prove the uniqueness of the solution using
the Banach contraction principle endowed with a norm of the ¥ -Bielecki-type.
Meanwhile, the fixed-point theorems of the Leray—-Schauder and Krasnoselskii type
associated with the W-Bielecki-type norm are used to derive the existence properties
by removing some strong conditions. We use the generalized Gronwall-type
inequality to discuss Ulam-Hyers (UH), generalized Ulam-Hyers (GUH),
Ulam-Hyers—Rassias (UHR), and generalized Ulam-Hyers—Rassias (GUHR) stability of
these solutions. Lastly, three examples are provided to show the effectiveness of our
main results for different cases of (FGSLL)-problem such as Caputo-type
Sturm-Liouville, Caputo-type Langevin, Caputo-Erdélyi-Kober-type Langevin
problems.

Mathematics Subject Classification: Primary 26A33; 34A08; 34A12; secondary
34B15

Keywords: W-Caputo derivative; ¥ -Bielecki-type norm; Fractional Sturm-Liouville
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1 Introduction

During the last century, fractional differential equations (FDEs) have fascinated the inter-
est of many researchers due to their various applications in many fields of science, like
physics, chemistry, biology, economics, engineering, signal processing, electromagnet-
ics, etc. (see [1-3]). In many references, the basic notions and tools of fractional calculus
can be observed; see, e.g., [4—6]. Recently, Almeida [7] defined a new fractional derivative
called ¥ -Caputo fractional derivative and he published several scientific research works
[8, 9]. Afterwards, several mathematicians concentrated their research on the generalized
fractional operators; we cite them as examples [10—15]. In this direction, researchers have
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focused their interests on the investigation of existence, uniqueness, and Ulam stability
of FDEs using a number of definitions related to fractional derivatives as can be found in
some works like [16—21] and references therein, as well as in [22, 23].

In 1908, Paul Langevin formulated a new equation, named the Langevin equation, to
define the evolution of some physical phenomena in fluctuating environments, like Brow-
nian motion [24]. After this, other extensions of the Langevin equation have been studied
in the works of many researchers [25-31]. Nowadays, the existence, uniqueness, and sta-
bility of solutions for Langevin nonlinear BVPs have been established by many researchers
using different kinds of fractional derivatives by applying Banach, Krasnoselskii, Shaefer,
and Leray—Schauder classical fixed point theorems. For more information on this topic,
the reader is advised to refer to [32—39]. The results on the existence and Ulam—Hyers sta-
bility of solutions of Langevin fractional equation have been discussed in [29]. Motivated
by the works cited above, several other types of stability will be discussed in this article
for an advanced combined differential equation. More precisely, consider the fractional
generalized Sturm-Liouville-Langevin (FGSLL) problem:

DG (nG) DG u(s) + x3)uG) =f G u),  3€1=[0R], O
u©0)=0,  nRDIu(R) + x (RYDF u(R) = 0.

Here, n € C(I,R*), x € C(,R), f: I x R — R is continuous, CDZ)/;W is the ¥-Caputo
fractional derivative depending on an increasing function ¥ of order y € {a1, 2, 01,03},
O<a,ap <1,and 0 < 0y, 09 < ap.

To show the novelty and generality of our BVP, we note that:

1. If x(3) = 0, for each 3 € I, the (FGSLL)-problem (1) reduces to the standard form of

the fractional Sturm-Liouville (FSL) problem for a nonlinear FDE, which is as

follows:

DR G Dy u(s) =G u@), 3 €, @
u©0)=0,  nRDL u(R) =0,
and the considered (FSL)-problem (2) contains some problems involving different
fractional derivative operators, for various choices of the function ¥. Among these
are interesting extensions:
o If ¥(x) = x, then the (FSL)-problem (2) reduces to the Caputo-type
Sturm-Liouville (CSL) problem.
o If U(x) =«", then the (FSL)-problem (2) becomes the
Caputo—Erdélyi—Kober-type Sturm-Liouville (CEKSL) problem.
o If ¥(x) = In(x), then the (FSL)-problem (2) represents the
Caputo—Hadamard-type Sturm-Liouville (CHSL) problem.
2. By choosing n(3) =1, x(3) =X (r € R), for 3 € I, the (FGSLL)-problem (1) reduces to
the standard form of the fractional Langevin (FL) problem for a nonlinear FDE,

which is as follows:

DG (DY uG) + au(3) = fGouG), s€l,

3)
u©0 =0, DI u®) +1DPYuR) =0,
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and the considered (FL)-equation (3) contains some problems involving many
classical fractional derivative operators, for various choices of a function ¥. Among
these are interesting extensions:
o If U(x) = x, then the (FL)-problem (3) reduces to the Caputo-type Langevin (CL)
problem.
o If ¥(x) =«", then the (FL)-problem (3) represents the
Caputo—Erdélyi—Kober-type Langevin (CEKL) problem.
o If ¥(x) = In(x), then the (FL)-problem (3) becomes the Caputo—Hadamard-type
Langevin (CHL) problem.

Now, to organize the paper in a standard form for the readers, we arrange it as follows.
In Sect. 2, we propose some definitions and lemmas that will be used to establish our the-
orems. In Sect. 3, we investigate the existence and uniqueness of the solution for the main
(FGSLL)-problem (1) under some ¥ -Bielecki-type norm inequalities, and Sect. 4 presents
the study of some stability results for the solutions of the (FGSLL)-problem (1), such as
Ulam—Hyers, Ulam—Hyers—Rassias, and their generalizations, with the help of the gener-
alized Gronwall inequality. Our main tools in this study are three fixed point theorems: the
Banach contraction principle, Leray—Schauder, and Krasnoselskii theorems under some
norm inequalities of the ¥ -Bielecki type. After that we give, in Sect. 5, three examples to
illustrate our theoretical results. Finally, we complete the paper by a conclusion with some
perspectives.

2 Essential concepts and basic tools
Some concepts are recalled in this section, and also some lemmas are proved.

Definition 2.1 ([7]) Let u >0, n € N, I = [a,b] with —co <a<b <00, ¢ : I — R be
an integrable function, and ¥ € C!(I,R) increasing with ¥’(3) # 0 for any 3 € 1. The W¥-
Riemann-Liouville (R-L) fractional integral of order p for ¢ that depends on ¥ is given as

Y _ L § ’ _ =1
T 06 = o | VOO -v6) ewds @

Definition 2.2 ([7]) Consider an interval ] C R and let u € (n — 1,n). Let also ¢ : I - R
be an integrable function and ¥ be as given in Definition 2.1. Then, the ¥ -R-L fractional
derivative of the order u of the function ¢ with respect to ¥ is given as

. 1 d\” .
D/,L;'J/ _ “ Z—n:u,llf
00 - (i 50 ) T el

1 1 d\" ¢, ot
‘r(n_[)(q,/—(j)d—j) / ()P () - ()™ pls)ds,

where 7 =[] + 1 and [p] indicates the integer part of .

Definition 2.3 ([7]) Let u >0, n € N, I = [a,b] with —co <a < b < o0, ¥,¢ € C"([,R)
be functions so that ¥ is increasing and ¥'(3) # 0 for any 3 € I. The left-sided ¥ -Caputo
fractional derivative of order p for ¢ is defined by

. . 1 4\
C,Dp,;lll =In+—pL,ll/ - ,
o 9(3) =1, (lI//(z) dz) ?@)

where n =[] + 1 for u ¢ Nand n = u for u € N.
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To simplify the notation, we put go["] () = (2= 3)"0(3). Then, from the definition we

w3 43
can write
n-i-l g s
”D’W(p( ) = fé %tp&,](s)ds ifuéeN,
¢ ol (3) if e N.

Lemma 2.4 ([7]) Let u >0 and ¢ : [a,b] — R. The properties given below hold:
« Ifp €C((a,b)), then “Di" TY 9(3) = 9(3).
o If o €C"Y([a, b)), then

n-1
13 k
DL 06) = 9(3) - Y (¥ () - ¥ (@),
k=0
where ci = ),(pl[f]( )= 1()%]k¢(a) n-l<pu<n.

In partlcular,for u € (0,1), we have Ly epry 0(3) = 0(3) — ¢(a).

Now, we define the norms || - ||c : C([a,b]) — R and || - ll oot = C"([a, b]) - R by
2

Iglic:= max [oG)| and el = Z||¢ I

Lemma 2.5 ([11]) If ¢ : C([a,b]) — R, then Iff;w(p(g) is well-defined for every 3 € [a, b]. In
addition, we have

(i) 7t p(a) = 0;

(if) || 1 pllc < OO g .

Proof From (4), we derive the following inequality:

G| < (V(3) - ¥ ()"

75 o
| ' +1)

lellcs

which gives immediately Iff:pw(u) 0 and ||Iff+"pg0||c < (W(I‘T lellc. a

Lemma 2.6 ([7]) The W -Caputo derivatives of the fractional order are bounded and, for
any u >0, we have

( (b) - ¥ (a)" ™

Cpouwy¥
Dy
1P olle = 7

lell con-

Remark 2.7 From equality (5), we can easily obtain

¥(a)" ™

‘ (
[P o6 < =iy 1elep

which allows us to conclude that CDWr o(a)=0.

Lemma 2.8 Let u,0 > 0. We have

9 pwpwoy) o €00
o € < , 0<3;<R (6)

="
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and

31y’ _ u-1 0(¥ (32)-¥(0))
/ v (S)(W(32) W(S)) e@(',l/(s)—llf(O)) ds < € , 0< 51<32 <R (7)
0 I'(w) o

Proof By applying the ¥-R-L fractional operator Z/:"* to the function 3 > ¢?(#(@)-¥(©)

together with the replacement of variables y = ¥ (3) — ¥ (s) and z = 0y, we have

v HEGVO) VYO
T HU - 0) / Ple Y dy
0

I'(w)
W (3)-¥(0) O (3)-¥(0) .
= e Fdz
L(p)or /0
HEG-wO) oo AW E)-v(0)
e — / Zﬂileiz dZ =
C(wor Jo oH

For the proof of the inequality (7), we again use the same replacement of variables y =
¥ (32) — ¥ (s) and z = Ay, and we obtain

31 W/ W _ W n-1
/ ()W (32) - ¥ (s) LHEE-¥0) g
0

I'(w)
¥ (52)-%(0) /wn)—w(m L
= y*le ™ dy
I'() ¥ (30)-%(0)
/(¥ (32)-¥(0)) 0¥ (32)-¥(0)
= 7/ e ?dz
L)or  Jowo-wii)
W) () poo ¥ (52)-2(0)
u-1,-z _
—_— e tdz = ————.
I'(u)or fo or
The proof is now complete. O

Lemma 2.9 Let 0 < ay,00 <1, a3 >0, and 0 < 01, 03 < ap. Suppose that h € C(,R), n €
C(I,R*), and x € C(I,R). Then, u is a solution of

DY (nG)Ds?Y uls) + x(5)u(3)) = h(3), ()
u(0) =0, ©)
N(R)CDI u(R) + x (R)CDZ* u(R) = 0 (10)

if and only if it fulfills the integral equation given below:

g 1 e o  X(6)u(3)
=t (n<z>Ig* '“‘”) & ( o) )

2% 1
Zg+ (Wﬁ))

+

(RT3 () + x RT3 () @
9—01,¥ x (R)u(R) _ 9—01,W L LY

X[”(R)Ig* (M) o ()

2-02,¥ L LY 2o [ X (R)u(R)
XRIT (n(R)zga h(R))+ R <T(R) )]



Serrai et al. Boundary Value Problems (2024) 2024:81 Page 6 of 45

where

2-01,¥ 1 2-02,¥ 1
"RLy ( (R))”(R)Ia ( (R)) 7o

Proof By applying the ¥ -R-L fractional operators Ig}’w and Igf’w on both sides of equa-
tion (8) and utilizing Lemma 2.4, we obtain two real numbers ¢y and ¢; such that

) =7 (ST ) T (A0 u)) vl () ran a2

where ¢y and ¢; belong to R.
From the boundary condition (9), together with Lemma 2.5, it follows that ¢; = 0, and by
using the second boundary condition (10), as well as taking into account the assumption

2-01,¥ 1 2-02,¥ 1
1BL (n(R)> * 1L ( (R)) 70

after some computations we obtain

1
RZE Y () + X (RIZE Y ()
ay—01,¥ X(R)M(R) wp—01,¥Y 1,.¥
[z () -z ()
=W [ - 111/ 92—09,¥ X(R)M(R)
g () ez (X )]
Replacing ¢o with its value in (12), we get
Iotz'l’(_l—oalllf ) Iazd/( ()”(5))
u(3) = % h(3) o)
Ié“f*”(%)
+ 1012*01,‘1’ T2 -02,¥
RZg Y (do) + X RIg " (1) 13
2—09,¥ X(R)M(R) 9-01,¥ X(R)M(R)
* [X(R)Ig* < 1(R) >+”(R)Ig* ( n(®) )
—x(R)Igf""z’w< R )Igzwh<R))—n(R)Ig%'“l’W(ﬁzgz‘”hm))}

For the reverse case, taking the ¥ -Caputo operator CDS?'W on both sides of equation (13)
and applying again the operator CDS‘}’W after multiplying the obtained equation by 7, and
finally by exploiting Lemma 2.4, we find

Dy (nG) Do u) + x (3)ul3)) = h3)-

To examine the boundary conditions, it is trivial to verify them using (13).
As a result, u is a solution to the problem (1), and the proof of Lemma 2.9 is now fin-
ished. O
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Now, we pay attention to the space € = C(I,R) equipped with the well-known ¥-
Bielecki-type norm | ||y, proposed by previous works (see [40]) defined by

, 0,a>0,

lttllge = sup 143)]
oy EL [0 (5) - w(0)]

where E, indicates the Mittag-Leffler function of one-parameter that is given as

%0 k
z
Eo(z)= Y ——, 0.
@) gr‘(ka+1) *>

If we take @ — 1 in the above norm | ||y, we obtain

lu(3)|

lluello := P S0 6>0,

and (¢, ||#||g) is a Banach space. We now focus on the key findings of our study.

3 Main results
For a good and straightforward continuation of our work, we propose the hypotheses as
given below:

(H1)f:[0,R] x R — R is continuous.

(H2) For some positive real constant Ly, we have
[fG,w1) = f(Gu2)| < Lylus — up|,  for each uy,uy € R, € [O,R].

(H3) [f (3, )| < K¢(3), Y(3,u) € [0,R] x R, with Kr € C([0,R],R,).
(H4) A function g € C([0,R],R,) and a real constant d > 0 exist such that

[fG,w)| < aG)+dlul, V¥(G,u)€[0,R] xR.

(H5) A positive real constant M exists such that

M1 = dAgy - V)
Agllglle

Furthermore, to analyze the stability of UHR and GUHR, we adopt the assumption as given
below:
(H6) A nondecreasing function Y € C([0,R],R,) and a real constant yy 4, a, > 0 exist

such that for any 3 € [0, R], we have
T Y 3) < Vs Y6). (14)
In light of Lemma 2.9, we can define the following operator:

N:C—¢,
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Nu(s) = Iéﬁ”’(—z‘” wf(@u(g))) 24/()((3)14(5))

® "G
) 2% ()
HRIZE ™ (1) + x(RITe ™ (L)
=01, 3 2—02, R R
x [n(R)Igf "’( (( ))IS‘ Y (R))+X(R)Ig+ w(7X(n()Z)( )) (15)
RTY (ng& VIR, <R)))

- x(RIg " <ng1 f(R, M(R))>],

where

2-01,¥ 1 2—09,¥ L
1R ( (R)) 1 (R)I: (n(R)> 70

Now, we express the operator A as a sum of two operators N} and N, as follows:

Nuus) = Tg?* ( G )IS” wf(w(z)))

2" (315)
n(
RG> () + x R ()

[z (g (wum) )

+ X (R “2‘”<—z“1 Yf(R, u(R)))
I

R

x(3)u(3) 2 ()

+
nG) ) NRT ™ () + X RIT Y ()

x [n(R)Igfdl’w <M) + X(R)Igfaz'w( (R)Iag v (R))]

Nou(3) = —Igf’w(

n(R) R

To facilitate the reading of the work, we utilize the following notations:

If (5,0)]
My = suplf(,0) <00, My i=sup iy < 0

n:=i
- 3€l

and, for more convenience, we put

(¥ (R)-¥(0)*2
(@R - w () T
= X R R)-¥(0)°27°2 _ [5(R)(¥ (R)-¥(0)*2~"1
nhlen+en+1) | X —— — ) (16)

y ['X(R)'(‘”(R) — W) [(R)|(W(R) - (0)“1 e }
(e +az—0z +1) (e +ay — 01 +1) ’

Page 8 of 45
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_ (¥ (R)-¥(0))*2
g XE®-wO) Mozt
nl(ay + 1) | XRIFR)-¥(0)*27%2  _ [n(R)I(¥(R)-¥(0))*271 |
— T'(ag—09+1) (ag—o01+1)

XPﬂMmeFW@W” m®wwmpw©wq]

Nl -0z +1) (e — 01 +1)
(P (R)-¥(0))*2
Aw = 1 N Tlaztl)
0 noo1+e2 ||X(R)\(‘1/(R)—W(0))"2’”2 _ InRI(W¥(R)-¥(0))*271 |
A I (ag—0g+1) INag-o01+1)
« |x (R)] n(R)|
n9a1+a2—02 ;79061+0t2—‘71 ?
X
Vy = v
(¥ (R)-¥(0))*2 — —
. an+1) |x (R)IX s In(R)[x
X RN R)-¥(0)*27%2  |n(R)|(¥(R)-¥(0))*271 Qo2—02 Po2-o1
| R L "
ap—0p+1) I(ag—o1+1) — —
and
J=ALs+V.

3.1 Uniqueness of solution by using Banach contraction principle

To prove the results, we first provide the Banach contraction principle as a reminder.

(17)

(18)

(19)

(20)

Lemma 3.1 ([40]) Let (U,d) be a complete metric space, and T : U — U a contraction.

Then there is a unique fixed point of T in U.

Theorem 3.2 Suppose that (H1) and (H2) are satisfied. Then the (FGSLL)-problem (1) has

a unique solution if J < 1, where J is defined by (20).

Proof First, we choose r; such that

AMy
rn=—-.
1-J

Briefly, our aim is to show that N'B,; C B,,, where
By (w)={uecC:|ull <r}

is a nonempty, closed, and convex subset of the Banach space €.

For each 3 € [0,R] and u € BB,,, we get

’

lf(Z?’ u)| = lf(ﬁru) _f(3»0)| + lf(ﬁ’o)| <Lrlul + |f(3’0)

which implies that

sup V(g, u)’ < Lyllull + M.
3€[0,R]

Page 9 of 45
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Let u € B,,, then

INu()|
2w 1 aw 2w [ X(3)u(3)
= |5 (n(a)Ig* /(6u) ‘+Ig+ ( n() )‘
. T2 (55)1
BRI (i) + X RIG ™ ()]

o [ X Ru(R o 1 e

X[n(R)IS‘f o(HEE Mnue)zz;a W(mz:; ‘”f(R,u(R))>‘
2-09,¥ L LY 2-09,¥ X (R)u(R)

+ | X (R)Iy? (n(R)Ig+ f(R,u(R))) + | X (R) ;7 <777(R) )H

By using the property ||«| — |€|| < |« + £| and taking into consideration

| X (R)I(¥(R) = w(0))*2™72  [n(R)|(¥(R) - ¥(0))*>~"

’

F(O[g—0'2+1) F(Olz—0’1+1)
we get
INuGs)| < (Lyllull + Mp)(¥ (3) =¥ (0)) ™2 Yllull (¥ () - ¥ (0)*
- (e +as +1) (g +1)
(¥ (3)-¥(0)*2
1l (ag+1)
* |\X(R)I(‘I’(R)—ll’(O))"‘z"72 _ In®)IW(R)-¥(0))*271 |
1l (p—0g+1) Nl (ap—-01+1)
Ix R X Nl (¥ (R) =¥ (0))*272  [nR) X |lull(¥(R) - ¥(0)*~"
Nl (g — 03 + 1) nl(ay -0y +1)

. | X (R)I (L lluell + My) (W (R) — W (0))"1 7272
(a1 + @y — 03 +1)

o MRy llell + My)(¥ (R) — W (0))*1 27 }
QI‘(al +0l2—0’1+1) ’

which gives

@O
T(ag+1
NG| = <|X(R)I(4’(R)—W(0))“2"2 _ RO

[(ag—02+1) [(ap—01+1)

[|X(R)|(W(R) SWO) T (R (R) - () ]
(e +ay -0y +1) nC (a1 +as— 01 + 1)
(¥ (R) — @ (0))*1+2
QF(al +op +1)

)@t + )

(¥ (R)-¥(0))*2
+ Jlull poar]
| LRI RV )22 _ TR R-4(0)*21
[(ag—0o+1) [(ag—01+1)

« [|X(R)I7(W(R) SwO)™  RFWR) - ¥ (0) ]
nl(nay — 03 +1) Nl (+op -1 +1)
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X(¥(R) - ¥ (0))* )
nl(az +1) ’

that is,

INu3)| < A(Lyllull + My) + |ullV
< ALf}"l +AMf+}’1V

=rn

which implies that | Nu|| <ry. Thus, N maps B,, into itself.
The last step is to show that NV is a contraction mapping. Letting u;,us € B,, and 3 €

[0, R], we have

INui(G) = Nus(3)|

w1 ew B o (1 G)u1(3) — ua(3)1|
=T (|n(z)|zg* f(s0) =1 (3’”2(2’))|)+Ig* ( Gl )

T (i)

(3
+ —o, ¥ o, ¥
In(RYZGE ™ (o) + x BT ()]

R)| T2 ( [x (R)[|u1(R) - MZ(R)|)
* [‘”( W% 1(®)
+ [n@®)|Ze2 " (ﬁzgs"” I (R, 11 (R)) (R, 145(R)) \) (®)
o ( 1% R (R) - Mz(R)|>
* xR n(@®)]
e X @[T (ﬁz&l"” (R () — (R 1)) |)]
_ Ll = w(F6) - PO Tl — (¥ 6) - ¥ (0)
nl(og +aa +1) (a2 +1)
(P (3)-¥(0)*2
(e +1)

" IR R - xR ()R

[|X(R)|7||M1 — || (¥ (R) — ¥(0))*>~
nl(az -0z +1)

N In(R)[X llu1 — ua|I(¥ (R) — ¥(0))*>~"
Nl (ay — 01 +1)

. Lelx ®)llmg — ua | (¥ (R) — W (0))1 7272
(a1 + oy — 03 + 1)

LelnR) |1 — ua|| (¥ (R) — W (0))*1 7271 }

nl(ay + 0y —01 +1) ’

Thus,

INuy — Nus||
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(Lf(W(R) —w(0) e F(F(R) - w(0))ere
=< i

<
(o1 + oz +1) (a3 +ay+1)

(¥ (R)-¥(0))*2
" T(ag+1)
|\X(R)I(W(R)*l1/(0))“2’“2 _ [n®I@FR)-¥(0))*271 |
T(ag-op+1) [(ag—01+1)
| X (R)[X(W(R) —w(0))*r272 |n(R)|X (¥ (R) — ¥(0))re2n
(s +az—0y +1) (s +ay — 01 +1)

N Lyl x (R)|(¥ (R) — ¥ (0))1 @202
ﬁr(al +ay—0y+1)

¥ Lﬂn(R)KW(R)—“"))MMmb“u -1l
nl(ay + oy — 01 + 1) e

consequently, we get
INuy = Nua|| < T llus - us .

Since J < 1, hence NV is a contraction mapping. Consequently, by the Banach contraction
principle 3.1, we conclude that N has a unique fixed point in 5,,. Hence, the (FGSLL)-

problem (1) has a unique solution on [0, R]. O

Now, we would like to prove Theorem 3.2 using the ¥ -Bielecki-type norm inequalities.

Here, the strong condition J < 1 is removed.

Theorem 3.3 Let (H1) and (H2) be satisfied. Then the (FGSLL)-problem (1) has a unique

solution on [0, R].

Proof Let us choose

AgMygp
ry2 ———— =,
1- (Lng + Vg)

where Ag, Vy, and My are three constants defined previously.
Claim 1: One has N'B,,y C B,,, where B,,¢(u) = {u € €, ||lully < r2} is a nonempty,
closed, and convex subset of the Banach space €.

For each 3 € [0,R] and u € B,, 9, we have

If(ﬁrl’l” < lf(ﬁru) _f(5’0)| lf(é» 0)| < Lf|M| If(ﬁro)|

PTG V0) = HEH-F0) | hPGHFO) — PFEH-PO) T hWG-¥0)
which implies that

fGul  _

SUP S ()-v(0) —

5 Lyllullg + Myp.
3€l0,R] €

Page 12 of 45
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Let u € B,,, then

w1 e fGu(3)) eV @ O)
Nuls)] <o (I Ty ¥(0)) )

nG) " /W)~

L 7220 (X e |u(3)|e? ¥ 6)-¥ ()
" NG ™™ f (¥ (3)-¥(0)

21
Ig* (na)l)

" IRTE T () + X RITE T (]

@RI

9(W( )- l1’(0))>

L
[|7)(R)|Ia lp(lx uk Y~ (0))

o1, If (R, u(R))| e’ ¥ R®-¥(©)
+ |z 1‘”( 1 o - )

]~ et (W (R)-

i 1 If (R, u(R))| " R~ ()
9—09,¥ N4
+ | x (R)| 252~ (ng& @ R-¥(0)

@[z (2 RO
X 0* | f@®-¥0) '

Using the estimate ||x| — |£|| < |« + £| and taking into account

X R)(P(R) —w(0)*™  [n(R)|(¥(R) - ¥(0))*>"
F(Ol2—0’2+1) F(a2—01+1)

)

we obtain

|N ( | (Lf||”||9 +Mf9)l—oq+a2 w( H(lI/(a)—lI/(O)))
n

X||u||9102 4/( W(3)-(0 )))
n

(¥ (3)-¥(0)*2
N T (e +1)
|\X(R)I(‘I’(1?)7'1/(0))”‘2"72 _ @)W (R)-¥(0)*2~1 |
I (ag—02+1) 7l (ag-01+1)

R)|x|lu _
y [W( )|);<|| ||9Ig+z Y (VRO

+ (Lf”u”é) + Mf,9)|7I(R)| Ig}+a2—al,l1/ (eQ(I,II(R)flI/(O)))
n

N (Lf||M||9 + j}VIfﬂNX(RN Igf +ag—09, W (eg(w(R)_q/(o)))

N 7”:"9‘ R)|Ia2 09, ¥ ( (¥(R)- ()))i|'

By exploiting (6), we get

Lellullo + Mro Xl
’NM(3)| = ( n9a1+a2 + neaz
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(¥ (3)-w(0)*2

7l (o +1)
* |IX(R)\(W(R)*‘1’(0))°‘2"’2 _ [n®I@R)-¥(0)*271 |
Nl (ag—02+1) nl(ag~01+1)
xR lulle  In@)Ixllulle xRy llullo + Myp)
n@az—nz ,79012—61 }70051“"2—‘72

+ |77(R)|(Lf||u”0 + Mf,@)]>eg(w(3)_w(0)),

n9a1+a2—01
which yields
Nullg < (AoLs + Vo)ra + AgMyg < r. (21)

This means that A/ maps B,, ¢ into itself.
Claim 2: Operator N is a contraction mapping.
Let uy,u, € By, and 3 € [0, R], we have

|Nui(G) = Nua(3)|
- Iotz,'ll( 1 oY ( If G, u1(3)) —f G, ua (3)) |7 3= O ))
<Zy

InG) HFG-¥(0)

LT [x Gl 7oV lur(3) — u2(3)|69(‘1’(3)—‘1/(0))
o )™ W (3)-v(0)
W 1
" ()

* Iaz—rn,llf 1 Iaz—azﬂlf 1
(R ™ () + X (RITg2Y ()]

o [ IXR)] 11 (R) = up(R) | R~
x [!n(R)|Igf v ( (R W R-¥(0)) )
o (L e (R (R) —f (R uy(R)) |7 RO
+ [n@®)| 7oz ( |n(R)|Ig+l Y ( @R ¥ 0) ))
o IXR)] [112(R) = () [ " -2 ©)
+ \)( R) |Igf ¥ ( @] W R-¥(0) )

( [f (R, u1(R)) —f (R, us(R))| ¥ ®-¥(O) ))}

S R-¥(0)

1
R z‘?%‘”( 7
@I ™

Simple computations give us

|NM1(5) —Nuz(ﬁ){

< Lyllur —uzlle Ig}mz’w (ee(w(z)_q/(o))) n Xy — uslle Igz,lp (ee(w(")_w(o)))
1 1

¥ (3)-¥(0)*2
i = lly L

* |\X(R)|(III(R)—U/(O))"2’“2 _ In®[(¥(R)-¥(0))*27°1
NI (ag—09+1) nl(ep—01+1)

R)|x Len(R
y [l"(n)|XIgf‘”l"”(e"("’m)“”(o”)+ f|7z’( )|Ig+1+a2—61,11/(ee(lll(R)—lI/(O)))

Ui Ui

+ 7|X(R)|Ig+2—az,w (eG(lI/(R)—III(O))) + Lf|X(R)|Ig+1+az—az,llf (ee(w(R)'I/(O)))],
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By using (6), we get

!Nul(z) —NM2(5)|

— (¥ (3)-w(0)*2
< Lf n X + [(ap+1)
= g * g T RITRAOE T @@ RIOF T
— — [(ag—0g+1) [(ag—o1+1)

BIx Lin@®| ¥Ix®| Lelx(R
8 [In( Wx, Lin® XIx®| - Lrix(®)] ])ee(m;,)mo»”m_m“a‘

neaz—al n9a1+0t2—(71 neaz—az ngalﬂxz—az

Consequently,
INu1 — Nusllg
L _ (F(R)-w(0))*2
< f + X n (ag+1)
— \ phuter - pHe |IX(R)\(‘1/(R)—‘1/(0))"‘2’”2 _ IR (R)-¥(0)*27°1 |
— — [(ag—o2+1) INay-o01+1)

In®1x  Len®| XIx®]  Lelx(R)]
X + + + [[2£1 — uallg.

Qeaz—al Eealﬂm—al 29(12—02 Qealﬂlz—o'z
Hence, we obtain
Nuy = Nusllg < (LrAg + V) lluy — uslo.

By choosing 6 > 0 large enough such that

—_ (¥ (R)-¥(0))*2
Ly L X T(az+])
nOoitez - phertes ||X(R)\(‘1/(R)*'1’(0))“27”2 _ InRIW(R)-¥(0))*271 |
MA A I (ap—09+1) IMag—0o1+1)

y [IW(R)IY+ Lein@®) xIx@®I - Ll x (R)| ])<1,

n@az—ol ;79011 +ap—01 neaz—o'z ngoq +0Q—09

we conclude that the mapping ' is a contraction relative to the ¥ -Bielecki norm. Exploit-
ing the Banach fixed point Theorem 3.1, it follows that A has a unique fixed point which

is a unique solution to the (FGSLL)-problem (1).

Corollary 3.4 Let (H1) and (H2) be satisfied. Then,

+ If x(3) =0 for 3 € I, then we have X = 0 and one solution is guaranteed for the

(FSL)-problem (2) on 1.

e Ifn(G) =1and x(3) = » (A €R) for 3 € 1, then we have n = 1 and X = ||, and so the

(FL)-problem (3) has a unique solution on 1.

3.2 Application of Krasnoselskii’s fixed point theorem for existence results
First, we recall Arzela—Ascoli and Krasnoselskii theorems and then give our main results.

Lemma 3.5 ([40]) A family of functions in C([a1,az]) is relatively compact if it is both

equicontinuous and uniformly bounded on [a,, a;).

Lemma 3.6 ([40]) Consider a nonempty subset M of a Banach space U that is bounded,

closed, and convex. Let P and Q be operators so that:

Page 15 of 45
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1. Px+ Qy € M whenever x,y € M,
2. Q is a contraction,
3. P is compact and continuous,
Then there exists w € M so that w = Pw + Qw.

Now, we present the following existence theorem which is proved using the above lem-

mas.

Theorem 3.7 Suppose that (H1) and (H3) hold. The (FGSLL)-problem (1) has at least one
solution defined on [0, R] under the following condition:

V<l (22)

Ay
Proof We fix r3 > 4

B, (u) = {u € &, |lu|| < r3} which is a convex and nonempty subset of the Banach space

with [l = sup,c(oz IKr(3)l, and consider the closed ball
€. For each 3 € [0,R] and any x € B,,, we have

INuG)| < [NuG)| + [NauG)|
which implies that

INVull < INvull + [N (23)

Claim 1: For u,v € BB,, we show that Nyu + N,v € B,,.
Let u € B,,, then

Nia9)] <7 (T 6 ) )

Iy*

+m

Y ()

+
(R ( )+x(R)f2‘“ZW(n@)>|

[ )

|z (WI“ “’V(R,uue))l)}

L
n(R)

By using ||« | — [£|| < |k + £|, where

| X (R)[(P(R) = w(0))*272  [n(R)|(¥(R) - ¥(0))*>~

’

F(Ol2—0'2+1) F(Olz—0'1+1)
we get
(¥ (3)-¥(0)*2
‘N ( )‘ (P (3) — W (0))x1+*2 Nl (e2+1)
S T P T | LRI OF R RPN
- Nl (ag—0g+1) T (ep—01+1)

IR (W(R) - W(0)“1*202 | (R)|(W(R) — W (0))e1 o201
x 1K/,

(e +ay—o01 +1) (a1 +ay — 03 +1)
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which means that

(W (R)-¥(0)*2
(¥(R) — w(0))1r C(az+D)

+
XR(WR)-¥(0)*27%2 _ [nR)|(¥(R)-¥(0))*271
QF(Oll tax 1) | [(ag—0o+1) - [(ag—01+1) |

IN(R)| (W (R) - W(0)“1*202 | (R)|(W(R) — w(0))e1 o201
x 1K |

(e +ay—o01 +1) (a1 +ay — 03 +1)

INiu S(

and yields

[Nl < Al (24)

Similarly, if v € B,, then

" (i)
A(3)| SIgg,q/(IX(a)IIV(a)I) . — ;) Gl S
n()l @RI () + X RV ()
o [ X RV(R)| o [ IXR)IV(R)|
x mm1%1”6———— xR\ (e
D % In(R)| xR In(R)|
o (P (3)-¥(0)*2
_ XV G) - (o) Tl
X (R (R)-¥(0))*2~2 [n(R)|(¥(R)-¥(0))*2~1
QF(OQ * 1) | NI (ag—09+1) - Nl (ap-01+1)

y |:|X(R)|7||V||(‘1’(R) - (0)  In®IX VI (R) - ¥(0))*~ ]

nl(ay -0z +1) * nl(az—o1 +1)
This implies that
— (F(R)-¥(0)*2
— o — =
Nzl < (X(‘I’(ﬁ) l11(10)) * \x<R>|<w(R)—W<0>)“2-:2(a2+|13(1e)\(WR)—W(O))“Z-JI
Q (012 + ) | I(ag—09+1) - I(ag—01+1) |
IXxBIXWR) -w(0)22  nR)[x(¥(R) - ¥(0)* "
X + vl
nl(ay — 02 +1) Nl (o —o01 +1) ’
yielding
[Navl < Vvl (25)
Inserting (24) and (25) into (23), we get
N1z + Novl| < Ag | K|l + Vs <73, (26)

which implies that Nyu + N,v € B,, for all u,v € B,,. Thus assumption 1 of Lemma 3.6 is
verified.
Claim 2: We show that N\, is contraction.
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For each u,u; € B,, and 3 € [0, R], we have

|N2M1(3) —N2M2(3)|

<z—ot2,l11(|X(3)||u1(5)_u2(3)|) N T (o)
o InG)| IR (i) + xR

X [|;7(R)|I“201,W<|X(R)||M1(R) - u2(R)|>
0+

1

[n(R)|
- R)||u1(R) — ua(R
[n(R)]
_ ¥ (3)-¥(0)*2
< Xl —ua| (W) - ¥ (©O)*" (s +1)
- XN R)-¥(0)*272  _ [nR)|(¥(R)-¥(0))*2~1
EF(O{Z + 1) | : Nl (ap—-03+1) -4 I (ap—01+1) |

§ [IX(R)IYIIM — ]| (¥ (R) = W (0)) 2
Qr(az — 0 + 1)

. In(R)| 1|1 — s || (¥ (R) — W (0))%21 ]
Qr(az —o1+1)
(7(‘1’(3) — ()% oo~

nF(OlZ + 1) * |\X(R)|(II/(R)*‘1’(0))“27”2 _ InRIW@(R)-¥(0)*27%1 |
A T (ap—09+1) Iag-01+1)

=

[lX(R)mW(R) —w ()= [nRIT(Y (R) - ¥(0)= D
iy - wa]
nl(az -0z +1) nl(e — 01 + 1)

which yields
N2y = Nows || < Vlug - s .

Hence, by (22), NV, is a contraction.
Claim 3: Assumption 3 in Lemma 3.6 holds.

Take a sequence {u,},cn wWith u, — u € €as n — oo. For 3 € [0, R], we get

(N1244(3) = N1u()|

Tt 1 (o n(3)) = 3, 3))| )
[nG)I
. T ()
IMRTGE™ (i) + X RIEY (o5)

o4 [f (R, un(R)) - f (R, u(R)))| )

< zgz*”(

x [In<ze>|133”""’<

In(R)]
ot (ToPY I (R, un(R)) — £ (R, u(R))|
IO? 02,!1/( 0 ):|
BT ®)]

. (W (3)-w (0)*2
B ((W(z) )l P

+
XRIWR)-¥(0)*2772 _ [n(R)|(¥(R)-¥(0)*2~°1
ﬂF(Oll tay+ 1) | [(ay—-0+1) - [(ap-01+1) |
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§ |:|X(R)|(W(R) _ lI/(O))aHaz—Uz |)7(R)|(lI/(R) - W(O))anaz—m ]) "fn _f||,

(a1 + oy — 03 +1) nl(og +az —01+1)

with [If, - f1l = prQmAﬁ)f%umﬂme

3€[0,R
N2, — Nau|
(¥ (R)-¥(0))*2
< ((W (R) — @ (0))r+e  Fr)
- X (R)I(¥F(R)-¥(0)*2792 R)|(¥ (R)-¥(0)*27%1
ﬁF(Oll tdat 1) | [(ag—09+1) - INag—01+1) |

. [ XBIWR) = #1272 | InRIR) = ¢ Q)7 D Iy~ A1l

(a1 +oy — 03 +1) nl(ar +ay —01+1)

where

((W(R) - w(0)rre2
(e +as + 1)

(¥ (R)-w(0)*2
[(ag+1)
|\X(R (¥ (R)-w(0))*2772 \W(R)\(W(R)—‘I’(O))az_”1|
IN(ag—02+1) I(ag—01+1)

[|X(R)KW(R) —wO) e p(R)|(F(R) - W (0)) e D <o
nl'(en + oz -0z +1) Nl +ay -0 +1) ’

The Lebesgue’s dominated convergence theorem and continuity of f lead to the conclu-
sion that | Myu, — Mu|| = 0 as n — oo. Therefore, N, is continuous. Furthermore, A/
is uniformly bounded on B,, as [Niu| < A|IKs|| due to (24). Also, N is equicontinuous.
Indeed, letting u € B,,, for 31,32 € [0,R], 31 < 32, we have

|Mu(32) - N1uGgy)|
< Igf,lll (I((;Jr f(32; (52)) Igf’w (Igf'wf(gl,u(gl))»

n(2) n(1)
. 762" ()~ To2” )|
RZ> " () + X (RTg2 ™" ()]
rovw [ TEY F (R, u(R)) ronw (T f(R, u(R))
e e e R E e |

ie.,

|Mu(32) —N1M(31)|
1
<
NCEINGEY;

X[ w(s)} (@ (a) - () = (W(51) - w(5) ™|

x/ lI/’(x) v(s) — l,l/(x))a1 1[f(x,u(ac))|dxds

0

32 s
+ / W (s) (W (32) — W (s)) > w/(x)(u/(s)—W(x))““ltf(x,u(x))|dxds}

0
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1

R)IZ5E ™ () — | X (RIT Y (o)

+

1 31 , ay-1 -1
X[Qr(az)(/o V)| (9 G2) - W) = (W) - (s) | ds

32
+ / W (s) (W (32) — W (s)) ds)]
31

1LY
[lnteyzo (B IR

[n(R)]
r—on ¥ Ié‘i’ﬂf(R,u(R)n)]
sz (S

”]CfH il ’ |: _ az—1 _ a
= R ! /0 W(5)| (¥ (32) - ()™ (W () ~ ¥ (0)" ds

- /0 N (W 1) - ) (W (5) - W (0) ds

32
-1
+/ '(s)(¥(32) - W (s)) (W(s) - w(0) ds:|
31
1
* |\'I(R)|(‘1’(R)*‘I’(0))a2761 _ xR (R)-¥(0)*27%2 |
I (ag—01+1) Nl (ag-02+1)

1 w“ -
X[m((w(ﬁ)—“’@) B (G -9 E) ™

+(¥(32) - W<s))“2|gf)]

y |:|77(R)|||’Cf||(‘1’(R) —y(0)) e . Ix RKs I (R) - l1/(0))0‘”0‘2_52]
nl(ay + 03— 01 + 1) nl(oy +ay — 03 +1) '

Finally, we get

|N1M(32) —Mu(31)|

_ [(‘I’(R) = ()" ((¥ (1) = ¥ (0)™ = (¥ (52) — ¥(0))*)
- (e + DM (ag + 1)
(¥ (31) - (0)* = (¥(32) — ¥ (0))* 27)
My + 1) BRI RVOFTT L RV O
In(R)[(¥(R) — ¥ (0))* 1271 | x(R)|(¥(R) — ¥(0))*1+*272
X (e
(e +ay—o1 +1) (a1 +ay — 03 +1)

The right-hand side of (27) is clearly independent of u and |Nju(32) — Miu(31)| — O as

32 — 31. Hence, this implies that ]\/]B,B is equicontinuous and N; maps bounded subsets

into relatively compact subsets, which implies that NV B,, is relatively compact.
Therefore, using Lemma 3.5, we determine that N is compact in B;;. Then, in view of

Lemma 3.6, this guarantees at least one solution for the problem (1) in [0, R]. O
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Before stating and proving the results via Krasnoselskii and Leray—Schauder fixed point
theorems under the ¥ -Bielecki’s norm, we provide an auxiliary lemma which is related to
the proof of the equicontinuity property.

Lemma 3.8 Fora given n € C(I,R*), let (H1) and (H3) hold. For all 6 > 0 and with 0 < o; <
1,i e {1,2}, we have

Zo (IS‘E'Wf(zz, u(&))) _ e (Igs’wf(al, M(Z)l))) ‘
- 1(32) o n(31)

1 / ¥ (52)-¥(0) 0¥ (31)-¥(0)

L <e I (28)
ﬁ 9a1+a2 90(1+0t2
A / ) (@) - wie) OO ds) 1Kl

0«1 F((XZ) 31
and
T (X(31)M(51)> _ e <X(52)M(52)> ’
0 n(31) 0 n(32)

7 [ PE-VO)  HWG)-w(0)

E ;( 9a1+a2 - 9011+0(2 (29)

1 32

_ o’ % _y az-1 H(W(s)—lP(O))d .
Ty ), VOG- v o) e s )l

Proof Let 31,32 € [0, R] where 3; < 32, we have

T (If;&'“’f(zz, M(ﬁz))) Lo (Igf*”f(zn, u(:n))) ‘
0t

n(32) o n(1)
< / " [W’(s)(mz) —U(E) WG - W(s»“zl}
“1Jo n(s)I(az) n(s)I(a2)
W)W (5) - v )
Xfo @) f(x,u(x)) dxds
2 W/ (s)(W(32) - W ()2 [° W (%) (W (s) — ¥ (x))1 !
(%)) d
' /z e My (u)dwds
- /‘“’1 W) (52) — W ()2 W)W (51) - W (s) !
—Jo n(s)I(az) n(s)T(az)

S W) (W (s) — (%)L |f (x, () [ ¥ -4 (O)
8 fo (o) )e? ¥ @)-v(0)) dxds
R / "YW 6) - v
31 [7](s)I" (or2)
W) (W () = (@)1 f (s, ()| 9 O)
x /(; T (0 )e? @ @)-v(0) dxds.

By using (7), we get

T (I;*&"”f(gz, u(&») e <Ig:"”f(m, u(@))) '
- n(32) " n(1)
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W)~ (0)
gen

lI/’(S)("I/(?)Z) - lI’(s))ocz—l ~ lI//(S)(lI/(jl) _ l]/(s))aZ_l i

31
= (/0 7)) 7(5)T (@)

/52 11/’(5)(‘1’(32) _ w(s))az—lee(llf(s)—‘ll(o)) 4 ||IC I
+ s ,
3 Nl ()0 T

1

thus, we have

73" f 5o, M(M))) _ o (Igi’wf<al, u(m))) ‘
1(32) ' n(1)

1 31 L
0T (02)01 U (s) (W (30) — W(s))™> W6 (O)
= NI ()0 (/0 ($)(¥(32) ()€ ds

31
- / W(s) (W (31) — W ()OO g
0

32
+ / W(s)(mz)—W<s>)“2‘le"“”‘”-‘”<°”ds)||icf||9
31

W (G1)-¥(0)

<

1/ WG2)-w(0)
~ o ( -

= fo2

1 2 ’ a-1 0 (s)-¥ (0
e [ v -v) s 1K b

Similarly, for 31,32 € [0, R] where 3; < 32, we get

X(él)u(31)> _ eV (X(ﬁz)u(éz)) ‘
( n(1) o n(32)

V() G1) - E)2T W)W G2) - ()

31
S‘/O F(“Z) B F(Olz)
| x ()] |(s)|e? ¥ =¥ (O) p
[n(s)|e? ¥ ©-# ) s
+/32 U'(s) (W (32) — W (s))*2 ! |X(S)||u(s)|e o) B
3 [(e2) [n(s)|e? ¥ W<0>)|

X 31
= r)](r|‘|(bipl|20) [/ (s)(P(G1) - W(s) ™ e 10 (5)-v(0) g

31

—/ lII/(s)(lII(gz)—W(s))az_lee(w(s)_w(o)) ds
0
32

- / W (5)(W (32) — W (s)) > OO ds].
31

By using (6) and (7), we obtain

TV (X(31)u(51)> _ e (X(Zz)u(52)> ‘
0 0 n(32)

nG1)
_X (YO W)
n 02 092
’ -1 s
* Ty ) Y OWG) - w() "l ds)nune.
2

The proof is complete.
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Now, we discuss existence results by using the Krasnoselskii fixed point theorem and
some inequalities of the ¥ -Bielecki’s norm-type.

Theorem 3.9 Let (H1) and (H3) hold. Then, at least one solution exists for the (FGSLL)-
problem (1) on [0, R].

Proof We fix ry > A‘ﬂ’éfg lo , where Ay and Vj are constants defined by (18) and (19) and

focus on the nonempty closed ball B,, () = {u € €, ||ully < rs} which is convex in the

Banach space €.
For each 3 € [0,R] and x € B, 9,

Nu@) NG INauG)

HWG0) = bFG)-V0) | bW G)-¥0)’

which implies that
INVulle < IN12llg + [IN2selo. (30)

Claim 1: For u,v € B,, 5, one has Niu + Nov € B, 4.
To show this, let & € B,, 4. Then

5 If Gy u(3)) 1”&+ @)
|MiuG)| < Zg? W(| ()|I§ ( A EG)-¥(0) ))

W
Ig (In(a)\)
1

IR () + x BT ()]

R)
2-01, f(R, u(R ))|ee(‘p(R)*'1’(0))
X [|77(R)|Ig+ W<| (R)| < D TRV (0) ))

2-02, 1 o [ (R u(R)[ef@®-7O)
|X(R)|Ia l1/<| (R)lzg \I/( ee(w(R)_lp(O)) ))j|

By using ||a| — |b|| < |a + b| and taking into account

+

X (R)I(¥(R) —w(0))*272  [n(R)|(¥(R) - ¥(0))*>~

F(Olz—0'2+1) F(Olz—0'1+1) ’
we find
T ()20
i 2 (B0
n'4
Lz 1))
||X RN (R)-¥(0))*27°2 _ [n(R)|(¥ (R)-¥ (0))*2~1 |
Nl (ap-02+1) nl(ap—01+1)

« |: |’7(R)|Ig+1 +op—01,¥ (66(11/([{)_\1/(0)))

|X(R)| ay—09,¥ _
+ Q Ig}* 2—02 (ee(w(R) '1/(0))) ”ICf”@
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(¥ (3)-¥(0)*2
(e +1)

1
S 9a1+a2 +
n

| X R)|(¥(R)-¥(0)*27%2

_ In@®I¥(R)-¥(0))*2°1 |

I (ap—09+1) nl'(ag~01+1)

[ In(R)|
X

n@al +op—01

Consequently,

+ XBL N swirvon e,
n9a1+012—(72 -

(F(R)-¥(0))*2
(ag+1)

N < (

o +ag + Ix(
nv |

R R)-¥(0)*27%2  _ [nR)|(¥(R)-¥(0)*2~1

I(ag—02+1) INag—-o1+1) |

| X (R)]

[ In(R)|
X

neal +ap—01

which means that

+ n9a1+a2—02 ]) ”K:fHG;

[Nzl < Aol Ksllg- (31)
Similarly, if v € B,, ¢, then
2. ¥ Ix3)Iv()I 6w (3)-w/(0))
[Nav(3)| = Zg? <|,7(3)|69(%>w0))e
21
+ Ig* (\n(a)\)
In(RZE ™ (o) + X BTy ()]
% | (R)|Ia2—al,lll [x (R)[|V(R)] IR (0)
T ot 17(R)|#@ R-¥(0)
+ ’ (R)’Iaz—az,tlf [x R)|[v(R)| e@(l]/(R)_lI/(O))
X or [n(R)|&"@®-¥0)
— (¥ (3)-¥(0)*2
< X " T(ag+1)
— \ nhe2 |\X(R)I(4’(R)*W(0))”2’“2 _ @)W (R)-¥(0)*2~1 |
— I(ag—op+1) I'(ag—01+1)
9 Ix (R)x s n(R)x [v]]e” ¥ D20
no*2-o2 no*2-o1 ’
implying the following inequality:
va (4 (R)(—lII(O)))"‘2
IN'az+1
N2l < (,,gaz T RO R0
- [(ag—0o+1) [(ag—01+1)
IxB®IX  ImBIX
x + Ivile-
Qectz—crz Qectz—crl
This yields
NVavlle < Ve v (32)

Inserting (31) and (32) into (30) gives

N1z + Novilg < Mgl Ksllg + Vors <ra,
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which implies that Nu + Nov € By, o forall u,v € B,, 4, and so assumption 1 of Lemma 3.6
is satisfied.

Claim 2: We show that N, is a contraction.

For each uy,u; € B,, 0, 3 € [0, R], we estimate

v (1x@ui () = u2(3)l _
Nt ) - o] < 732 (LR Sl rvir-vo)

2% 1
. 7Y ()
—01,¥ —09,¥
NRZ ™ (-ks) + x RIGE (k)

0—01,¥ [x R)|u1(R) — ua(R)] 0 (R)-w(0))
X['”(R”Ig* ( n(R] T 0

a0 [ IXRNu1(R) = 2R 5 (ry-w(0y)
+’X(R)|Ig+ ( [n(R)|ef¥ R)-#(0) €

_ (¥ (3)-¥(0)*2
X (e +1)

<
- (n@D‘Z * |\X(R)|(‘I’(R)—‘1’(0))'127”2 _ @) (R)-¥(0)*2~1
— I (ag—0p+1) Nl (ap-01+1)

R)|x R)|x
% Ix(R)x + [7(R)[x eg(q/(;,)_q/(o))nul_uzne
ﬂ@wz—az E@"‘Z‘al

(F(R)-¥(0))*2

< 7 n C(ag+1)
— \ nhe2 |\X(R)|(‘1’(R)—"’(0))a2_”2 _ In@®I(¥(R)-¥(0))*27°1 |
— [(ap—0o+1) [(ag—o1+1)

IX(R)IX  InR)IX
X — + - llur — uzllo-
Q@"Q 02 E@Otz o1

Then, this gives
N2uy = Nausllg < Vo llug — uall.

By choosing 6 > 0 large enough so that

WR)-w(0)*2

X + T(ag+1)
no*2 |IX(R)\(‘P(R)—‘P(0))°‘2"’2 _ In®IW(R)-¥(0))*271 |
— [(ag—0o2+1) I(ay—01+1)

IXx(R)x  In(R)x
X + =Vy<1,
Q902*62 QQWZ*UI

it follows that A is a contraction.
Claim 3: Next, we will verify that condition 3 of Lemma 3.6 holds.
Consider a sequence u, so that u,, — u € €as n — 00. For 3 € [0, R], we get the following

inequality:

(N (3) = Niu(3) |
< %Ig}mz'w < If G un(3)) = f (G u(3))l e@(l]/(é)-ll/(())))

D (G)-¥(0)

2% 1
. Ig+ (W)
—-o1,¥ —09,¥
IN(RZ " () + xR ()




Serrai et al. Boundary Value Problems (2024) 2024:81

W R-¥(0))

|: |77( )l qu+a2 o1,¥ < [f(R, un(R)) _f(Rr M(R))| eg(q/(R)_x]/(o)))

n
|X(R)|Ioz1+a2 o9, If(R u,(R)) f(R u(R))| 9((1/ )—w(0))
n et (W (R)-¥(0)) :
Thus
1
M, (3) — Niu(3)| < ( e
(¥ (3)-¥(0)*2
+ C(ag+1)
|\X(R)|(‘1’(R)—W(0))°’2_“2 _ n®(¥ (R)-¥(0))*271 |
I(ap—02+1) [(ag—o1+1)

X[ Ix (R)| . [n(R)] Deew(g)w(m)"ﬁq_f”@,

n9a1+0t2—02 n8a1+a2—01

and so

1
[Ny, — Nullg < (W

@R-wO)2
+ (ag+1)
||X(R)\(‘1’(R)—‘P(O))°‘2‘°2 [n(R)| (¥ (R)—¥ (0))%2~°1 |
[(ag—0o2+1) Tlag—o1+1)

X[ X® In(R)Ii Dllfn—flle,

nQCll*aZ*UZ n@alﬂ)lz o1

with

b [f G n(3)) — f (G u(3))

W ()-¥(0)

W =fllo =

te[O,R]

and

(P (R)-¥(0)*2

1 N T (ag+1)
noe+as |\X(R)I(‘I'(R)—lI’(O))O‘Z_"2 _ In@®)I(¥(R)-¥(0)*2~°1 |
- I(ag—02+1) I(ap-01+1)

[ Ix(R)] In(R) ])
X + <Oo0
Q9a1+0{2702 EQ“I*"Q"H

The Lebesgue’s dominated convergence theorem, along with the continuity of f, leads to

the conclusion that | Nju, — Null¢ — 0 as 3 — oo. Therefore, NV is continuous. Besides,
N is uniformly bounded on B, as | Nivllg < A[|Kfllg, due to (31).
Also, NV is equicontinuous. Indeed, let u € B,, 4. Then for 31,32 € [0,R], 31 < 32, we have

|Mu(32) = N1uGsy)|

1
< |z (ng‘& Y (3o u(az))) -5 (@Ig}"”f(;,l, ”(31))> ’
|Ig+2 (ﬁ)_l—gf (17 (2) )l

+
InRZGE (o) + X RI2Y ()]

Page 26 of 45
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—01, 1 1
IRz (T ) )

[z (T () )]

By using (28), we get

P WG)-9(0) W (1)-¥(0)

INts2) - M) < %(

9a1+a2 - 00(1+(12

b [T @) - w) O g

[ ()0 ’

31
(T (1) ()2 (¥ (52) =¥ (5))*2 (33)

+ T(ag+1)

|\X(R)I(W(R)*‘P(0))”2’“2 _ In®)IWR)-¥(0))*21

T(ag—op+1) [(og—o1+1)

[ e vy,

90{1+0t2—01 9a1+a2—02

The independence of the right-hand side of (33) with respect to u is apparent and
IMuG2) — Mu(1)] — 0 as 3 — 31. Hence, V1B, is equicontinuous and N; maps
bounded sets to relatively compact sets, so that N5, is relatively compact. Using the
Arzela—Ascoli theorem, we can conclude that ; is compact in 5, 4.

Then because Lemma 3.6 is verified, this shows that the (FGSLL)-problem (1) has at
least one solution defined on [0, R]. O

Remark 3.10 The advantage of proving Theorem 3.7 by using the ¥ -Bielecki-type norm
is that the strong condition Vy < 1 is removed.

Corollary 3.11 Let (H1) and (H3) hold. Then
o If x(3) =0 forall 3 € I, then we get X = 0 and find that the (FSL)-problem (2) has at
least one solution defined on 1.
« Ifn(3) =1and x(3) =1 (A €R) for t € I, then we have n = 1 and ¥ = |A|. We also find
that the (FL)-problem (3) has at least one solution defined on I.

3.3 Existence results via Leray-Schauder fixed point theorem
First, we recall Leray—Schauder nonlinear alternative theorem and then give our main

results.

Lemma 3.12 ([40]) Assume that U is a Banach space, C is a convex and closed subset of U,
M is an open subset of C, and 0 belongs to M. Let T : M — C be a map that is continuous
and compact, i.e., T(M) is a relatively compact subset of C. Then either
o T has a fixed point in M, or
« There exists a point x € 9 M, where 0 M denotes the boundary of M in C, and then
there is a scalar A € (0, 1) such that AT (x) = x.

Theorem 3.13 Let (H1) and (H3)-(H5) hold. Then at least one solution exists for the
(FGSLL)-problem (1) on [0, R].

Proof Pay attention to the operator N : € — € given by (15).
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Claim 1: Operator N maps bounded sets to bounded sets in €.
For r5 > 0, assume that B, o(1) = {u € €, |lullg <5} is a bounded set in €. Let u € B, »,

then

i 1 LY [f (3, u(3))] _
|NuG)| < Ig? (l’?(ﬁ)lz& (ee(w(z)_w(o))ee(w(z) w(o))))

Iaz,w ( [x(3)] |M(3)|( > 69(‘1’(3)—‘1’(0)))

o \In()|ef¥e)-v©

To¥ ()
" ()|
@RI () + x RIGT™ (i)|

201, 1 [f (R, u(R))| .
[|U(R)|I“ W(In(R)IIa (mee(wm ww»))

2-02, L [f (R, u(R))|
I w(lﬂ(R)IIg+ (ee(w(R) O (0)>>>

9—01,¥ [x (R)|u(R)|| oW (R)-¥(0))
Rz (e e

0—09,W [x (R)|u(R)|| 0( (R)-¥ (0))
+ | x (R)|Z5? (—ln(R)|e9("”(R>—‘1’(0))e .

By exploiting the well-known inequality ||« | — |£]| < |k + £] and taking into account

X R)(¥(R) —w(0)™72  [n(R)|(¥(R) - ¥(0))*>~"
F(O[2—0'2+1) F(Olz—0'1+1)

’

we get

(W (3)-w(0))*2

W E)-w(0) Ly
WNu(z)| < T e
nOoL+e2 |IX RNWR)-w(0)*27%2 _ [nR)|(¥(R)-¥(0))*271 |
— 7l (ag—-02+1) I (ag—01+1)

In(R)| PP @-¥O) |y (R)|e! ¥ &)-¥(0)
* lalle

n9a1+a2 o1 n9a1+042—02
+d|lullg
B (¥ (3)-¥(0)*2
el ¥ (5)-¥(0) M (@z+1)
+ no% + | LRI R)-YO)7272 _ [n(R)(& (R (0)°2 71
A nr(a2—0'2+1) QF(UZ_U'I"'I)

[x (R )|Xe9(l1/ 3)-¥(0) IU(R)IYeG ¥ (3)-¥(0))
X + llullo.

no*2=o2 ne%2=o1

This implies that

1 w (R)(—k” (0)))"‘2
IMag+1
<
INullo < <,79a1+a2 * | LRERTO272 R R-FOF 2L
— [(ag—09+1) [(ag—o1+1)

X[ In@® xR ]>||g||9+drs

neal +ap—01 neal +ap—0y
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_ (¥ (R)-¥(0)*2
X + [(o2+1)
nH*2 ||X(R)\(W(R)*‘P(0))D‘27‘72 _ [n®)I(¥(R)-¥(0)*2°1
£ T(ap-0p+1) [(ez~-01+1)

[IX(R)IY In(R)IYD
X + rs,
29012—02 29012—01
which yields
INullo < Agligllo +drs + Vors = L.
Claim 2: Operator N' maps bounded sets to equicontinuous sets in €.

Assuming that the points 31,3, € [0,R] are arbitrary with 3; < 32 and u € B, », where
B; 0 is a bounded set in &, we get

|./\/u(52) —N’M(ﬁl)\

1 1
<|ze? (MI{;‘&"”f(zz, M(éz))) -IY (mlgfq’f(al,u(m)))'
T (x(zn)u(zl)) _qead (x(zaz)u(az)> ‘
Tl nG1) 0 n(32)

2¥ 1 oW1
) 1752 () — o2 ()
InRTG () + x RT3

n(R
X [

N (M) - nRT (LI“”‘”f (& u(R)))
-z (T ) ) + ez (LR ]

n(R) n(R) ™"
n(R) ™" n(R)

By using (28) and (29), we get

|Nu(z2) - Nu()|
1 <69<w32>—wm)> O (5)-¥(0)

n

Qortan B Qo1tan

2 / ag—1 s)—
* Ty /3 W(s)(¥ ) - W ()Y “"”ds)nicfne

X (ee(wm—wo» W (352)-¥(0)
X
n

80(1 +0oo 90{1 +ap

1 32 »
- | W) (¥(Ga) - () VOO g
89T () /31 (8)(¥(32) - ¥(s)™ e s ) llullo

(F(31)-¥(5)*2 (¥ (32)-¥ (5))*2 AW R-¥(0)
T'(ag+1)

* |\X(R)I(‘I’(R)—'J’(O))OQ_‘72 _ In®[(¥(R)-¥(0))*27°1
I(ag—09+1) INag—01+1)
o In(R)IK o . Ix R llo s XInR)ulle  xIx R)ullo
Qalﬂ)tzfo’l 90{1+02702 00{1{»0{270’1 00{1+012702 :

Observe that, as 31 — 32, the right-hand side goes to zero uniformly. This means that it

does not depend on u. Furthermore, by Lemma 3.5, the operator NV : € — € is completely
continuous.
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Eventually, we prove that the set of all solutions of the equation AN (1) = u is bounded
for L €(0,1).
Following similar computations as in the first claim, we have

|u@3)| = PNuG)| < [Ao(ligllo + dllullg) + Vollulls]e”™ DO,
Taking the norm for ¢ € [0, R], we have the following:
llulle < Agllglle + (dAg + Vo) llullo,

which leads to

lluello (1 —d Ao — Vo) -
Aollglle

In accordance with (H4), then there exists M > 0 such that || u|ly # M. Define a set
My = {u €C:|lullg <M},

and consider the fact that A/ : My — C is continuous and completely continuous. The
choice of My gives that there is no x € 3 M, such that AN () = u for some A € (0,1). Asa
result, we conclude by Lemma 3.12 that A" has a fixed point # € Mj that corresponds to
a solution of the (FGSLL)-problem (1). (|

Corollary 3.14 Let (H1),(H4), and (H5) hold.
o If x(3) =0 for t € I, then we get X = 0 and obtain that at least one solution for the
(FSL)-problem (2) is guaranteed on I.
« Ifn(3) =1and x(3) = A fort € I and » € R, then we have n = 1 and x = |A|. We also
conclude that at least one solution for the (FL)-problem (3) is guaranteed on I.

4 Stability analysis
This section analyzes the stability property. In other words, in the present section, we will
discuss UH, GUH, UHR, and GUHR stability of the given (FGSLL)-problem (1).

4.1 Ulam stability
Lete >0,L; >0,andlet ¢ : [0,R] — R, be continuous. We will examine the set of inequal-
ities as below (3 € [0, R]):

1“DE (nG) D2 u() + x()uG) —f (5, uG))| < &, (34)
DG (nG)°DEFY 1) + xG)u@)) — £ (5, 4Q))| < 66), (35)
1“Dg (nG)DE" uG) + x(3)uG)) - £ (5, uG))| < e9(3). (36)

Definition 4.1 ([34]) The (FGSLL)-problem (1) is UH stable if there exists C; > 0 so
that for any ¢ > 0 and each solution u € C([0,R],R) of the inequality (34), there exists
u € C([0,R], R) as a solution of the (FGSLL)-problem (1) with

|u() —u3)| <Cre, 3€[0,R].
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Definition 4.2 ([34]) The (FGSLL)-problem (1) has GUH stability if there exists a positive
constant Cy so that for any ¢ > 0 and for any solution u € C([0,R],R) of the inequality (34),
there exists u € C([0, R],R) as a solution of the (FGSLL)-problem (1) with

|uG) - u()| <), 3€l0,R].

Definition 4.3 ([34]) The (FGSLL)-problem (1) is UHR stable asymptotically if and only
if there exists C > 0 so that for each & > 0 and for each solution # € C([0,R],R) of the
inequality (36), there exists u € C([0, R], R) as a solution of (FGSLL)-problem (1) with

u(3) - u3)| <eCrrY (), 5€l0,R]

Definition 4.4 ([34]) The (FGSLL)-problem (1) is GUHR stable with respect to Y if there
exists a real number Cry > 0 so that for any solution u € C([0,R],R) of the inequality (35),
there exists u € C([0, R], R) as a solution of the (FGSLL)-problem (1) with

|u3) - u@)| <CrrY(G), 3€[0R]

Remark 4.5 (1) Definition 4.2 is implied by Definition 4.1,
(2) Definition 4.4 is implied by Definition 4.3,
(3) Definition 4.1 is implied by Definition 4.3 for Y(-) = 1.

Remark 4.6 A continuous function z € C([0,R],R) is a solution of the inequality (34) iff
there exists g € C([0, R], R), a continuous function depending on u such that
M |g@)|<e 3€I[0,R],

2 D (DY uG) + x(5)uG) =f (5, uG)) +£G), 3€[0R],
hold.

Remark 4.7 The essential condition for a function z € C([0, R], R) to satisfy inequality (36)
is the existence of a function w € C([0, R], R) that depends on the solution u and satisfies
the following conditions:

(M |w)| <eYG), 3<I[0,R]

2 DI (nGD uG) + xG)uG) =f (5, uG) +wi), 5 €[0,R].

The following lemma, a generalized version of Gronwall inequality, plays a crucial role
in establishing our main stability results.

Lemma 4.8 ([41]) Suppose that u, v are two functions in L*([0,R]) and g in C([0,R]). Let
W € CYO,R] be an increasing function so that ¥'(3) # 0, V3 € [0, R]. Suppose, in addition,
that

(1) u and v are nonnegative;

(2) g is nonnegative and nondecreasing.
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I
3 a-1
u(3) < v(3) + 2G) /0 W)@ G) - () ulr) dr,

then

) <v(3) + /0 Z Lg(g,)l"(oz v(T)[¥ () - W(r)]ak*lv(r)dr, V3 € [O,R].

k=1
Furthermore, if v is nondecreasing, then
u(3) <VvG)Ea (gG)T (@)[¥6) - ¥ (1)]*), V3 €[0,R].
Proof See [42]. O
Remark 4.9 ([41]) Leta > 0,1 =[0,R],and ¥ € C}(I,R) be increasing with ¥'(3) # 0 for all

3 € 1. Assume that v is a nonnegative function with the local integrability on [0, R] and let
u be nonnegative and locally integrable on [0, R] with

3
u(3) <v(3) + R /0 W @[¥E) - v @] ) dr, Ve 0R].

Then

k
3) <v(3) + Z RF(“)] O[G) - ¥ (@] vr)dr, V3el0R].
0 k=1

Lemma 4.10 Let u € C([0,R],R) is a solution of the inequality (34) and o; € (0,1], i €
{1,2}. Then u € C([0, R], R) satisfies

uG) - Z2G) - T £ (3, u(3)) | < Ae, (37)

where

Z(3) = _Iaz,w (X(Z))a(ﬁ) Ig* (n(z))
= o

nG) >+'7(R)Igf_al'w(%)+x(13) 7o (L)

R)u(R -

2—02,¥ 8’4 bo! 2—00,¥ X(R);(R)
ARTE (T f(R,u(R)))+x<R)I;;‘+ (Tm) )]

with A given by (16).

Proof Let 1 be a solution of (34). By Lemma 2.9 and Remark 4.6(2), we get

(39)

DI (DY uG) + x(5)u) =f G uG) +£G), 3 €(OR),
#(0) = 0, n(R)DI u(R) + x (R)DI* u(R) = 0,
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and then the solution of problem (39) can be given as

uG) =I5 <%Ig+l’wf(5, Z(ﬁ))) +IY <_Ia1 Wg(a)) e <X (5)”(5))

O 10)
" ()
_ n@
nRIT5E" () + X (RITGE™ ()

oz (T (i)

R (T “’g(R)) @I (M>

(R) n(R)

+ X(R)Igf_az’w (mlgl lPf(R; ;(R))>

- ¥ [ 1 oW _ 2-02,¥ X(R)E(R)
* 1B ((R)Zg g(R)) *(RL: ( 1®) )]

Due to Remark 4.6(1), we can write

luG) - 2G) - TV f (3, u()) | < T2 (—Igz"” Ig(5)|>

3
R Y () + x(

) [|" }Iaz_w(| TR |)
]

+|X(R)|IS’3“2"’”<WI§?W| R )|> .

By using Remark 4.6(1), we acquire

luG) - 2G) - TV (5, u(3))|
(P (3)-¥(0))*2

3 ((wg) ) )
T\ Pl var+ 1) |p@®) EREOETL |y (r) EROI

I(ag—01+1) I(ay—02+1)

y [IU(R)I(‘I’(R) —w(0))rem X (R)|(W(R) — w(0))x o2 DE

(e +az—o01 +1) Nl +az—0y+1)

(¥ (R)-¥ (0))*2
< <(W(R) — @ (0))re T Tl

+ o) —0° A9 —0°
(e +en 1) IR EEEERE — X (RIHREE

INag—01+1) [(og—02+1)

y [IU(R)I(‘I’(R) —w(0))rem X (R)|(W(R) — w(0))x o2 De

(e +az—o01 +1) n.I'(a1 + @y — 03 +1)

The proof of (37) is finished.

O

Theorem 4.11 Let (H1) and (H2) hold. The (FGSLL)-problem (1) is UH stable in

C([0,R],R).
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Proof Let u € C([0, R],R) be a solution of (34), and u € C([0, R], R) be a unique solution of
(1). By using Lemma 4.10, it gives

u=XG) + Tt u)),

where
X :_Iaz,w(x(z)u(a))
@) 0 n(3)
+ 7 Igg,lp(#a)) '
RIZ () + 1T () )
2—01,¥ X(R)M(R) _ 2—01,¥Y L 1,.¥
[ (R ( n(R) 1R (n(R)Ig+ f(R’M(R))>
- [ & 1LY 92—09,¥ X(R)M(R)
- xRy ( ®o (R’“(R)))”(R)Ig* ( 1(R) ﬂ

Clearly, if u(0) = 2(0) and
n(R)DIY u(R) + x (R)DPY u(R) = n(R)DIY u(R) + x (R)D u(R),

then we obtain that X'(3) = Z(3).
By the help of Lemma 4.10 and the known inequality |u + v| < |u| + |v| for any 3 € [0, R],

we get

|uG3) - uG)| = |uG) - XG) -T2 £ (3, u()) |
<|uG) - ZG) - T £ (3,u(3))|
+ Ze Y | (5,u()) — £ (5, 4G)) | + | 2G) - X))

L 3 al+apx—1 |
<Ae+ m f lI//(s)(lI/(;,) = 40)] I‘M(S) - u(s)‘ ds

k(ay+ag)-1
<ac(ie [ Zr(k(al L W - )

0 Lk(lI/(;,) _ W(O))k ay+ay)
1
=AY Tk(@ + o) + 1)

k=0

00 Lk(!I/(R) (O))k(a1+a2)
f
EZ T(k(oy +02) + 1)

= A€Egyray (L (W (R) — ¥ (0)) 7).
For simplicity, we take Cr := AEq, o, (Lr (¥ (R) — ¥(0))*1**?). Then (41) becomes
|u(3) - u(3)| < Cre.

Thus, the (FGSLL)-problem (1) is UH stable. O
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Corollary 4.12 Let (H1) and (H2) hold.
o If x(3) =0 forall § € I, then we have X = 0 and the (FSL)-problem (2) is UH stable in
C([0,R], R).
« Ifn(3) =1and x(3) =1 (A €R) for 3 € I, then we have n = 1 and X = |A|. We also find
that the (FL)-problem (3) is UH stable in C([0, R], R).

Now, if T (¢) = eCr with Y(0) = 0, we have a corollary as follows.

Corollary 4.13 Let (H1) and (H2) hold. Then the (FGSLL)-problem (1) is GUH stable in
C([0,R], R).
o If x(3) =0 forall 3 € I, then X = 0 and the (FSL)-problem (2) is GUH stable in
C([0,R], R).
« Ifn(3) =1and x(3) =1 (A €R) for 5 € I, then we have n = 1 and X = |A|. We also have
that the (FL)-problem (3) is GUH stable in C([0, R], R).

In the sequel, we focus on the UHR and generalized UHR stability.

Lemma 4.14 Let o; € (0,1], i € {1,2}, and suppose u € C([0,R],R) is a solution of (34).
Then u € C([0,R],R) satisfies

uG3) - 2G) - I £ (3, u())| < WeyrYG),

where
(¥ (R)-¥(0)*2
1 N Tz +1) |:|77(R)| N |X(R)|} (42)
- (¥ (R)-¥(0))*27%1 (F(R)-¥(0)*2772 ’
AR g om— — xR g oIl 1 n
and Z is given by (38).

Proof Assuming that u is a solution of (36), we can utilize Lemma 2.9 and Remark 4.7(2)
to obtain

(43)

DX (DL u(s) + nu() =f G, uG) + wG), 5 € (0,R),
u(©0)=0,  RDI uR) + x (R)DZ* u(R) =0,

and then the solution of problem (43) may be given as

u(s) =Ig" (iz“w”f(;,, Z(a))) + 12 (Lzal,ww(ﬁv _ g <x (5)u(5)>

nG) " nG) " n()
o (5)
+
nRI2 (o) + x RTE ™" (o35)

x [—n(R)Igf'”l"” (%ng’wf(R,ft(R)D

2-01,¥ L LY 2-01,¥ X(R);(R)
- n(R)Z;? (n( R)If,i W(R)> +n(R)Zy? <—n ® )
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- X(R)Igf"z"”( L SR, 2(1%)))

x(Rﬁ(R))}

9—09,¥ - In'4 2—09,¥
-z (T )+ xRz (K0

Thanks to Remark 4.7(2) and assumption (H6), we have

|uG) - ZG) -2V £ (3, u(3)) |
Ig"z w(n(z )

1
= IO?#I/ (—I“}'ww(g)) +
BN HRIT ™ (o) + n (RITg ™ (k)

x [—n(R)I” i (WIS& ww(R)) - X (RTgz > <ﬁ18” o (R))] ‘

By using Remark 4.7(1), we get

|1G) - 26) -T2 (3, u()) |
Iot1+a2 ' T (Igz,wl)(z)
0+ (8 (3)) |(—(Igf“”"” D(R) - D((TR)\(IS?-GZ,II/ D(R)]

I\“)IP—‘

y |:|77(;3)|Ig}+a2—01,‘1’ (ST(R)) + @Ig}mz_”’w (sT(R))i|.

In view of inequality (14), it follows that

|uG) - ZG) -2 Y £ (3, u(3)) |

(W (;)-¥(0)*2

< (VT,alJrozz + [(ap+1)
- ¥ (R)-¥(0))*27°1 (¥(R) 0))¥2-92
no (R RO |y (R)| R

x [VT,Dllﬂlz—Ul'n(R)' i yT,Ot1+012—(72|X(R)|i|)8.r(5).
n n

Finally, we conclude that

u3) - 2G) - I £ (5, u(3))

(¥ (R)-¥(0)*2
F(Ot2+1)

1

= (77 || (R)| A | (R)| R) oy |
— n 012 <71+1 X [(ag-02+1)
|: |77 ; | |X , | e T(Z)

The proof of (4.10) is now complete. d

Theorem 4.15 Let (H1), (H2), and (H6) hold. Then the (FGSLL)-problem (1) is UHR stable

in C([0,R],R).
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Proof Let u € C([0, R],R) be a solution of (36) and u be a unique solution for the (FGSLL)-
problem (1). By applying Lemma 4.14, it yields that

w=X()+ T (3,u03),
where X’ is given by (40). Similarly, if #(0) = #(0) and
(R Dy u(R) + x (R)DGF” u(R) = n(R) DG u(R) + x (R) D" u(R),

then X (3) = Z(3).
Applying Lemma 4.14, the triangle inequality, and inequality (14), for any ¢ € [0, R], we
then may write

|uG3) - u(3)|
= |u() - XG) - T2 f (5, u()) |
< [u@) - 26) - i £ (3,u()) |
+ T (5, u06)) —f (3uG) | + | 26) - X6))|

f ] / ay+ay—1
<WeprY(3) + Tl 1) /0 v (s)(lI/(g,) - lI/(s)) |u(s) - u(s)| ds
3 Lk
f 1 k(ay+ap)-1
<Weyr [m) + fo ;mw ) (PG -¥(s) Y(s) ds].

Since Y is nondecreasing (see condition (H6)), for all s € [0, 3], we obtain Y (s) < Y(3) and

can write

L w6 - W(o»k@l*aﬂ]
= T k(o + 2)) k(o + o)
L{(¥(R) - w(0)Kere)

F(k(oq + 0{2) + 1)

<WeyrYG)Y
k=0
= ey Y)W Eqysar (L (¥ (R) - W(0)) ),
where ¥ is provided by (42). Thus,
|uG) - u@)| < CrrY(Ge,
with
Cror = Ve W By o (L (W (R) - W(0)7).
Then, the (FGSLL)-problem (1) is UHR stable. a

Corollary 4.16 Let the assumptions (H1), (H2), and (H6) hold.
o If x(3) =0 forall 3 € I, then X = 0 and the (FSL)-problem (2) is UHR stable in
C([0,R],R).
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e Ifn(G) =1and x(3) = » (A €R) for 3 € 1, then we have n = 1 and X = |A|. Furthermore,
the (FL)-problem (3) is UHR stable in C([0, R], R).

Now, we take e = 1 in |;(5) —u(3)] < Crx Y (3)e with T(0) = 0. Then we have the following.

Corollary 4.17 Suppose that (H1), (H2), and (H6) are fulfilled. Then the (FGSLL)-problem
(1) is GUHR stable in C([0, R], R).
o If x(3) =0 forall 3 € I, then we have X = 0 and the (FSL)-problem (2) is GUHR stable in
C([0,R],R).
« Ifn(G) =1and x(3) = » (A €R) for 3 € 1, then we have n = 1 and X = |A|. In addition,
the (FL)-problem (3) is GUHR stable in C([0,R], R).

5 lllustrative examples
Here, three test examples are used to show the effectiveness of the proposed techniques.

Example5.1 Two cases are formulated that require less restrictive conditions for a unique
solution. Then we analyze the stability results based on the (FGSLL)-problem (1).

e First case. We fix a; = %, ay = g, o1 = %, 09 = %, W¥(3) =3for;€[0,1],1n() = el 4 10733,
and x(3) = 0 for 3 € [0,1]. We have ¥ = x(1) = 0, n(1) = ¢! + 103 and 7 = ¢! In this case,
the (FGSLL)-problem (1) is reduced to the (CSL)-problem (Caputo-type Sturm-Liouville)

1
DY, (¢ + 1035)C DS, u(3)) T, 3elo1], ”

u©0)=0, (e +1073)CDZ u(1) =0.

wiro ”

The conditions (H1) and (H2) are satisfied so that

e m@)l e u)l
9+3)2 1+ 1u1(3)  (9+3)?% 1+ |uz(3)l
ed

(3o t) = f G102 < ‘(

le1 — o

—|u1 —uy|, forallu,uy €R,3€(0,1].

— 102
Then, we have Ly = ;5;. Hence,
1
Ly L T [ Ly|n(R)| ]
_In@®1 —
nF(a1 +ay+1) az 01+1) nl(og +oy —01+1)
e 1 (% + 10-3)e
= Jozar(3y 11y €102 410-3 20102 (3 <1
102e!°T' (%) (L)oo | 10% ré)

r(%)

where J is given by (20). Now, all the assumptions of Theorem 3.2 are satisfied. Thus the
(CSL)-problem (44) has a unique solution on [0, 1].
Similarly, by choosing 6 > 0 large enough such that

1
1 = R
LiAg +Vp :Lf( - ?1) [ ()| ])
ﬁgalﬂm QQOIIHXZ*Gl

||
Fa2 o1+1)
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e 1 |:(e102 + 103)6]
<1,
|

= +
1026105 (I eaet L 10z
6

where Ay and Vj are the constants given by (18) and (19), the conditions of Theorem 3.3
are fulfilled. Thus the (CSL)-problem (44) has a unique solution on [0, 1]. Moreover, we

have
1
1 [(ag+1) |: |77(R)| :|
¢ - . Euy v (L)
[nR)] _ o \of
nl(og +aa +1) |m| nl(og +az —01+1)
1 1 el 41073
= =t = 3[ 3 :|IEZ(1()—2e)>0.
e F(?) F(%”e r;rzl;)*| e F(i) 3
6

Hence, from Theorem 4.11, the (CSL)-problem (44) is UH and GUH stable on [0, 1].
By taking Y'(3) = (¥ (3) — ¥(0))s = 35, it follows that

preatops) = ) re)
Ig+ 1@G) = 779 T(3) < VT,aHazT(é)’ where Yrariay = =5
r'(3) 8
* L) r
IOO(»}*'az o, ¥ ()= g 34T(3) = VYag+az-0; T(3), where VY oay +ag—op = g ,
') e
- INE) )
Ioaarl*'az N T(ﬁ) = 161 35T(3) = J/’Y‘,aﬁozz—ozT(ﬁ); where VY a1 +ag—09 = 161 .
(i) 0
The inequality (14) is satisfied with
r'(%)
Y1 = Max{Vy,a +ay-0) V¥ 01 tar-01s YT artan ) = —2>0,
I'3)
where
1 oy [ IR 2 1 102, 10-3
v = ; + |(:(2RJ;\) |: . ] — e 107 o103 |: 102 i|
1 Itammll 2 NTE=TE
Then
Crox = yr¥Ea sy (Ly)
(s 1 102 | 1073
) FEE; (e—102 T %10 |:e Jlroz ])]E% (107%¢) > 0.
5 11y e 10- .
3 Pz~

Therefore, in view of Theorem 4.15, the (CSL)-problem (44) is UHR and GUHR stable on
[0,1].

o Second case. We fix a; = %, oy = %, o1 = %, 0y = %, w(3) =3 n() =1for 3 €[0,1], and
x(3) =107 for 3 € [0,1]. We get (1) = = 1 and x (1) = X = 10~>. In this case, the (FGSLL)-
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problem (1) is reduced to (CL)-problem (Caputo-type Langevin)

CDS+(CD0+U(3) +107%u(3)) = ﬁ&gmz; 3€10,1], 45)
1

u(0) =0, CD0+u( ) +1073¢DZ u(1) = 0.

The conditions (H1) and (H2) are satisfied with Ly = ;5;. Hence,
Lf X 1
= +
Nl +a+1)  nl(ag + 1) Tl + 1) az 62+1) - F(az a1+1)|
Ix R®)[x In(R)Ix Le|x (R)]
Ny -02+1) nl(@a-o0o1+1) nl(e+az—-02+1)
LeIn(R)]
(e +ay—o01 +1)
e 1

= 13 1
102I‘(Z) 103”?)

1 |: 1 1 e e ]
+ + +
(11)|103r 5 r(1%)| 105T°(3)  10°T(Z)  105T'(2) 102T(3)

<1

All the assumptions of Theorem 3.2 hold. Hence, the (CL)-problem (45) has a unique
solution on [0, 1]. Similarly, by choosing 6 > 0 large enough such that

1
1 Tlansl) R R
LiAg +Vy =Lf( o @ Hea ) Pl [ |X£ )L, + In(+ )|_,, D
Q@D‘I a X _ n | 2901 02—02 Q@O‘l a3—0]

| I(ag—09p+1) I(ay—o01+1)

_ 1 _ _
X NCZYS)) IXR)Ix In®R)IX
T e T L@ R (| poeaor  poea-er
— |F (ag—09+1) F(a2—¢71+1)| — —

e 1
= 7 T 5
10205 10396

1 [ 1 e 1 e ] 1
+ + + + <1,
Mt~ rinl Lioses 10203 1095 1056

all the conditions of Theorem 3.3 are fulfilled. Then the (CL)-problem (45) admits one

solution uniquely on [0, 1]. In addition, we have

1

1 I +1)
Cf = + 2
[x(R)|
QF(O[l tayt 1) Il"(oz;(—02+l) Ot2 (71+1)|
Ix (R)| In(R)|
X + Eot1+a2(Lf)
Nl +ay—02+1) nl(er+az—-o01+1)

- * 7\ ]>
r®) " Ty - rplL1or®) " TG ] 78\
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From Theorem 4.11, it follows that the (CL)-problem (45) is UH and GUH stable on [0, 1].
Taking Y'(3) = (¥ (3) - W(O))% = 3%, we obtain

vranwopy _ @) NGNS _r@
Ig+ T(ﬁ) - F(%)é T( )_ F(%)T(Z’) - VT,a1+a2T(3)’ VT,oqﬂxz = F(%)y
rc r(Z r
T () = LT £ 1 S0 = Fronnn TO) P = 1 6
3 3 3
' r N
gty (s) = - ((%))sz(z) < ((é))T(z) = Yrarsas—oo Y (3) Va1 +ar-on = FE;

The inequality (14) is satisfied with

(%)
Yy = maX{VT,Ot1+Ol2—O'21 YY,01+ap-017 )’T,alﬂyz} = SN >0,
r'(3)
where
1
1 oD R R
V= uCT [In()7 )|, Ixf7 )I}
- |F(a2*01+1) - F(a2—02+1)| A A
1 1001
= —+ .
sp() L _ L
1030 ()| ord) F(%)|
Then
r( 1001 e
Crx = (?)(1"' i1 i — |z _)>0'
I'(3) 10°T ()] -1 ) s\102

105T(3)  T'(g)
Therefore, from Theorem 4.15, the (CL)-problem (45) is UHR and GUHR stable on [0, 1].

Example 5.2 We start with the (FGSLL)-problem (1) and choose o7 = %, oy = é, o1 = %,
0y =1, ¥(x) =«>. For 3 € [0,1], n(3) = L and x(3) = 10~ for 3 € [0,1], we have n = 5(1) = 1
and x (1) = ¥ = 107% In this case, the (FGSLL)-problem (1) is reduced to (CEKL)-problem

(Caputo—Erdélyi—Kober-type Langevin)

4 5
tep? ay(a)) = —luGles
"D (Dot 1) +107G)) = oty € 01
7

u(0) =0, Dgiu(1) + 107D u(1) = 0.

(46)

The conditions (H1) and (H3) are satisfied with

lu(3)le? e
O+3)2Q +u@G))| ~ (9+3)?

= Kr(3).
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Hence,
_ 1 _ _
V. X . Tz 1) Ix R)[x s In(R)Ix
Sl +1) | xR ®L | pM(ay — 03+ 1) (e — 01 +1)
— I'(ag—09+1) INag-o1+1) ' =— —
B 1
104,1—1(7+7\/§) (47)
1 |: 1 1 ] 1
+ + <1
M) ——doe - L | L10ST(2505) 1001 (355%)

1041 (25 i (5ey3)

The assumptions of Theorem 3.7 are met. Hence, the (CEKL)-problem (46) has at least
one solution defined on [0, 1]. Similarly, by choosing 6 > 0 large enough such that

— 1

oD R)x R)x
vy = X NCEYSY) I[IX( X . [n( )Ix}
)

= +
o [X(R)| [n(R)| a—o ay-o
ﬁ@ ? |F(a2—02+1) T T(ap—o01+1 QQ e Q@ 2

1 1 1 1 .
1040 % ' I(Zf5) —1 L__| gz e |57
104r(721*2”§ﬁ) 10‘%(%)

7 1086 Qe 7

and by utilizing Theorem 3.9, we conclude the (CEKL)-problem (46) has at least one so-
lution defined on [0, 1].

Example 5.3 Based on the (FGSLL) problem (1), we take a1 = %, oy = %,

W(x) = «% n(3) = 1 for 3 € [0,1], and x(3) = 107 for 3 € [0,1]. We have n = (1) = 1 and
x(1) =X = 1072, In this case, the (FGSLL)-problem (1) is reduced to (CEKL)-problem
(Caputo—Erdélyi—Kober-type Langevin)

&

2
»01=75,02=

3 NA
DL (ED,T 1072u(3)) = ——2GL___ - 5 < [0,1],
o+ (Dot u3) + 107°u(3)) = — TG 2 [0,1] (48)

2 1
u(0) =0, CDéu(l) + 1072D2 u(1) = 0.

The conditions (H1), (H3), (H4), and (H5) are satisfied with

=Ky (3),

3+ u(3)] ’< 1

9e5> /1 + 345+ [u@)) |~ 9e3” /1 +3*

and

3+ |u(3)l 3 u(3)]

9e3”\/1 +3%(5 + Iu(z)l)' = 97 T+ 515+ 1)) 96211575 + [u(3))

= g(3) +dlul,
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-1 4= =1
such that g(3) = T d=1,and |glls = 3, where
1
1 Mlaa D) Ix (R In(R)]
Ao = nho1+er * [x(R)| [n(R)] nOe1+e2=02 * nHo1+e2=01
— | T(ay—02+1) ~ T(ag—01+1) | —
1 1 1 1
T ToLass + r 7+J§) 1 1 7+24/5 + 134445 |’
21+4+/5 _ o0 722/5 13445
6~ s (=5 |102F(21+24§J§) r(%)l 1020714 6 =
— 1 — —
X o) Ix(R)Ix  In(R)IX
Vo = no*2 * | IX®)  _ _ InR) | L noe2-o2 * n@e2-o1
— IN(ay—02+1) (ag-o01+1) — —
1 1 1 1
- 5 7+/5 1 1 w7 | V52 |
10207 T(= )Ilozr(21+m) - F(E%ﬁ)l 10% 7% 102077
and

M1 —dAgy - V)
Agllglle

Hence, from Theorem 3.13, we conclude that the (CEKL)-problem (48) has at least one
solution defined on [0, 1].

6 Conclusion

We conclude this paper with some useful findings. First, we studied the existence and
uniqueness of solutions for a new class generalizing the differential equations of Sturm-—
Liouville-Langevin (1) including two fractional derivative operators in the ¥ -Caputo
sense. When x (3) = 0 for 3 € I, we obtained the (FSL)-differential equation (2) (Sturm—
Liouville problem), and if n(3) = 1 and x(3) = » (A € R) for 3 € I, we obtained the (FL)-
differential equation (3) (Langevin problem). The acquired results have been established
via Banach’s contraction, Krasnoselskii and Leray—Schauder fixed point theorems using
some norm inequalities of the ¥ -Bielecki-type. Moreover, we proved different kinds of
stability in the sense of Ulam, such as Ulam—Hyers, Ulam-Hyers—Rassias, generalized
Ulam-Hyers and generalized Ulam—Hyers—Rassias. Also, to prove our results, we applied
the generalized Gronwall integral inequality.

The second main idea of the current research was to use the ¥ -Bielecki-type norm to
reduce the constraints of the (FGSLL)-problem (1) to prove the results of existence and
uniqueness. The advantage of this norm (Bielecki’s norm) can be found by comparing the
conditions of Theorems 3.2 and 3.3, and by removing the strong condition J < 1 that ap-
peared in proving Theorem 3.2 using the classical supremum norm, while Theorem 3.3
does not require this condition. It is also done by comparing the conditions of Theorems
3.7 and 3.9. In a future work, researchers may consider using the ¥ -Hilfer or other frac-
tional derivative operators, such as the fractal-fractional derivative, to establish the exis-

tence, uniqueness, and stability of solutions to the (FGSLL)-problem (1).
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