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Abstract
A hybrid system interacts with the discrete and continuous dynamics of a physical
dynamical system. The notion of a hybrid system gives embedded control systems a
great advantage. The Langevin differential equation can accurately depict many
physical phenomena and help researchers effectively represent anomalous diffusion.
This paper considers a fractional hybrid Langevin differential equation, including the
ψ -Caputo fractional operator. Furthermore, some novel boundaries selected are
considered to be a problem. We used the Schauder and Banach fixed-point theorems
to prove the existence and uniqueness of solutions to the considered problem.
Additionally, the Ulam-Hyer stability is evaluated. Finally, we present a representative
example to verify the theoretical outcomes of our findings.

Keywords: Langevin hybrid differential equation; ψ -Caputo fractional operator;
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1 Introduction
When implemented in a variety of numerical algorithms, fractional differential equations
demonstrated their effectiveness and versatility in modeling and analyzing in many scien-
tific fields, including engineering, material science, chemistry, bloodstream-based models,
and also in image processing, for example, in electronics [33], physics [7], engineering [32],
biology [8], and chemistry [20]. Kilbs et al. [23] examined recent advances in the field of
fractional differential and fractional integro-differential equations, covering various op-
erators of fractional calculus with significant potential utility. Podlubny described meth-
ods of solving differential equations of arbitrary real order using integrals and derivatives
of arbitrary real order and applied these methods in various fields [26]. In recent years,
numerous studies have consistently shown the beneficial effects of fractional differential
equations. The definition of fractional-order operators within the framework of fractional
calculus played an important role in achieving these results and advances, demonstrating
their accuracy in describing phenomena and modeling processes occurring in the Uni-
verse. Fractional differential equations and their various branches, such as the Hybrid
equation, Langevin equation, and Sturm-Liouville equation, have gained a strong repu-
tation due to the huge number of articles and books written on the topic throughout the
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world. These equations have applications in many fields, including engineering and sci-
ence.

In the last decade, researchers have introduced many operators. Almeida [10] has re-
cently introduced the ψ-Caputo fractional derivative, which serves as a broad generaliza-
tion covering various other formulations of fractional derivatives, including Caputo and
Caputo-Hadamard types. They review recent advances and findings concerning initial and
boundary value problems incorporating the ψ-Caputo fractional derivative. Subsequently,
they explore the existing theory’s obstacles to solving fractional systems in various ab-
stract fractional boundary value problems. In these studies, the essential and definitive
approach combined the well-known ideas of fractional calculus theory with fixed-point
theory. This approach has proven useful in producing valuable existence results, such as
Baleanu et al. [14] presented a model of childhood disease epidemics that uses a new frac-
tional derivative method proposed by Caputo and Fabrizio. Khan et al. [21] proposed a
mathematical model of tuberculosis using fractal-fractional-order principles, aiming to
investigate existence, conduct numerical simulations, and analyze its stability. Baleanu et
al. [15] developed an innovative approach to modeling boundary value problems on the
glucose graph. In 2020, Baleanu et al. [17] unveiled a new fractional model of the human
liver, incorporating the Caputo-Fabrizio derivative with an exponential kernel. Tuan et al.
[31] presented a mathematical model of the transmission of COVID-19 using the Caputo
fractional-order derivative. Khan et al. [22] showed that waterborne diseases result from
the transmission of pathogenic bacteria through water, which affects human health. In
2020, using a mathematical model, Thabet et al. [30] investigated the existence, stability,
and numerical findings of a novel coronavirus disease (COVID-19). To verify the existence
and uniqueness of solutions to the mathematical model concerning the transmission dy-
namics of COVID-19, we refer interested readers to [29]. Ahmad et al. [4] examined the
existence of solutions for a nonlocal hybrid boundary value problem involving Caputo
fractional integro-differential equations. In 2019, Abdeljawad et al. [1] explored solutions
to the nonlinear integral equation and fractional differential equation using the technique
of a fixed point and a numerical experiment. Alsaedi et al. [12] explored the solvability
of coupled nonlinear fractional differential equations of varying orders, accompanied by
nonlocal coupled boundary conditions over a general domain. Many authors have inves-
tigated the Hyers-Ulam stability for fractional differential equations. Numerous authors
have explored the Hyers-Ulam stability in fractional differential equations. They have ex-
plored numerous Hyers-Ulam stability issues concerning various types of fractional differ-
ential equations, such as Langevin systems, employing a variety of methodologies. Adjabi
et al. [2] investigate a variant of Langevin differential equations incorporating ordinary
and Hadamard fractional derivatives coupled with three-point local boundary conditions.
Almalahi et al. [9] explore qualitative aspects of a nonlinear Langevin integro-fractional
differential equation through their investigation. Ahmad et al. [5] explore the existence
and Hyers-Ulam stability of solutions to a nonlinear neutral stochastic fractional differen-
tial system. The fixed-point theory has found numerous practical applications over recent
decades. Its utility extends to optimization theory, game theory, conflict resolution, and
mathematical modeling in quality management, presenting fascinating and valuable in-
sights across these domains.

Developing novel fixed-point theorems and related approaches has facilitated inves-
tigating and researching boundary value problem models, including hybrid fractional
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boundary value problems. The mathematical analysis of fractional dynamical systems has
recently expanded to include hybrid fractional differential equations. Many researchers
have studied the hybrid fractional differential equations using various approaches. Fredj et
al. [19] examined the existence, uniqueness, and Hyers-Ulam stability of hybrid sequential
fractional differential equations featuring multiple fractional derivatives of Caputo type
with varying orders. Samei et al. [27] discuss the existence of solutions to a class of hybrid
Caputo-Hadamard fractional differential inclusions with Dirichlet boundary conditions.
We investigate the existence of solutions for a fractional hybrid integro-differential equa-
tion with mixed hybrid integral boundary value conditions, as seen in [16]. Matar [24]
delves into the qualitative characteristics of a set of hybrid nonlinear fractional differen-
tial equations. In 2021, Boutiara et al. [18] undertook a study to explore the existence of
solutions for a novel category of hybrid Hilfer fractional differential equations, consid-
ering hybrid boundary conditions. Matar explores qualitative properties within a cate-
gory of hybrid nonlinear fractional differential equations [24]. Examining the existence of
solutions for fractional neutral hybrid differential equations with finite delay [25], Ali et
al. [6] formulated certain conditions that are sufficient to ensure both the existence and
uniqueness of solutions for the interconnected set of fractional hybrid differential equa-
tions.

Motivated by previous work, we propose nonlinear hybrid fractional Langevin equa-
tions in this work. This study explores the existence, uniqueness, and stability (according
to the Ulam-Hyers notion) of solutions to the following problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

CDσ ,ψ
c+ [CDς ,ψ

c+ [ u(ζ )
g(ζ ,u(ζ ),C Dς ,ψ

c+ u(ζ ))
] – μu(ζ )] = f (ζ , u(ζ ), CDς ,ψ

c+ u(ζ )),

ζ ∈ J = [c, d],

u(c) = 0, CDς ,ψ
c+

u(ζ )
g(ζ ,u(ζ ),C Dς ,ψ

c+ u(ζ ))
|ζ=a = 0, u(d) = ξu(δ), δ ∈ (c, d),

(1)

where the ψ-Caputo fractional derivatives of order σ ∈ (0, 1] and ς ∈ (1, 2] are denoted
by the expressions CDσ ,ψ

c+ and CDς ,ψ
c+ , respectively. The given functions are continuous:

f : J × R × R → R and g : J × R × R → R \ {0}.

2 Preliminaries
To achieve our main objectives, we first explore some supplementary concepts necessary
for the existence of this work.

The set of continuous real-valued functions from J to R can be represented using the no-
tation C = C(J, R). Consequently, it is evident that C is a Banach space with the supremum
norm defined as follows:

‖u‖ = sup
ζ∈J

∣
∣u(ζ )

∣
∣.

The considered ψ-fractional integrals and derivatives are given. For further information,
please refer to [24].

Definition 2.1 [10] For every ζ ∈ J, ψ ′(ζ ) �= 0. Let ς > 0, and let ψ : J → R be an increasing
function. An integrable function u on J has a left-sided ψ-Riemann-Liouville integral,
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which is defined as follows with respect to ψ :

Iς ,ψ
c+ u(ζ ) =

1
�(ς )

∫ ζ

a
ψ ′(s)

(
ψ(ζ ) – ψ(s)

)ς–1u(s) ds (2)

for all ζ ∈ J.

When ψ(ζ ) = ζ and ψ(ζ ) = ln(ζ ), respectively, one can derive the Hadamard fractional
integral and the Riemann-Liouville integral from Equation (2).

Definition 2.2 [10] Assuming n = [ς ] + 1 and n ∈ N, the left-sided ψ-Caputo fractional
derivative of u ∈ Cn(J, R) with respect to any ζ ∈ J is defined, where ψ is a strictly increas-
ing function

CDς ,ψ
c+ u(ζ ) = In–ς ,ψ

c+

(
1

ψ ′(ζ )
d
dz

)n

u(ζ ). (3)

Lemma 2.3 [10] Given ς ,σ > 0 and u ∈ L1(J , R), we obtain

Iς ,ψ
c+ Iσ ,ψ

c+ u(ζ ) = Iς+σ ;ψ
c+ u(ζ ), ζ ∈ J.

Lemma 2.4 [10] Let ς > 0.
(1) If u ∈ C(J, R), then

CDς ,ψ
c+ Iς ,ψ

c+ u(ζ ) = u(ζ ) ζ ∈ J.

(2) If u ∈ Cn(J, R) and ς ∈ (n – 1, n), then

Iς ,ψ
c+

CDς ,ψ
c+ u(ζ ) = u(ζ ) –

n–1∑

k=0

( 1
ψ ′ d

dz )ku(c)
k

[
ψ(ζ ) – ψ(c)

]k , ζ ∈ J

for some constants ck , k = 0, 1, 2, . . . , n – 1.

Lemma 2.5 [11] Consider ζ > a, where ς ≥ 0 and σ > 0. Then,

(a1) : Iς ,ψ
a+

(
ψ(ζ ) – ψ(c)

)σ–1(ζ ) =
�(σ )

�(ς + σ )
(
ψ(ζ ) – ψ(c)

)ς+σ–1

(a2) : CDς ,ψ
c+

(
ψ(ζ ) – ψ(c)

)σ–1(ζ ) =
�(ς )

�(ς + σ )
(
ψ(ζ ) – ψ(c)

)σ+ς–1

(a3) : CDς ,ψ
c+

(
ψ(ζ ) – ψ(c)

)k(ζ ) = 0, for k = 0, . . . , n – 1; n ∈N.

Remark 2.6 From Lemmas (2.4) and (2.5), it is clear that under given general boundary
conditions, we obtain

Iς ,ψ
a+

CDς ,ψ
c+ u(ζ ) = u(ζ ) +

n–1∑

k=0

ck
(
ψ(ζ ) – ψ(c)

)k , ζ ∈ J.

Below, we provide some contextual information about fixed point theory.
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Definition 2.7 [3] A mapping T : C → C is a contraction mapping or contraction, if there
exists constant LT with LT < 1 such that

∥
∥T(u) – T(v)

∥
∥ ≤ LT‖u – v‖ (4)

for every u, v ∈ C.

Theorem 1 (Banach fixed point) [3] A contraction mapping T from the set C to itself pos-
sesses precisely one fixed point.

Theorem 2 (Schauder’s fixed point) [28] In a Banach space C, consider a non-empty,
closed, convex subset K. If T : K →K is a compact operator, then there exists a fixed point
of T within K.

3 Main results
This section addresses problem (1) using an arbitrary function ψ . We require the following
lemma to examine whether solutions to (1) exist.

Lemma 3.1 Let g(d)
g(δ)

ψ(d)–ψ(c)
ψ(δ)–ψ(c) �= ξ , then the solution of the problem

⎧
⎨

⎩

Dσ ,ψ
c+ [CDς ,ψ

c+ [ u(ζ )
g(ζ ) ] – μu(ζ )] = f (ζ ), ζ ∈ J = [c, d],

u(c) = 0, CDς ,ψ
c+ [ u(ζ )

g(ζ ) ]ζ=c = 0, u(d) = ξu(δ), δ ∈ (c, d),
(5)

is given by

u(ζ ) = g(ζ )
[

h(ζ ) –
[g(d)h(d) – ξg(δ)h(δ)](ψ(ζ ) – ψ(c))

g(d)(ψ(d) – ψ(c)) – ξg(δ)(ψ(δ) – ψ(c))

]

, (6)

where

h(ζ ) = Iσ+ς ,ψ
c+ f (ζ ) + μIς ,ψ

c+ u(ζ ).

In particular, if ξ = g(d)
g(δ) , then

u(ζ ) = g(ζ )
[

h(ζ ) –
ψ(ζ ) – ψ(c)
ψ(d) – ψ(δ)

[
h(d) – h(δ)

]
]

.

Proof Using Lemma (2.4) and applying the σ th ψ-Riemann-Liouville fractional integral
to both sides of equation (5), we get:

CDς ,ψ
c+

(
u(ζ )
g(ζ )

)

= Iσ ,ψ
c+ f (ζ ) + μu(ζ ) + c0.

We definitively establish that c0 = 0 by employing the initial and boundary conditions.
The following integral form is obtained by further applying the ς th ψ-Riemann-Liouville
fractional integral and using Lemma (2.4):

u(ζ )
g(ζ )

= h(ζ ) + c1
(
ψ(ζ ) – ψ(c)

)
+ c2. (7)
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From the first boundary condition, it follows that c2 = 0. Consequently, upon examining
the last boundary condition, we deduce:

c1 =
ξg(δ)h(δ) – g(d)h(d)

g(d)(ψ(d) – ψ(c)) – ξg(δ)(ψ(δ) – ψ(c))
.

Equation (6) can be obtained by replacing these constants in Equation (7).
Conversely, the function in (6) satisfies Equation (5) and the associated boundary con-

ditions. �

This mild solution to equation (1) is clearly defined in Lemma (3.1).

Definition 3.2 A mild solution to equation (1) is defined as a function u ∈ C if it satisfies
the following equation

u(ζ ) = g
(
ζ , u(ζ ), CDς ,ψ

c+ u(ζ )
)

×
[

hu(ζ )

–
(ψ(ζ ) – ψ(c))[g(d, u(d), CDς ,ψ

c+ u(d))hu(d) – ξg(δ, u(δ), CDς ,ψ
c+ u(δ))hu(δ)]

g(d, u(d), CDς ,ψ
c+ u(d))(ψ(d) – ψ(c)) – ξg(δ, u(δ), CDς ,ψ

c+ u(δ))(ψ(δ) – ψ(c))

]

,

(8)

where

h(ζ ) = Iσ+ς ,ψ
c+ f

(
ζ , u(ζ ), CDς ,ψ

c+ u(ζ )
)

+ μIς ,ψ
c+ u(ζ ), ζ ∈ J. (9)

We establish the following assumptions:
(Z1): The function g is continuous, where g is defined over the set J × R × R and maps

to the nonzero real numbers. Additionally, there exists a positive function ϕ with a supre-
mum value represented by ‖ϕ‖

∣
∣g(ζ , u1, u2) – g(ζ , v1, v2)

∣
∣ ≤ ϕ(ζ )

(|u1 – v1| + |u1 – v2|
)

for all (ζ , u1, v1), (ζ , u2, v2) ∈ J × R × R.
Furthermore, there exists a constant θ > 0 such that

∣
∣g(d, u1, u2)

(
ψ(d) – ψ(c)

)
– ξg(δ, u1, u2)

(
ψ(δ) – ψ(c)

)∣
∣ ≥ θ > 0

for all u1, u2 ∈ R.
(Z2): The continuous function f maps to the real numbers and is defined over the set

J × R × R. Furthermore, a nondecreasing function ϒ belongs to the set of continuous
functions from the interval [0,∞) to the open interval (0,∞), and a function p belongs to



Ali et al. Boundary Value Problems         (2024) 2024:62 Page 7 of 18

the set of continuous functions from J to the positive real numbers.

∣
∣f (ζ , u1, u2)

∣
∣ ≤ p(ζ )ϒ

(|u1| + |u2|
)

(10)

for all (ζ , u1, u2) ∈ J × R × R.
(Z3): There exists r > 0 such that

g0�r

1 – ‖ϕ‖�r
≤ r

and

‖ϕ‖�r < 1, (11)

where g0 = supζ∈J |g(ζ , 0, 0)|, and

�r =
|g|‖p‖(ψ(d) – ψ(c))σ+ς

θ�(σ + ς + 1)
[(

θ + 2g0
(
ψ(d) – ψ(c)θ

))]
ϒ(r)

+
2(ψ(d) – ψ(c))σ+ς+1‖p‖‖ϕ‖

θ�(σ + ς + 1)
rϒ(r) +

|μ|(ψ(d) – ψ(c))ς+1‖ϕ‖
θ�(ς + 1)

r2

+
|μ|(ψ(d) – ψ(c))ς

θ�(ς + 1)
(θ + 2g0

(
ψ(d) – ψ(c)

)
r. (12)

The next result relies on Schauder’s fixed-point theorem.

Theorem 3 Problem (1) can have at least one mild solution if the conditions (Z1)–(Z3) are
met.

Proof Let us define H = {u ∈ C : ‖u‖ ≤ r}. Certainly, H is a bounded, closed, convex subset
of the Banach space C. We define the operator T : C → C as follows, in compliance with
Definition (3.2)

Tu(ζ ) = g
(
ζ , u(ζ ), CDς ,ψ

c+ u(ζ )
)

×
[

hu(ζ )

–
(ψ(ζ ) – ψ(c))[g(d, u(d), CDς ,ψ

c+ u(d))hu(d) – ξg(δ, u(δ), CDς ,ψ
c+ u(δ))hu(δ)

g(d, u(d), CDς ,ψ
c+ u(ζ ))(ψ(d) – ψ(c)) – ξg(δ, u(δ), CDς ,ψ

c+ u(δ))(ψ(δ) – ψ(c))

]

.

Step 1: Take any u ∈ H and ζ ∈ J, and prove that T transfers bounded sets to bounded sets
in C. Next, we have:

∣
∣hu(ζ )

∣
∣ ≤ Iσ+ς ,ψ

c+
∣
∣f

(
ζ , u(ζ ), CDς ,ψ

c+ u(ζ )
)∣
∣ + |μ|Iς ,ψ

c+
∣
∣u(ζ )

∣
∣

≤ (ψ(ζ ) – ψ(c))(σ + ς )‖p‖ϒ(r)
�(σ + ς + 1)

+
|μ|(ψ(ζ ) – ψ(c))ς r

�(ς + 1)
.



Ali et al. Boundary Value Problems         (2024) 2024:62 Page 8 of 18

Therefore,

∣
∣T(u)(ζ )

∣
∣

≤ ∣
∣g

(
ζ , u(ζ ), CDς ,ψ

c+ u(ζ )
)∣
∣
∣
∣hu(ζ )

∣
∣

+
(ψ(ζ ) – ψ(c))[|g(d, u(d)CDς ,ψ

c+ u(d))||hu(d)| + |ξ ||g(δ, u(δ), CDς ,ψ
c+ u(δ))||hu(δ)|]

|g(d, u(d), CDς ,ψ
c+ u(d))(ψ(d) – ψ(c)) – ξg(δ, u(δ), CDς ,ψ

c+ u(δ))(ψ(δ) – ψ(c))|

≤ |g|(ψ(ζ ) – ψ(c))σ+ς‖p‖ϒ(r)
�(σ + ς + 1)

+
|μ|(ψ(ζ ) – ψ(c))ς r

�(ς + 1)

+
(ψ(ζ ) – ψ(c))|g(b, u(d), CDς ,ψ

c+ u(d))|
θ

×
(

(ψ(d) – ψ(c))σ+ς‖p‖ϒ(r)
�(σ + ς + 1)

+
|μ|(ψ(d) – ψ(c))ς r

�(ς + 1)

)

+
|v|(ψ(ζ ) – ψ(c))|g(δ, u(δ), CDς ,ψ

c+ u(δ))|
θ

×
(

(ψ(δ) – ψ(c))σ+ς‖p‖ϒ(r)
�(σ + ς + 1)

+
|μ|(ψ(δ) – ψ(c))ς r

�(ς + 1)

)

≤ |g|‖p‖(ψ(d) – ψ(c))σ+ς

θ�(σ + ς + 1)
+

[
θ + 2g0

(
ψ(d) – ψ(c)

)]
ϒ(r)

+
2(ψ(d) – ψ(c))σ+ς+1‖p‖‖ϕ‖

�(σ + ς + 1)
rϒ(r) +

μ|(ψ(d) – ψ(c))ς+1‖ϕ‖
(�(ς + 1)

r2

+
μ|(ψ(d) – ψ(c))ς

θ�(ς + 1)
+

[
θ + 2g0

(
ψ(d) – ψ(c)

)]
r.

(13)

Hence, |T(u)| ≤ �r for all u ∈ H, where �r is given by (12). This demonstrates that T is
uniformly bounded on H.

Step 2: We prove that the operator T is continuous. Consider a sequence in H, un, that
converges to u ∈ H. From the Lebesgue-dominated convergence theorem, we now obtain:

lim
n→∞T(un)(ζ )

= lim
n→∞

[
g
(
ζ , un(ζ ), CDς ,ψ

c+ un(ζ )
)]

[

hun(ζ )

–
(ψ(ζ ) – ψ(c))g(d, un(d), CDς ,ψ

c+ un(d))hun(d) – ξg(δ, un(δ), CDς ,ψ
c+ un(δ))hun(δ)

[g(d, u(d), CDς ,ψ
c+ un(d))(ψ(d) – ψ(c)) – ξg(δ, u(δ), CDς ,ψ

c+ un(δ))(ψ(δ) – ψ(c))

]

= g
(
ζ , u(ζ ), CDς ,ψ

c+ u(ζ )
)
[

hu(ζ )

–
(ψ(ζ ) – ψ(c))g(d, u(d), CDς ,ψ

c+ u(d))hu(d) – ξg(δ, u(δ), CDς ,ψ
c+ u(δ))hu(δ)

[g(d, u(d), CDς ,ψ
c+ u(d))(ψ(d) – ψ(c)) – ξg(δ, u(δ), CDς ,ψ

c+ u(δ))(ψ(δ) – ψ(c))

]

= T(u)(ζ )

for every ζ ∈ J. Therefore, on H, T is a continuous operator.
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Step 3: Let ζ1, ζ2 ∈ J such that ζ1 < ζ2. Then, for any u ∈ H, according to (10), we obtain:

∣
∣hu(ζ2) – hu(ζ1)

∣
∣

≤
∫ ζ2

ζ1

ψ ′(s)
�((σ + ς ))

[(
ψ(ζ2) – ψ(s)

)σ+ς–1 –
(
ψ(ζ1) – ψ(s)

)σ+ς–1]

× f
∣
∣
(
s, u(s), CDς ,ψ

c+ u(s)
)∣
∣ds

+
∫ ζ2

ζ1

ψ ′(s)
�((σ + ς ))

[
(
ψ(ζ2) – ψ(s)

)σ+ς–1f
∣
∣
(
s, u(s), CDς ,ψ

c+ u(s)
)∣
∣ds

+ |μ|
∫ ζ1

a

ψ ′(s)
�((ς ))

[(
ψ(ζ2) – ψ(s)

)ς–1 –
(
ψ(ζ1) – ψ(s)

)σ+ς–1]∣∣u(s)
∣
∣ds

+
∫ ζ2

ζ1

ψ ′(s)
�((ς ))

[
(
ψ(ζ2) – ψ(s)

)ς–1∣∣
(
u(s)

)∣
∣ds

≤ [2(ψ(ζ2) – ψ(ζ1))σ+ς + (ψ(ζ2) – ψ(c))σ+ς – (ψ(ζ1) – ψ(c))σ+ς ]‖p‖ϒ(r)
�(σ + ς + 1)

+
|μ|[2(ψ(ζ2) – ψ(ζ1))ς + (ψ(ζ2) – ψ(c))ς – (ψ(ζ1) – ψ(c))ς ]r

�(ς + 1)
.

Using similar arguments as in (13), we obtain

∣
∣
∣
∣

g(d, u(d), CDς ,ψ
c+ u(d))hu(d) – ξg(δ, u(δ), CDς ,ψ

c+ u(δ))hu(δ)
[g(d, u(d), CDς ,ψ

c+ u(d))(ψ(d) – ψ(c)) – ξg(δ, u(δ), CDς ,ψ
c+ u(δ))(ψ(δ) – ψ(c))

∣
∣
∣
∣

≤ |g(d, u(d), CDς ,ψ
c+ u(d))|

θ

(
(ψ(d) – ψ(c))σ+ς‖p‖ϒ(r)

�(σ + ς + 1)
+

|μ|(ψ(d) – ψ(c))ς r
�(ς + 1)

)

+
|ξ ||g(δ, u(δ), CDς ,ψ

c+ u(δ))|
θ

(
(ψ(δ) – ψ(c))σ+ς‖p‖ϒ(r)

�(σ + ς + 1)
+

|μ|(ψ(δ) – ψ(c))ς r
�(ς + 1)

)

≤ g0‖p‖(ψ(d) – ψ(c))σ+ςϒ(r)
θ�(σ + ς + 1)

+
rϒ(r)(ψ(d) – ψ(c))σ+ς+1‖p‖‖ϕ‖

θ�(σ + ς + 1)

+
|μ|r2(ψ(d) – ψ(c))ς‖ϕ‖

θ�(ς + 1)
+

g0|μ|r(ψ(d) – ψ(c))ς

θ�(ς + 1)
.

Let

B =
g0‖p‖(ψ(d) – ψ(c))σ+ςϒ(r)

θ�(σ + ς + 1)
+

rϒ(r)(ψ(d) – ψ(c))σ+ς+1‖p‖‖ϕ‖
θ�(σ + ς + 1)

+
|μ|r2(ψ(d) – ψ(c))ς‖ϕ‖

θ�(ς + 1)
+

g0|μ|r(ψ(d) – ψ(c))ς

θ�(ς + 1)
.

This implies that

∣
∣
∣
∣

g(d, u(d), CDς ,ψ
c+ u(d))hu(d) – ξg(δ, u(δ), CDς ,ψ

c+ u(δ))hu(δ)
[g(d, u(d), CDς ,ψ

c+ u(d))(ψ(d) – ψ(c)) – ξg(δ, u(δ), CDς ,ψ
c+ u(δ))(ψ(δ) – ψ(c))

∣
∣
∣
∣ ≤ B.
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Therefore,

∣
∣T(u)(ζ2) – T(u)(ζ1)

∣
∣

≤ ∣
∣hu(ζ2) – hu(ζ1)

∣
∣ +

∣
∣ψ(ζ2) – ψ(ζ1)

∣
∣

×
∣
∣
∣
∣

g(d, u(d), CDς ,ψ
c+ u(d))hu(d) – ξg(δ, u(δ), CDς ,ψ

c+ u(δ))hu(δ)
g(d, u(d), CDς ,ψ

c+ u(d))(ψ(d) – ψ(c)) – ξg(δ, u(δ), CDς ,ψ
c+ u(δ))(ψ(δ) – ψ(c))

∣
∣
∣
∣

≤ [2(ψ(ζ2) – ψ(ζ1))σ+ς + (ψ(ζ2) – ψ(c))σ+ς – (ψ(ζ1) – ψ(c))σ+ς ]‖p‖ϒ(r)
�(σ + ς + 1)

+
[2(ψ(ζ2) – ψ(ζ1))ς + (ψ(ζ2) – ψ(c))ς – (ψ(ζ1) – ψ(c))ς ]r

�(ς + 1)

+ B
∣
∣ψ(ζ2) – ψ(ζ1)

∣
∣.

This implies

∣
∣T(u)(ζ2) – T(u)(ζ1)

∣
∣ → 0 as ζ1 → ζ2.

Therefore, T fulfils the equicontinuity criterion within the Banach space C. Consequently,
T is relatively compact, thus satisfying the Arzelà-Ascoli theorem, which implies complete
continuity of T. Consequently, T is compact on H, thereby fulfilling Theorem (2). Conse-
quently, a mild solution exists on J to problem (1), thus establishing the desired result. �

Remark 3.3 Let ξ = g(d,u(d),C Dς ,ψ
c+ u(d))

g(δ,u(δ),C Dς ,ψ
c+ u(δ))

. The integral solution (10), therefore, has the following

form when reduced:

u(ζ ) = g
(
ζ , u(ζ ), CDς ,ψ

c+ u(ζ )
)

×
(

h
(
ζ , u(ζ ), CDς ,ψ

c+ u(ζ )
)

–
ψ(ζ ) – ψ(c)
ψ(d) – ψ(δ)

[
h
(
d, u(d), CDς ,ψ

c+ u(d)
)

– h
(
δ, u(δ), CDς ,ψ

c+ u(δ)
)]

)

,

where h is defined by (9).

The following outcome depends on the application of the Banach fixed-point theorem.
We additionally presume the following conditions for the forthcoming outcome:
(S1): The function g : J × R × R → R \ {0} is continuous if there exists a function ϕ ∈

C(J, R+), with the supremum ‖ϕ‖ such that

∣
∣g(ζ , u1, u2) – g(ζ , v1, v2)

∣
∣ ≤ ϕ(ζ )

(|u1 – v1| + |u2 – v2|
)

for all (ζ , u1, u2), (ζ , v1, v2) ∈ J × R × R. Furthermore, let exist a constant kg > 0 such that:

∣
∣g(ζ , u1, u2)

∣
∣ ≤ kg

for all (ζ , u1, u2) ∈ J × R × R.
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(S2): The function f defined on J×R×R and mapping to R is continuous. Furthermore,
p ∈ C(J, R+) is a continuous function, and its supremum is ‖p‖

∣
∣f (ζ , u1, u2) – f (ζ , v1, v2)

∣
∣ ≤ p(ζ )

(|u1 – v1| + |u2 – v2|
)

for all (ζ , u1, u2), (ζ , v1, v2) ∈ J × R × R. Furthermore, there exists a positive constant kf

such that

∣
∣f (ζ , u1, u2)

∣
∣ ≤ kf for all (ζ , u1, u2) ∈ J × R × R.

(S3): Assume that � < 1, where

� =
|μ|‖ϕ‖(ψ(d) – ψ(c))

�(ς + 1)

×
(

(
ψ(d) – ψ(c)

)ς–1 +
(ψ(d) – ψ(c))ς + (ψ(δ) – ψ(c))ς

(ψ(d) – ψ(δ))

)

+
(kg(‖p‖ + |μ|) + kf ‖ϕ‖)(ψ(d) – ψ(c))

�(σ + ς + 1)

×
(

(
ψ(d) – ψ(c)

)σ+ς–1 +
(ψ(d) – ψ(c))σ+ς + (ψ(δ) – ψ(c))σ+ς

(ψ(δ) – ψ(c))

)

.

Theorem 4 Given that conditions (S1)–(S3) are satisfied, it follows that there exists a
unique mild solution to the problem (1) over the interval J.

Proof Suppose the operator T : C → C is defined as follows:

Tu(ζ ) = g
(
ζ , u(ζ ), CDς ,ψ

c+ u(ζ )
)
(

hu(ζ ) –
ψ(ζ ) – ψ(c)
ψ(d) – ψ(δ)

[
hu(d) – hu(δ)

]
)

, ζ ∈ J.

As a result, T is well-defined and continuous because both g and h are continuous. Given
u, v ∈ C, condition S2 implies:

∣
∣hu(ζ ) – hv(ζ )

∣
∣ ≤ Iσ+ς ,ψ

c+
∣
∣f

(
ζ , u(ζ ), CDς+ψ

a+ u(ζ )
)

– f
(
ζ , v(ζ ), CDς+ψ

a+ v(ζ )
)∣
∣

+ μIς ,ψ
c+

∣
∣u(ζ ) – v(ζ )

∣
∣

≤
(

ψ(ζ ) – ψ(c))σ+ς‖p‖
�(σ + ς + 1)

+
|μ|(ψ(ζ ) – ψ(c))ς

�(ς + 1)

)

‖u – v‖
(14)

and

∣
∣hu(ζ )

∣
∣ ≤ kf (ψ(ζ ) – ψ(c))σ+ς

�(σ + ς + 1)
+

|μ|(ψ(ζ ) – ψ(c))ς

�(ς + 1)
. (15)

Utilizing the triangle inequality, we obtain:

∣
∣Tu(ζ ) – Tv(ζ )

∣
∣

≤ ∣
∣g

(
ζ , u(ζ ), CDς ,ψ

c+ u(ζ )
)
hu(ζ ) – G

(
ζ , v(ζ ), CDς ,ψ

c+ v(ζ )
)
hv(ζ )

∣
∣
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+
ψ(ζ ) – ψ(c)
ψ(d) – ψ(δ)

∣
∣g

(
ζ , v(ζ ), CDς ,ψ

c+ v(ζ )
)
hv(b) – g

(
ζ , u(ζ ), CDς ,ψ

c+ u(ζ )
)
hu(d)

∣
∣

+
ψ(ζ ) – ψ(c)
ψ(d) – ψ(δ)

∣
∣g

(
ζ , u(ζ )CDς ,ψ

c+ u(ζ )
)
hu(δ) – g

(
ζ , v(ζ ), CDς ,ψ

c+ v(ζ )
)
hv(δ)

∣
∣

≤ ∣
∣g

(
ζ , u(ζ ), CDς ,ψ

c+ u(ζ )
)∣
∣
∣
∣hu(ζ ) – hv(ζ )

∣
∣

+
∣
∣hv(ζ )

∣
∣|g(

ζ , u(ζ ), CDς ,ψ
c+ u(ζ )

)
–

∣
∣g

(
ζ , v(ζ ), CDς ,ψ

c+ v(ζ )
)∣
∣

+
ψ(ζ ) – ψ(c)
ψ(d) – ψ(δ)

∣
∣g

(
ζ , v(ζ ), CDς ,ψ

c+ v(ζ )
)∣
∣
∣
∣hv(b) – hu(d)

∣
∣

+
ψ(ζ ) – ψ(c)
ψ(d) – ψ(δ)

∣
∣hu(d)

∣
∣
∣
∣g

(
ζ , v(ζ ), CDς ,ψ

c+ v(ζ )
)

– g
(
ζ , u(ζ ), CDς ,ψ

c+ u(ζ )
)∣
∣

+
ψ(ζ ) – ψ(c)
ψ(d) – ψ(δ)

∣
∣g

(
ζ , u(ζ ), CDς ,ψ

c+ u(ζ )
)∣
∣
∣
∣hu(δ) – hv(δ)

∣
∣

+
ψ(ζ ) – ψ(c)
ψ(d) – ψ(δ)

∣
∣hv(δ)

∣
∣
∣
∣g

(
ζ , u(ζ ), CDς ,ψ

c+ u(ζ )
)

– g
(
ζ , v(ζ ), CDς ,ψ

c+ v(ζ )
)∣
∣.

From equations (14) and (15), under assumptions (S1)–(S2), we conclude that

∣
∣Tu(ζ ) – Tv(ζ )

∣
∣

≤ kg

(
ψ(ζ ) – ψ(c)σ+ς‖p‖

�(σ + ς + 1)
+

|μ|(ψ(ζ ) – ψ(c))ς

�(ς + 1)

)

‖u – v‖

+ ‖ϕ‖
(

kf (ψ(ζ ) – ψ(c))σ+ς

�(σ + ς + 1)
+

|μ|(ψ(ζ ) – ψ(c))ς

�(ς + 1)

)

‖u – v‖

+
kf (ψ(ζ ) – ψ(c))

ψ(d) – ψ(δ)

(
ψ(ζ ) – ψ(c))σ+ς‖p‖

�(σ + ς + 1)
+

|μ|(ψ(ζ ) – ψ(c))ς

�(ς + 1)

)

‖u – v‖

+
‖ϕ‖[ψ(ζ ) – ψ(c)]

ψ(d) – ψ(δ)

(
kf (ψ(ζ ) – ψ(c))σ+ς

�(σ + ς + 1)
+

|μ|(ψ(ζ ) – ψ(c))ς

�(ς + 1)

)

‖u – v‖

+
kg(ψ(ζ ) – ψ(c))

ψ(d) – ψ(δ)

(
ψ(δ) – ψ(c))σ+ς

�(σ + ς + 1)‖p‖ +
|μ|(ψ(ζ ) – ψ(c))ς

�(ς + 1)

)

‖u – v‖

+
‖ϕ‖[ψ(ζ ) – ψ(c)]

ψ(d) – ψ(δ)

(
kf (ψ(ζ ) – ψ(c))σ+ς

�(σ + ς + 1)
+

|μ|(ψ(ζ ) – ψ(c))ς

�(ς + 1)

)

‖u – v‖.

Upon taking the supremum over J and simplifying, we obtain:

‖Tu – Tv‖ ≤ �‖u – v‖.

The proof is completed by applying the Banach fixed-point theorem (Theorem 1), which
is made possible by the validity of hypothesis (S3). �

3.1 Stability results
Let ϕ : J → R+ be a continuous function and ε > 0. We will examine the inequality below:

∣
∣
∣
∣
CDσ ,ψ

a+

(
CDς ,ψ

c+

[
u(ζ )

G(ζ , u(ζ ), CDς ,ψ
c+ u(ζ ))

]

– μu(ζ )
)

– F
(
ζ , u(ζ ), CDς ,ψ

c+ u(ζ )
)
∣
∣
∣
∣ ≤ ε (16)

for ζ ∈ J.
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Definition 3.4 [13] The problem (1) demonstrates the Ulam-Hyers stability if there exists
a λ > 0. Consequently, for any ε > 0 and solution u ∈ C to equations (16), there exists a
solution v ∈ C to (1) such that

‖u – v‖ ≤ λε.

Definition 3.5 [13] The problem (1) is said to be generalized Ulam-Hyers stable if there
exists a function � ∈ C(R+, R+) with � (0) = 0, such that for any ε > 0 and every solution
u ∈ C to equations (16), there exists a solution v ∈ C of (1) such that:

‖u – v‖ ≤ � (ε).

Remark 3.6 Definition 3.4, where � (ε) = cε, evidently implies Definition 3.5. However,
the reverse implication does not hold universally.

Remark 3.7 [13] A function u ∈ C adheres to inequality (16) if and only if there exists a
function q ∈ C(J, R) contingent upon u, such that:

• |q(ζ )| ≤ ε, ζ ∈ J,
• CDσ ,ψ

c+ [CDς ;ψ
c+ [ u(ζ )

g(ζ ,u(ζ ),C Dς ;ψ
c+ u(u))

] – μu(ζ )] = f (ζ , u(ζ ), CDς ;ψ
c+ u(ζ )) + q(ζ ), ζ ∈ J.

To simplify the equations in the following result, we indicate

K1 =
‖ϕ‖

�(σ + ς + 1)
(ψ(d) – ψ(c))σ+ς+1

(ψ(d) – ψ(δ))
,

K2 =
kg(ψ(d) – ψ(c))
�(σ + ς + 1)

×
[
(
ψ(d) – ψ(c)

)σ+ς–1 +
(ψ(d) – ψ(c))σ+ς + (ψ(δ) – ψ(c))σ+ς

ψ(d) – ψ(δ)

]

.

Theorem 5 If K1 < 1
2 and K2 < 1

2 , and assuming that hypotheses (S1)–(S3) hold, then the
problem (1) exhibits the generalized Ulam-Hyers stability.

Proof Let ε > 0 and u ∈ C be solutions to (16). Given Lemma (3.1) and Remark (3.7), there
must exist a function q ∈ C(J, R)) such that |q(ζ )| ≤ ε

u(ζ ) = g
(
ζ , u1(ζ ), CDς ,ψ

c+ u2(ζ ), CDς ,ψ
c+ u(ζ )

)

×
(

F(u1, u2)(ζ ) –
ψ(ζ ) – ψ(c)
ψ(d) – ψ(δ)

[
F(u1, u2)(d) – F(u1, u2)(δ)

]
)

,

where

F(u1, u2)(ζ ) = Iσ+ς ,ψ
c+

[
F
(
ζ , u1(ζ ), CDς ,ψ

c+ u2(ζ )
)

+ g(ζ )
]

+ μIς ,ψ
c+ u(ζ ).
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Let u ∈ C be a solution to the problem (1). Then it satisfies the integral equation. Using
(S2), we have

∣
∣F(u1, u2)(ζ ) – h(v1, v2)(ζ )

∣
∣

≤ Iσ+ς ;ψ
c+

∣
∣F

(
ζ , u1(ζ ), CDς ,ψ

c+ u2(ζ )
)

– F
(
ζ , v1(ζ ), CDς ,ψ

c+ v2(ζ )
)∣
∣ + Iσ+ς ,ψ

c+
∣
∣g(ζ )

∣
∣

+ |μ|Iς ,ψ
c+

∣
∣u(ζ ) – v(ζ )

∣
∣

≤ ‖p‖(ψ(ζ )–ψ(c))σ+ς

�(σ + ς + 1)
‖u – v‖ +

ε(ψ(ζ ) – ψ(c))σ+ς

�(σ + ς + 1)

+
|μ|(ψ(ζ ) – ψ(c))σ+ς

�)(σ + ς + 1)
‖u – v‖,

(17)

and

∣
∣h(u1, u2)(ζ )

∣
∣ ≤ kf (ψ(ζ ) – ψ(c))σ+ς

�(σ + ς + 1)
+

|μ|(ψ(ζ ) – ψ(c))ς

�(ς + 1)
∣
∣F(u1, u2)(ζ )

∣
∣ ≤ (kf + ε)(ψ(ζ ) – ψ(c))σ+ς

�(σ + ς + 1)
+

|μ|(ψ(ζ ) – ψ(c))ς

�(ς + 1)
.

(18)

Applying the triangle inequality, we obtain

∣
∣u(ζ ) – v(ζ )

∣
∣

≤ ∣
∣gζ , u1(ζ ), CDς+ψ

a+ u2(ζ )
∣
∣
∣
∣F(u1, u2)(ζ ) – h(v1, v2)(ζ )

∣
∣

+
∣
∣h(v1, v2)(ζ )

∣
∣
∣
∣g

(
ζ , u1(ζ ), CDς ,ψ

c+ u2(ζ )
)

– g
(
ζ , v1(ζ ), CDς ,ψ

c+ v2(ζ )
)∣
∣

+
∣
∣
∣
∣
ψ(ζ ) – ψ(c)
ψ(d) – ψ(δ)

∣
∣
∣
∣h(v1, v2)(b) – F(u1, u2)(b)

∣
∣g

(
ζ , v1(ζ ), CDς ,ψ

c+ v2(ζ )
)

+
∣
∣
∣
∣
ψ(ζ ) – ψ(c)
ψ(d) – ψ(δ)

∣
∣
∣
∣g

(
ζ , v2, CDς ,ψ

c+ v2(ζ )
)

– g
(
ζ , u1(ζ ), CDς ,ψ

c+ u2(ζ )
)∣
∣F(u1, u2)(b))

∣
∣

+
∣
∣
∣
∣
ψ(ζ ) – ψ(c)
ψ(d) – ψ(δ)

∣
∣
∣
∣F(u1, u2)(δ) – h(v1, v2)(δ)

∣
∣g

(
ζ , u1(ζ ), CDς ,ψ

c+ u2(ζ )
)

+
∣
∣
∣
∣
ψ(ζ ) – ψ(c)
ψ(d) – ψ(δ)

∣
∣
∣
∣g

(
ζ , u1, CDς ,ψ

c+ u2(ζ )
)
(ζ )

– g
(
ζ , u1(ζ ), CDς ,ψ

c+ u2(ζ )
)
(ζ )

∣
∣h

(
ζ , v1(ζ ), CDς ,ψ

c+ v2(ζ )
)
.

By (S1), (S2), (17), and (18), we have

∣
∣u(ζ ) – v(ζ )

∣
∣ ≤ kg

(
ε(ψ(ζ ) – ψ(c))σ+ς

�(σ + ς + 1)
+

‖p‖(ψ(ζ ) – ψ(c))σ+ς

�(σ + ς + 1)
‖u – v‖

+
|μ|(ψ(ζ ) – ψ(c))σ+ς

�(σ + ς + 1)
‖u – v‖

)

+ ‖ϕ‖
(

kf (ψ(ζ ) – ψ(c))σ+ς

�(σ + ς + 1)
+

|μ|(ψ(ζ ) – ψ(c))ς

�(ς + 1)

)

‖u – v‖

+ kg
ψ(ζ ) – ψ(c)
ψ(d) – ψ(δ)

(
ε(ψ(d) – ψ(c))σ+ς

�(σ + ς + 1)

+
(‖pi‖(ψ(ζ ) – ψ(c))σ+ς

�(σ + ς + 1)
+

|μ|(ψ(ζ ) – ψ(c))ς

�(ς + 1)

)

‖u – v‖
)
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+ ‖ϕ‖ψ(ζ ) – ψ(c)
ψ(d) – ψ(δ)

×
(

(kf + ε)(ψ(ζ ) – ψ(c))σ+ς

�(σ + ς + 1)
+

|μ|(ψ(ζ ) – ψ(c))ς

�(ς + 1)
‖u – v‖

+ kg
ψ(ζ ) – ψ(c)
ψ(d) – ψ(δ)

(
ε(ψ(d) – ψ(c))σ+ς

�(σ + ς + 1)

+
(‖p‖(ψ(ζ ) – ψ(c))σ+ς

�(σ + ς + 1)
+

|μ|(ψ(ζ ) – ψ(c))ς

�(ς + 1)

)

‖u – v‖
)

+ ‖ϕ‖ψ(ζ ) – ψ(c)
ψ(d) – ψ(δ)

+
(

kf (ψ(ζ ) – ψ(c))σ+ς

�(σ + ς + 1)
+

|μ|(ψ(ζ ) – ψ(c))ς

�(ς + 1)

)

‖u – v‖.

Simplifying yields

‖u – v‖ ≤ 2(K1 + K2)
ε

1 – ε
, ε < 1.

If we assume that � (ε) = 2(K1 +K2)( ε
1–ε

) and � (0) = 0, then the generalized Ulam-Hyers
stability condition is satisfied. The proof is now complete. �

Remark 3.8 The term |F(u1, u2)(ζ )| estimated in (18) is the reason why ε appears in the
denominator. This suggests that applying the criteria of Theorem (5) does not guarantee
that the problem (1) is Ulam-Hyers stable.

4 Application
To implement and validate the conclusions drawn in the preceding sections, this section
provides an illustrative example with specific parameter settings. We construct a practi-
cal scenario with clearly defined parameters to demonstrate how the theoretical insights
presented in this work can be applied in real-world situations.

4.1 Example
Consider the problem

⎧
⎪⎨

⎪⎩

CD0.4,ψ
1+ [CD1.25,ψ

1+ ( u(ζ )
2+0.02ζ cos u(ζ )+0.02ζ cos C Dς+ψ

1+ u(ζ )
) – u(ζ )] = et

2+ 1
7 u(t)+ 1

7
C Dς ,ψ

1+ u(t)

u(0) = 0, CD1.5,ψ
1+ ( u(ζ )

1+0.02ζ cos u(ζ )+0.02ζC Dς+ψ

1+ u(ζ )
)|ζ=0 = 0, u(e) = 3u(2).

(19)

Clearly the function g(ζ , u1, u2) = 0.05 + 0.02ζ 2 cos u1 + 0.02ζ 2 cos u2 is continuous, and
lipschitz such that ‖ϕ‖ = 0.02e2 ≈ 0.014778, kg = 0.05 + 0.002e2 + 0.002e2 ≈ 0.0795562244,
and ϒ(r) =

√
r + 1, is nondecreasing, J = [1, e].

∣
∣g(d, u1, u2)

(
ψ(d) – ψ(c)

)
– ξg(δ, u,u2)

(
ψ(δ) – ψ(c)

)∣
∣ ≥ θ = 0.03745 > 0

�1 = 4.091133

g0�1

1 – ‖ϕ‖�1
= 0.2177195378 < 1
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and

‖ϕ‖�1 = 0.0604587635 < 1. (20)

The hypotheses in Z1–Z3 are met. Next, Theorem (3) guarantees that problem (19) has at
least one nonzero mild solution.

The functions f (ζ , u1, u2) = eζ

2+ 1
40 u1(ζ )+ 1

40
C Dς ,ψ u2(ζ )

are Lipschitzian with common con-
stants ‖p‖ = 0.378856556 and kf = 0.378856556. The fractional derivative becomes the
Hadamard derivative if ψ(ζ ) = ln ζ . In this case, we obtain:

� = 0.5908822224.

This suggests that all of the hypotheses S1–S3 in Theorem (4) are satisfied since � < 1. For
problem (19), there is a unique nonzero mild solution. Additionally, we have:

K1 = 0.0324259456, K2 = 0.3490735522.

Therefore, we conclude that problem (19) is generalized Ulam-Hyers stable based on The-
orem (5).

5 Conclusion
In this paper, we considered solutions’ existence, uniqueness, and Ulam-Hyers stability
for a new class of hybrid Langevin fractional differential systems subject to three-point
boundary conditions in view of the ψ-Caputo derivatives. The problem was solved using
Schauder’s and Banach’s fixed-point theorems. Additionally, we provided an illustrative
scenario to support our theoretical findings, which were novel and extended the scope
of numerous previous studies in this area. As research in this field continued to evolve,
we advocated for further exploration using generalized fractional derivatives and qualita-
tive analysis of comparable systems. Future studies could also explore different fractional
models, including multipoint boundary conditions and a range of fractional derivatives.
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