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1 Introduction
In this article, we are concerned with the oscillation property of solutions of the half-linear
even-order differential equation with a superlinear neutral term of the form

(
r(t)

(
w(n–1)(t)

)γ )′ +
m∑

i=1

qi(t)xδ
(
ηi(t)

)
= 0, t ≥ t0 ≥ 0, (1.1)

where w(t) = x(t) + p(t)xβ (ξ (t)),β , γ , and δ are quotients of odd positive integers with
β ≥ 1, δ/β ≤ γ , and n ≥ 4 is an even integer under the noncanonical condition

E(t0) =
∫ ∞

t0

1

r
1
γ (t)

dt < ∞. (1.2)

Throughout the paper, we assume that
(H1) r(t) ∈ C1([t0,∞), (0,∞)), r′(t) ≥ 0, p(t) ∈ C([t0,∞), R), p(t) ≥ 1, p(t) �≡ 1 for large t;
(H2) ξ (t), qi(t) ∈ C([t0,∞), R), ξ (t) ≤ t, ξ is strictly increasing, limt→∞ ξ (t) = ∞, qi(t) ≥ 0,

and qi(t) are not equal to zero for large t, i = 1, 2, . . . , m;
(H3) ηi(t) ∈ C([t0,∞), R), there exists a function η(t) ∈ C([t0,∞), R) such that η(t) ≤ ηi(t)

for i = 1, 2, . . . , m, η(t) < ξ (t) and limt→∞ η(t) = ∞;
(H4) h(t) = ξ–1(η(t)), where ξ–1 is the inverse function of ξ .
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By a solution of (1.1), we mean a nontrivial function x(t) ∈ C([tx,∞)), tx ≥ t0, which
has the property r(t)(w(n–1)(t))γ ∈ C1([tx,∞)) and satisfies (1.1). We consider only those
solutions x(t) of (1.1), which satisfy sup{|x(t)| : t ≥ t∗} > 0 for t∗ ≥ tx. A solution x(t) of (1.1)
is termed oscillatory if it has arbitrarily large zeros on [tx,∞); otherwise, it is said to be
nonoscillatory. Equation (1.1) is termed oscillatory if all its solutions oscillate.

It is notable that in recent years, the oscillation property of solutions of differential
equations and their applications have been and still are receiving intensive attention (see
[2, 5–7, 15, 18–21]). In the natural sciences, technology, and population dynamics, dif-
ferential equations find many application fields [1, 4, 8, 9, 13]. For particular applications
of differential equations with neutral term they are often used for the study of distributed
networks containing lossless transmission lines [10]. Moreover, for particular applications
in superlinear wave equation [11]. Here, we mention some recent works concerned with
special cases of (1.1), which motivated this work. Many authors have studied the oscilla-
tory behavior of solutions of the differential equations

((
y(n–1)(t)

)α)′ + q(t)yB(
g(t)

)
= 0, (1.3)

where it is notable that some of their results can be extended to the following equations

(
r(t)

(
y(n–1)(t)

)α)′ + q(t)yB(
g(t)

)
= 0. (1.4)

In [24], Zhang et al. studied (1.4) in a noncanoncail case as (1.2). They established new
oscillation criteria claiming that it could not be applied in case g(t) = t. More recently,
Zhang et al. [22] suggested some new oscillation criteria for the even-order delay differ-
ential equation (1.4) with the same noncanonical case for which they stressed that the
study of oscillatory properties in this case brings in additional difficulties. Meanwhile, Li
and Rogovchenko [14] discussed the oscillatory behavior of a class of even-order neutral
differential equations of the form

w(n)(t) + h(t)y
(
ξ (t)

)
= 0, (1.5)

with w(t) = y(t) + p(t)y(g(t)). Their new theorems complement and improve a number of
results reported in the literature.

In [7], Elabbasy et al. studied the even-order neutral differential equation with several
delays

(
r(t)

(
v(n–1))α)′ +

k∑

i=1

qi(t)f
(
u
(
ηi(t)

))
= 0, (1.6)

where v(t) = u(t) + p(t)u(g(t)), with r′(t) ≥ 0, p(t) ∈ [0, p0], η′
i(t) > 0 in the canonical case

∫ ∞
t0

1
r

1
α (t)

dt = ∞. They used the Riccati substitution technique and comparison with de-

lay equations of the first order to establish new oscillation criteria, which simplify and
complement some related results in the literature.

In [9], Grace et al. studied the oscillation of the higher-order dynamic equation with
superlinear neutral term

(
a(μ)y�n–1

(μ)
)� + q(μ)xβ

(
τ (μ)

)
= 0, (1.7)
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where y(t) = x(t) + p(t)xα(g(t)), a�(μ) ≥ 0, β ≤ α, and α ≥ 1. Their proposed results pro-
vide a unified platform that adequately covers discrete and continuous equations and fur-
ther sufficiently comments on the oscillation of a more general class of equations than the
ones reported in the literature.

More recently, Dharuman et al. [3], were concerned with the oscillatory behavior of
solutions of the even-order nonlinear differential equation with a superlinear neutral term

(
b(t)z(n–1)(t)

)′ + q(t)xβ
(
σ (t)

)
= 0, (1.8)

where z(t) = x(t) + p(t)xα(τ (t)), α > 1, b′(t) ≥ 0, in the canonical case
∫ ∞

t0
1

b(t) dt = ∞. They
established new comparison theorems that compare the higher-order equation (1.8) with
a couple of first-order delay differential equations. Moreover, as many results are available
in the literature on the oscillation of first-order delay differential equations, it would be
possible to formulate many criteria for the oscillation of (1.8) based on their results.

In this article, we study the oscillatory behavior of solutions of Eq. (1.1) in the noncanon-
ical case (1.2) by applying the Riccati and generalized Riccati transformations, the integral
averaging technique, and comparison theory.

2 Auxiliary lemmas
In this section, we outline some lemmas needed for our results.

Lemma 1 [1] Let w(t) ∈ Cn ([t0,∞), (0,∞)), w(n)(t) be of fixed sign, and w(n–1)(t)w(n)(t) ≤ 0,
for all t ≥ t0. If limt→∞ w(t) �= 0, then for every ε ∈ (0, 1) there may exist tε ≥ t0 such that
w(t) ≥ ε

(n–1)! t
n–1|w(n–1)(t)| for t ≥ tε .

Lemma 2 [12] Let the function w(t) satisfy w(i)(t) > 0, i = 1, 2, . . . , n – 1 and w(n)(t) ≤ 0, then

w(t)
tn–1/(n – 1)!

≥ w′(t)
tn–2/(n – 2)!

.

Lemma 3 [22] Let w ∈ CI([t0,∞), R+). If w(I)(t) is eventually of one sign for all large t, then
there exists t1 ≥ t0 and an integer i, 0 ≤ i ≤ I with I + i even for w(I)(t) ≥ 0, or I + i odd for
w(I)(t) ≤ 0 such that

i > 0 yields w(j)(t) > 0 for t ≥ t1, j = 0, 1, . . . , i – 1 and

i ≤ I – 1 yields (–1)i+jw(j)(τ ) > 0 for t ≥ t1, j = i, i + 1, . . . , I – 1.

Lemma 4 [16] Let f(v) = Av – B(v – D)
γ +1
γ , where B > 0, A, and D are constants. Then, the

maximum value of f on R at v∗ = D + (γ A/(γ + 1)B)γ is

max
v∈R

f (v) = f
(
v∗) = AD +

γ γ

(γ + 1)γ +1
Aγ +1

Bγ
.

Lemma 5 Assume that x(t) is an eventually positive solution of (1.1). Then, there exists
t1 ≥ t0 such that for t ≥ t1 the corresponding function w satisfies one of the following four
cases

c1) w > 0, w′ > 0, w(n–2) > 0, w(n–1) > 0, w(n) ≤ 0,
(
r
(
w(n–1))γ )′ ≤ 0,
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c2) w > 0, w′ > 0, w(n–2) < 0, w(n–1) > 0, w(n) ≤ 0,
(
r
(
w(n–1))γ )′ ≤ 0,

c3) w > 0, w′ > 0, w(n–2) > 0, w(n–1) < 0,
(
r
(
w(n–1))γ )′ ≤ 0,

c4) w > 0, w(i) < 0, w(i+1) > 0 for every odd integer i ∈ {1, 2, . . . , n – 3} and

w(n–1) < 0,
(
r
(
w(n–1))γ )′ ≤ 0.

Proof Assume that x(t) is an eventually positive solution of (1.1), then for any t1 ≥ t0 such
that x(t) > 0, x(ξ (t)) > 0, x(ηi(t)) > 0, i = 1, 2, . . . , m, for all t ≥ t1. Hence, using the definition
of w(t), we have w(t) > 0. It follows from (1.1) that (r(w(n–1))γ )′ ≤ 0. Next following the
proof of Theorem 2.1 of [22] with Lemma 3, we have three cases

1) w > 0, w′ > 0, w(n–1) > 0, w(n) ≤ 0,
(
r
(
w(n–1))γ )′ ≤ 0,

2) w > 0, w′ > 0, w(n–2) > 0, w(n–1) < 0,
(
r
(
w(n–1))γ )′ ≤ 0,

3) w > 0, w(i) < 0, w(i+1) > 0 for every odd integer i ∈ {1, 2, . . . , n – 3} and

w(n–1) < 0,
(
r
(
w(n–1))γ )′ ≤ 0.

Now going through as in [23], case 1 w(n–2) has two possibilities either w(n–2) > 0 or
w(n–2) < 0. This completes the proof. �

3 Main results
Lemma 6 Assume that x(t) is an eventually positive solution of (1.1) with w satisfying case
1 of Lemma 5, then for all constants k1 > 0,

(
r(t)

(
w(n–1)(t)

)γ )′ ≤ –
m∑

i=1

qi(t)P
δ
β

1
(
ηi(t)

)
w

δ
β
(
h(t)

)
, (3.1)

where P1(t) = 1
p(ξ–1(t)) [1 – [ ξ–1(t)

ξ–1(ξ–1(t)) ]
1–n
β

k
1
β

–1
1

p
1
β (ξ–1(ξ–1(t)))

] ≥ 0.

Proof Since x(t) is an eventually positive solution of (1.1) such that x(t) > 0, x(ξ (t)) > 0,
x(ηi(t)) > 0, i = 1, 2, . . . , m, for t ≥ t1 ≥ t0. From the definition of w(t)

xβ
(
ξ (t)

)
=

1
p(t)

[
w(t) – x(t)

] ≤ w(t)
p(t)

,

which implies that

x
(
ξ–1(t)

) ≤ w
1
β (ξ–1(ξ–1(t)))

p
1
β (ξ–1(ξ–1(t)))

.

Using the above inequality in the definition of w(t), we get

xβ (t) =
1

p(ξ–1(t))
[
w

(
ξ–1(t)

)
– x

(
ξ–1(t)

)]

≥ 1
p(ξ–1(t))

[
w

(
ξ–1(t)

)
–

w
1
β (ξ–1(ξ–1(t)))

p
1
β (ξ–1(ξ–1(t)))

]
. (3.2)
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Since ξ (t) ≤ t , ξ (t) is strictly increasing and t ≤ ξ–1(t), then

ξ–1(t) ≤ ξ–1(ξ–1(t)
)
. (3.3)

Since w(t) satisfies case 1 of Lemma 5, so from Lemma 2, we obtain

w(t)
tn–1/(n – 1)!

≥ w′(t)
tn–2/(n – 2)!

,

i.e.,

w(t) ≥ tw′(t)
n – 1

,

which implies

(
t–n+1w(t)

)′ = t–n+1w′(t) + (1 – n)t–nw(t) = t–n[tw′(t) + (1 – n)w(t)
] ≤ 0.

The function t–n+1w(t) is nonincreasing, which with (3.3) leads to

[
ξ–1(t)

]1–nw
(
ξ–1(t)

) ≥ [
ξ–1(ξ–1(t)

)]1–nw
(
ξ–1(ξ–1(t)

))
.

Thus, using (3.2), we obtain

xβ (t) ≥ w(ξ–1(t))
p(ξ–1(t))

[
1 –

[
ξ–1(t)

ξ–1(ξ–1(t))

] 1–n
β w

1
β

–1(ξ–1(t))

p
1
β (ξ–1(ξ–1(t)))

]
.

Hence since w(t) is positive and increasing, there exists a positive constant k1 such that
w(t) ≥ k1. Thus, we have

xβ (t) ≥ P1(t)w
(
ξ–1(t)

)
.

Substituting into (1.1), we have

(
r
(
w(n–1)(t)

)γ )′ ≤ –
m∑

i=1

qi(t)P
δ
β

1
(
ηi(t)

)
w

δ
β
(
ξ–1(ηi(t)

))
,

and since ξ–1(t), w (t) are increasing functions, then we have

(
r(t)

(
w(n–1)(t)

)γ )′ ≤ –
m∑

i=1

qi(t)P
δ
β

1
(
ηi(t)

)
w

δ
β
(
h(t)

)
. �

Lemma 7 Assume that x(t) is an eventually positive solution of (1.1) with w satisfying
case 2 of Lemma 5, then for all constants k2 > 0,

(
r(t)

(
w(n–1)(t)

)γ )′ ≤ –
m∑

i=1

qi(t)P
δ
β

2
(
ηi(t)

)
w

δ
β
(
h(t)

)
, (3.4)

where P2(t) = 1
p(ξ–1(t)) [1 – [ ξ–1(t)

ξ–1(ξ–1(t)) ]
3–n
β

k
1
β

–1
2

p
1
β (ξ–1(ξ–1(t)))

] ≥ 0.
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Proof Since x(t) is an eventually positive solution of (1.1) such that x(t) > 0, x(ξ (t)) > 0,
x(ηi(t)) > 0, i = 1, 2, . . . , m, for t ≥ t1 ≥ t0. Suppose that w(t) satisfies case 2 of Lemma 5,
then by Lemma 2, we obtain

w(t)
tn–3/(n – 3)!

≥ w′(t)
tn–4/(n – 4)!

,

i.e., w(t) ≥ tw′(t)
n–3 , which implies that

(
t–n+3w(t)

)′ = t–n+3w′(t) + (3 – n)t–n+2w(t) = t–n+2[tw′(t) + (3 – n)w(t)
] ≤ 0,

and hence the function t3–nw(t) is nonincreasing and by (3.3)

[
ξ–1(t)

]3–nw
(
ξ–1(t)

) ≥ [
ξ–1(ξ–1(t)

)]3–nw
(
ξ–1(ξ–1(t)

))
.

Going through as in the proof of Lemma 6, we obtain (3.4). �

Lemma 8 Suppose that x(t) is an eventually positive solution of (1.1) with w satisfying
case 3 of Lemma 5, then for all constants k3 > 0,

(
r(t)

(
w(n–1)(t)

)γ )′ ≤ –
m∑

i=1

qi(t)P
δ
β

3
(
ηi(t)

)
w

δ
β
(
h(t)

)
, (3.5)

where P3(t) = 1
p(ξ–1(t)) [1 – [ ξ–1(t)

ξ–1(ξ–1(t)) ]
2–n
β

k
1
β

–1
3

p
1
β (ξ–1(ξ–1(t)))

] ≥ 0.

Proof Since x(t) is an eventually positive solution of (1.1) such that x(t) > 0, x(ξ (t)) > 0,
x(ηi(t)) > 0, i = 1, 2, . . . , m, for t ≥ t1 ≥ t0. Suppose that w(t) satisfies case 3 of Lemma 5,
then by Lemma 2, we obtain

w(t)
tn–2/(n – 2)!

≥ w′(t)
tn–3/(n – 3)!

,

i.e., w(t) ≥ t
n–2 w′(t), which implies that

(
t–n+2w(t)

)′ = t–n+2w′(t) + (2 – n)t–n+1w(t) = t–n+1[tw′(t) + (2 – n)w(t)
] ≤ 0,

and hence the function t2–nw(t) is nonincreasing and by (3.3)

[
ξ–1(t)

]2–nw
(
ξ–1(t)

) ≥ [
ξ–1(ξ–1(t)

)]2–nw
(
ξ–1(ξ–1(t)

))
.

Going through as in the proof of Lemma 6, we obtain (3.5). �

Theorem 9 Assume that there exist υ(τ ) ∈ C1([τ0,∞), (0,∞)), c1 > 0, k ∈ (0, 1) such that

∫ ∞

t0

[

υ(s)
[

h(s)
s

](n–1)δ/β m∑

i=1

qi(s)P
δ
β

1
(
ηi(s)

)
–

L[υ ′(s)]2r(s)
s(n–1)δ/β–1υ(s)

]

ds = ∞, (3.6)
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L = [ (n–1)!
k ]δ/β β

4δ(n–1)cδ/β–γ
1

. Assume further that the equation

z′(t) +
m∑

i=1

qi(t)P
δ
β

2
(
ηi(t)

)[ khn–1(t)
(n – 1)![r(h(t))]1/γ

] δ
β

zδ/βγ
(
h(t)

)
= 0 (3.7)

is oscillatory if

∫ ∞

t0

[

Eγ (s)c
δ
β

–γ

2

[
Nhn–2(s)
(n – 2)!

]δ/β m∑

i=1

qi(s)P
δ
β

3
(
ηi(s)

)
–

γ γ +1

(γ + 1)γ +1E(s)r1/γ (s)

]

ds

= ∞, (3.8)

for some constants c2 > 0, N ∈ (0, 1), and

∫ ∞

t
E(s) ds = ∞. (3.9)

Then, every solution of (1.1) is oscillatory.

Proof Without loss of generality, we may assume that x(t) is an eventually positive solution
of (1.1) such that x(t) > 0, x(ξ (t)) > 0, x(ηi(t)) > 0, i = 1, 2, . . . , m, for t ≥ t1 ≥ t0. Then, as
in Lemma 5, there exist four possible cases. Suppose that w(t) satisfies case 1, then, as in
Lemma 6, the function t1–nw(t) is nonincreasing and since h(t) < t, we have

[
h(t)

]1–nw
(
h(t)

) ≥ t1–nw(t). (3.10)

Define

ω(t) = υ(t)
r(t)(w(n–1)(t))γ

wδ/β (t)
,

then ω(t) > 0, and

ω′(t) =
υ ′(t)
υ(t)

ω(t) + υ(t)
[r(t)(w(n–1)(t))γ ]′

wδ/β (t)
– υ(t)

δ/βr(t)(w(n–1)(t))γ w′(t)wδ/β–1(t)
w2δ/β (t)

.

Using (3.1), (3.10), we have

ω′(t) ≤ υ ′(t)
υ(t)

ω(t) – υ(t)
[

h(t)
t

](n–1)δ/β m∑

i=1

qi(t)P
δ
β

1
(
ηi(t)

)

– υ(t)
δ/βr(t)(w(n–1)(t))γ w′(t)wδ/β–1(t)

w2δ/β (t)
.

Now from Lemma 1, we have

w(t) ≥ k
(n – 1)!

tn–1w(n–1)(t), k ∈ (0, 1), (3.11)
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and w′(t) ≥ k
(n–2)! t

n–2w(n–1)(t), then we have

ω′(t) ≤ υ ′(t)
υ(t)

ω(t) – υ(t)
[

h(t)
t

](n–1)δ/β m∑

i=1

qi(t)P
δ
β

1
(
ηi(t)

)

–
[

k
(n – 1)!

]δ/β
δ/β(n – 1)r(t)υ(t)t(n–1)δ/β–1(w(n–1)(t))2γ (w(n–1)(t))δ/β–γ

w2δ/β (t)
.

Since w(n–1)(t) is positive and nonincreasing function, there exists a positive constant c1

such that w(n–1)(t) ≤ c1. Then,

ω′(t) ≤ υ ′(t)
υ(t)

ω(t) – υ(t)
[

h(t)
t

](n–1)δ/β m∑

i=1

qi(t)P
δ
β

1
(
ηi(t)

)

–
[

k
(n – 1)!

]δ/β (n – 1)δ/βcδ/β–γ
1 t(n–1)δ/β–1ω2(t)
υ(t)r(t)

.

By completing the squares

ω′(t) ≤ –υ(t)
[

h(t)
t

](n–1)δ/β m∑

i=1

qi(t)P
δ
β

1
(
ηi(t)

)
+ L

[υ ′(t)]2r(t)
t(n–1)δ/β–1υ(t)

.

Integrating from t2 to t, we get

0 < ω(t) ≤ ω(t2) –
∫ t

t2

(

υ(s)
[

h(s)
s

](n–1)δ/β m∑

i=1

qi(s)P
δ
β

1
(
ηi(s)

)
– L

[υ ′(s)]2r(s)
s(n–1)δ/β–1υ(s)

)

ds.

This is a contradiction with (3.6). Assume that we have case 2, using Lemma 1, we find
(3.11). Thus, using (3.4), we have

(
r(t)

(
w(n–1)(t)

)γ )′ +
[

k
(n – 1)!

hn–1(t)w(n–1)(h(t)
)
] δ

β
m∑

i=1

qi(t)P
δ
β

2
(
ηi(t)

) ≤ 0,

then

(
r(t)

(
w(n–1)(t)

)γ )′

+
[

k

(n – 1)![r(h(t))]
1
γ

hn–1(t)
] δ

β
m∑

i=1

qi(t)P
δ
β

2
(
ηi(t)

)[[
r
(
h(t)

)] 1
γ w(n–1)(h(t)

)] δ
β ≤ 0,

we see that z(t) = r(t)(w(n–1)(t))γ is a positive solution of the differential inequality

z′(t) +
m∑

i=1

qi(t)P
δ
β

2
(
ηi(t)

)
[

khn–1(t)
(n – 1)![r(h(t))]1/γ

] δ
β

zδ/βγ
(
h(t)

) ≤ 0,

using [[17], Corollary 1], we see that (3.7) has a positive solution, and this is a contradiction.
Assume that we have case 3, then, as in Lemma 8, we have that t2–nw(t) is nonincreasing,
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and since h(t) < t, we have [h(t)]2–nw(h(t)) > t2–nw(t). Now, we define

φ(t) =
r(t)[w(n–1)(t)]γ

[w(n–2)(t)]γ
,

then φ(t) < 0, and by using (3.5),

φ′(t) ≤ –
∑m

i=1 qi(t)P
δ
β

3 (ηi(t))w
δ
β (h(t))

[w(n–2)(t)]γ
– γ

φ
γ +1
γ (t)

r
1
γ (t)

.

On the other hand, using Lemma 1, we get

w(t) ≥ N
(n – 2)!

tn–2w(n–2)(t) (3.12)

for every N ∈ (0, 1), and all sufficiently large t, then

φ′(t) ≤ –
[

N
(n – 2)!

hn–2(t)
] δ

β
∑m

i=1 qi(t)P
δ
β

3 (ηi(t))[w(n–2)(h(t))]
δ
β

[w(n–2)(t)]γ
– γ

φ
γ +1
γ (t)

r
1
γ (t)

,

since w(n–2) is positive and decreasing then w(n–2)(h(t)) ≥ w(n–2)(t). There exists a positive
constant c2 such that w(n–2)(t) ≤ c2, then we have

φ′(t) ≤ –c
δ
β

–γ

2

[
N

(n – 2)!
hn–2(t)

] δ
β

m∑

i=1

qi(t)P
δ
β

3
(
ηi(t)

)
– γ

φ
γ +1
γ (t)

r
1
γ (t)

. (3.13)

Multiplying (3.13) by Eγ (t) and integrating it from t1 to t, we have

Eγ (t)φ(t) – Eγ (t1)φ(t1) – γ

∫ t

t1

Eγ –1(s)φ(s)E′(s) ds

+
∫ t

t1

Eγ (s)c
δ
β

–γ

2

[
N

(n – 2)!
hn–2(s)

] δ
β

m∑

i=1

qi(s)P
δ
β

3
(
ηi(s)

)
ds + γ

∫ t

t1

Eγ (s)
φ

γ +1
γ (s)

r
1
γ (s)

ds

≤ 0.

Now using the inequality

Av
γ +1
γ – Bv ≥ –

γ γ

(γ + 1)γ +1
Bγ +1

Aγ
, A, B > 0

with

A =
Eγ (s)

r
1
γ (s)

, B = r– 1
γ (s)Eγ –1(s) and v = –φ(s),

we have

∫ t

t1

Eγ (s)c
δ
β

–γ

2

[
N

(n – 2)!
hn–2(s)

] δ
β

m∑

i=1

qi(s)P
δ
β

3
(
ηi(s)

)
–

γ γ

(γ + 1)γ +1E(s)r
1
γ (s)

ds

≤ –Eγ (t)φ(t) + Eγ (t1)φ(t1). (3.14)
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Noting that r[w(n–1)]γ is nonincreasing, we have

r
1
γ (s)w(n–1)(s) ≤ r

1
γ (t)w(n–1)(t), s ≥ t.

Dividing by r
1
γ (s) and integrating from t to κ gives

w(n–2)(κ) ≤ w(n–2)(t) + r
1
γ (t)w(n–1)(t)

∫
κ

t

1

r
1
γ (s)

ds.

Letting κ → ∞, we have

w(n–2)(t) ≥ –E(t)r
1
γ (t)w(n–1)(t), (3.15)

then

–
E(t)r

1
γ (t)w(n–1)(t)

w(n–2)(t)
≤ 1,

i.e.,

–E(t)φ
1
γ (t) ≤ 1.

By substituting into (3.14), we have

∫ t

t1

Eγ (s)c
δ
β

–γ

2

[
N

(n – 2)!
hn–2(s)

] δ
β

m∑

i=1

qi(s)P
δ
β

3
(
ηi(s)

)
–

γ γ

(γ + 1)γ +1E(s)r
1
γ (s)

ds

≤ Eγ (t1)φ(t1) + 1,

which contradicts (3.8). Assume that we have case 4. Since r[w(n–1)]γ is nonincreasing, as
in the proof of case 3, we get (3.15). Hence, there exists a constant c3 > 0, such that

w(n–2)(t) ≥ c3E(t).

Integrating from t1 to t provides

–w(n–3)(t1) ≥ c3

∫ t

t1

E(�) d�,

which contradicts (3.9), and this completes the proof. �

Theorem 10 Assume that (3.6), (3.7), and (3.9) hold. If there exist d ∈ C1([t0,∞], R+), c4

is a positive constant such that

lim sup
t→∞

Eγ (t)
d(t)

∫ t

t0

[

d(s)
[

N
(n – 2)!

hn–2(s)
] δ

β

c
δ
β

–γ

4

m∑

i=1

qi(s)P
δ
β

3
(
ηi(s)

)

–
r(s)(d′(s))γ +1

(γ + 1)γ +1dγ (s)

]

ds > 1, (3.16)

then every solution of (1.1) oscillates.
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Proof Without loss of generality, we may assume that x(t) is an eventually positive solution
of (1.1) such that x(t) > 0, x(ξ (t)) > 0, x(ηi(t)) > 0, i = 1, 2, . . . , m, for t ≥ t1 ≥ t0. Then, as in
Lemma 5, there exist four possible cases. The proofs in the three cases 1, 2, and 4 are the
same as in Theorem 9. Now assume that case 3 holds. Since r[w(n–1)]γ is nonincreasing,
as in Theorem 9, we have (3.15). Define

ϕ(t) = d(t)
(

r(t)[w(n–1)(t)]γ

[w(n–2)(t)]γ
+

1
Eγ (t)

)
. (3.17)

From (3.15), ϕ(t) > 0 for t ≥ t1. Therefore, we have

ϕ′(t) =
d′(t)
d(t)

ϕ(t) + d(t)
[r(t)[w(n–1)(t)]γ ]′

[w(n–2)(t)]γ
– d(t)

γ r(t)[w(n–1)(t)]γ +1

[w(n–2)(t)]γ +1 –
γ d(t)E′(t)

Eγ +1(t)
,

by (3.5) and (3.17)

ϕ′(t) ≤ d′(t)
d(t)

ϕ(t) – d(t)
∑m

i=1 qi(t)P
δ
β

3 (ηi(t))w
δ
β (h(t))

[w(n–2)(t)]γ
–

γ

d
1
γ (t)r

1
γ (t)

[
ϕ(t) –

d(t)
Eγ (t)

] γ +1
γ

–
γ d(t)E′(t)

Eγ +1(t)
.

As in Theorem 2.2 of [16], using Lemma 4 with A = d′(t)
d(t) , B = γ

d
1
γ (t)r

1
γ (t)

, D = d(t)
Eγ (t) and v = ϕ,

we have

ϕ′(t) ≤ –d(t)
∑m

i=1 qi(t)P
δ
β

3 (ηi(t))w
δ
β (h(t))

[w(n–2)(t)]γ
+

[
d(t)

Eγ (t)

]′
+

r(t)(d′(t))γ +1

(γ + 1)γ +1dγ (t)
.

Now using Lemma 1, we have (3.12). Since w(n–2)(t) is positive and decreasing w(n–2)(h(t)) ≥
w(n–2)(t), and there exists a positive constant c4 such that w(n–2)(t) ≤ c4, we have

ϕ′(t) ≤ –d(t)c
δ
β

–γ

4

[
N

(n – 2)!
hn–2(t)

] δ
β

m∑

i=1

qi(t)P
δ
β

3
(
ηi(t)

)
+

[
d(t)

Eγ (t)

]′
+

r(t)(d′(t))γ +1

(γ + 1)γ +1dγ (t)
.

Integrating the above inequality from t1 to t, we find

ϕ(t) – ϕ(t1)

≤ –
∫ t

t1

(

d(s)
[

N
(n – 2)!

hn–2(s)
] δ

β

c
δ
β

–γ

4

m∑

i=1

qi(s)P
δ
β

3
(
ηi(s)

)
–

r(s)(d′(s))γ +1

(γ + 1)γ +1dγ (s)

)

ds

+
d(t)

Eγ (t)
–

d(t1)
Eγ (t1)

.

From the definition of ϕ(t), we see that

∫ t

t1

(

d(s)
[

N
(n – 2)!

hn–2(s)
] δ

β

c
δ
β

–γ

4

m∑

i=1

qi(s)P
δ
β

3
(
ηi(s)

)
–

r(s)(d′(s))γ +1

(γ + 1)γ +1dγ (s)

)

ds
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≤ –
d(t)r(t)[w(n–1)(t)]γ

[w(n–2)(t)]γ
+

d(t1)r(t1)[w(n–1)(t1)]γ

[w(n–2)(t1)]γ
.

This leads to

∫ t

t1

d(s)
[

N
(n – 2)!

hn–2(s)
] δ

β

c
δ
β

–γ

4

m∑

i=1

qi(s)P
δ
β

3
(
ηi(s)

)
–

r(s)(d′(s))γ +1

(γ + 1)γ +1dγ (s)
ds ≤ d(t)

Eγ (t)
.

Hence

Eγ (t)
d(t)

∫ t

t1

d(s)
[

N
(n – 2)!

hn–2(s)
] δ

β

c
δ
β

–γ

4

m∑

i=1

qi(s)P
δ
β

3
(
ηi(s)

)
–

r(s)(d′(s))γ +1

(γ + 1)γ +1dγ (s)
ds ≤ 1,

which contradicts (3.16), and this completes the proof. �

Theorem 11 Assume that (3.6), (3.8), and (3.9) hold, δ
β

= γ . If there exists ϑ(t) ∈
C1([t0,∞], R+) such that

∫ ∞

t0

[
ϑ(s)

(n – 4)!

∫ ∞

s
(s – v)n–4

(
1

r(v)

∫ ∞

v

m∑

i=1

qi(χ )P
δ
β

2
(
ηi(χ )

)[h(χ )
χ

](n–3) δ
β

dχ

) 1
γ

dv

–
(ϑ ′(s))2

4ϑ(s)

]

ds = ∞, (3.18)

then (1.1) is oscillatory.

Proof Without loss of generality, we may assume that x(t) is an eventually positive solution
of (1.1) such that x(t) > 0, x(ξ (t)) > 0, x(ηi(t)) > 0, i = 1, 2, . . . , m, for t ≥ t1 ≥ t0. Then, as in
Lemma 5, there exist four possible cases. The proofs in the three cases 1, 3, and 4 are the
same as in Theorem 9. Now assume that case 2 holds. Define

� (t) = ϑ(t)
w′(t)
w(t)

,

then � > 0,

� ′(t) = ϑ(t)
w′′(t)
w(t)

–
� 2(t)
ϑ(t)

+
ϑ ′(t)� (t)

ϑ(t)
. (3.19)

Now by integrating (3.4) from t to v

r(v)
(
w(n–1)(v)

)γ – r(t)
(
w(n–1)(t)

)γ ≤ –
∫ v

t

m∑

i=1

qi(s)P
δ
β

2
(
ηi(s)

)
w

δ
β
(
h(s)

)
ds. (3.20)

As in the proof of Lemma 7, t3–n w(t) is nonincreasing since h(t) < t, then

w
(
h(t)

) ≥
[

h(t)
t

]n–3

w(t).
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By substituting in (3.20) and letting v → ∞, we have

r(t)
(
w(n–1)(t)

)γ ≥ w
δ
β (t)

∫ ∞

t

m∑

i=1

qi(s)P
δ
β

2
(
ηi(s)

)[h(s)
s

](n–3) δ
β

ds.

Integrating again from t to ∞, we get

w(n–2)(t) ≤ –w
δ

γβ (t)
∫ ∞

t

(
1

r(v)

∫ ∞

v

m∑

i=1

qi(s)P
δ
β

2
(
ηi(s)

)
[

h(s)
s

](n–3) δ
β

ds

) 1
γ

dv. (3.21)

Similarly, integrating (3.21) from t to ∞ a total (n – 4) times, we find

w′′(t) ≤ –
w

δ
γβ (t)

(n – 4)!

∫ ∞

t
(t – v)n–4

(
1

r(v)

∫ ∞

v

m∑

i=1

qi(s)P
δ
β

2
(
ηi(s)

)[h(s)
s

](n–3) δ
β

ds

) 1
γ

dv.

Thus, by substituting in (3.19), we have

� ′(t) ≤ –ϑ(t)
w

δ
γβ (t)

(n – 4)!w(t)

×
∫ ∞

t
(t – v)n–4

(
1

r(v)

∫ ∞

v

m∑

i=1

qi(s)P
δ
β

2
(
ηi(s)

)
[

h(s)
s

](n–3) δ
β

ds

) 1
γ

dv

–
� 2(t)
ϑ(t)

+
ϑ ′(t)� (t)

ϑ(t)
.

By completing the squares, we have

� ′(t) ≤ –ϑ(t)
w

δ
γβ (t)

(n – 4)!w(t)

×
∫ ∞

t
(t – v)n–4

(
1

r(v)

∫ ∞

v

m∑

i=1

qi(s)P
δ
β

2
(
ηi(s)

)[h(s)
s

](n–3) δ
β

ds

) 1
γ

dv

+
(ϑ ′(t))2

4ϑ(t)
.

This yields

∫ t

t1

[
ϑ(s)

(n – 4)!

∫ ∞

s
(s – v)n–4

(
1

r(v)

∫ ∞

v

m∑

i=1

qi(χ )P
δ
β

2
(
ηi(χ )

)[h(χ )
χ

](n–3) δ
β

dχ

) 1
γ

dv

–
(ϑ ′(s))2

4ϑ(s)

]

ds

≤ � (t1),

which contradicts (3.18), and this completes the proof. �
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4 Examples and conclusion
Example 12 Consider the differential equation

(
t2

(
x(t) + tx3

(
3t
4

))′′′)′
+

q0

t
x3(t) +

q0

t2 x3(2t) = 0, q0 > 0, t ≥ 1. (4.1)

Here δ = β = 3, γ = 1, n = 4, r(t) = t2, p(t) = t, ξ (t) = 3t
4 , q1(t) = q0

t , q2(t) = q0
t2 , η1(t) = t,

η2(t) = 2t, ξ–1(t) = 4
3 t, ξ–1(ξ–1(t)) = 16

9 t. Taking η(t) = t
2 , then η(t) < ηi(t), limt→∞ η(t) = ∞,

η(t) < ξ (t), h(t) = 2
3 t,

P1(t) =
3
4t

[
1 –

4

3k
2
3

1 t 1
3

3

√
9

16

]
, P2(t) =

3
4t

[
1 –

(
3

√
3
4

)
1

k
2
3

2 t 1
3

]
,

P3(t) =
3
4t

[
1 –

1

k
2
3

3 t 1
3

]
.

Now let υ(t) = t, ϑ(t) = t, then

∫ ∞

t0

[

υ(s)
[

h(s)
s

](n–1)δ/β m∑

i=1

qi(s)P
δ
β

1
(
ηi(s)

)
–

L[υ ′(s)]2r(s)
s(n–1)δ/β–1υ(s)

]

ds

=
∫ ∞

1

(
s
(

2
3

)3[3q0

4s2

(
1 –

4

3k
2
3

1 s 1
3

3

√
9

16

)
+

3q0

8s3

(
1 –

4

3k
2
3

1 s 1
3

3

√
9

32

)]
–

L
s

)
ds = ∞.

If q0 > 9L
2 , L = [ (n–1)!

k ]δ/β β

4δ(n–1)cδ/β–γ
1

= 1
2k , i.e., q0 > 9

4k , k ∈ (0, 1)

∫ ∞

t0

[

Eγ (s)c
δ
β

–γ

2

[
Nhn–2(s)
(n – 2)!

]δ/β m∑

i=1

qi(s)P
δ
β

3
(
ηi(s)

)
–

γ γ +1

(γ + 1)γ +1E(s)r1/γ (s)

]

ds

=
∫ ∞

t0

[
2
9

Ns
[

3q0

4s2

(
1 –

1

k
2
3

3 s 1
3

)
+

3q0

8s3

(
1 –

1

k
2
3

3 s 1
3

3

√
1
2

)]
–

1
4s

]
ds = ∞.

If q0 > 3
2N ,

∫ ∞

t
E(s) ds =

∫ ∞

t

1
s

ds = ∞.

Moreover,

∫ ∞

t0

[
ϑ(s)

(n – 4)!

∫ ∞

s
(s – v)n–4

(
1

r(v)

∫ ∞

v

m∑

i=1

qi(χ )P
δ
β

2
(
ηi(χ )

)
[

h(χ )
χ

](n–3) δ
β

dχ

) 1
γ

dv

–
(ϑ ′(s))2

4ϑ(s)

]

ds

=
∫ ∞

1

(
q0s

[
1

4s2 –
9

56
1

k
2
3

2 s 7
3

3

√
3
4

+
1

24s3 –
9

280
1

k
2
3

2 s 10
3

3

√
3
8

]
–

1
4s

)
ds = ∞.
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If q0 > 1, then by Theorem 11, every solution of (4.1)oscillates for q0 > max[1, 3
2N , 9

4k ],
N , k ∈ (0, 1).

Conclusion 13 In this work, we use techniques of the Riccati and generalized Riccati trans-
formations, integral averaging, and the method of comparison to establish some new oscil-
lation criteria for the even-order differential equation with superlinear neutral term (1.1) in
noncanonical case. The obtained results improve and complement some previous criteria
in the literature. An example is provided to support the theoretical findings.
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