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Abstract
We consider weak solutions of the nonlinear time-fractional biharmonic diffusion
equation ∂α

t u + ∂
β
t u + uxxxx = h(t, x)|u|p in (0,∞)× (0, 1) subject to the initial

conditions u(0, x) = u0(x), ut(0, x) = u1(x) and the Navier boundary conditions
u(t, 1) = uxx(t, 1) = 0, where α ∈ (0, 1), β ∈ (1, 2), ∂α

t (resp. ∂β
t ) is the fractional derivative

of order α (resp. β) with respect to the time-variable in the Caputo sense, p > 1 and h
is a measurable positive weight function. Using nonlinear capacity estimates
specifically adapted to the fourth-order differential operator ∂4

∂x4
, the domain, the

initial conditions and the boundary condition, a general nonexistence result is
established. Next, some special cases of weight functions h are discussed.
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1 Introduction
In this paper, we study the nonexistence of weak solutions of the nonlinear time-fractional
biharmonic diffusion equation

∂α
t u + ∂

β
t u + uxxxx = h(t, x)|u|p, t > 0, 0 < x < 1, (1.1)

where u = u(t, x), α ∈ (0, 1), β ∈ (1, 2), ∂α
t (resp. ∂

β
t ) is the fractional derivative of order α

(resp. β) with respect to the time-variable in the Caputo sense, p > 1 and h is a measur-
able weight function with h(t, x) > 0 almost everywhere in (0,∞) × (0, 1). Equation (1.1) is
considered subject to the initial conditions

u(0, x) = u0(x), ut(0, x) = u1(x), 0 < x < 1 (1.2)

and the Navier boundary conditions

u(t, 1) = uxx(t, 1) = 0, t > 0, (1.3)

where u0, u1 ∈ L1
loc((0, 1]). Namely, our goal is to establish sufficient conditions under

which the considered problem admits no weak solution.
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The topic of time-fractional evolution equations has gained considerable attention in
recent decades due to its widespread applications in various fields of science, such as
physics, chemistry and biology, see, e.g., [4, 9, 17, 18]. We can find in the literature several
studies related to time-fractional evolution equations in both theoretical and numerical
directions. In the theoretical point of view, several investigations have been made regard-
ing well-posedness, inverse problems, asymptotic analysis, decay estimates, etc., see, e.g.,
[1, 8, 11, 15, 20, 23]. For some numerical contributions, we refer to [2, 5, 7].

The issue of nonexistence of solutions to time-fractional evolution equations was initi-
ated by Kirane and his collaborators, see, e.g., Fino and Kirane [6], Kirane and Tatar [16],
Kirane and Laskri [13] and Kirane and Malik [14]. Since then, this topic was developed
by many authors, see, e.g., [3, 10, 19, 21, 22, 24] and the references therein. In particular,
Tatar [22] considered the time-fractional diffusion equation

∂1+α
t u + ∂

β
t u – �u = h(t, x)|u|p, t > 0, x ∈R

N , (1.4)

where α,β ∈ (0, 1), p > 1 and h satisfies

h
(
R2t, Rβx

)
= Rρh(t, x)

for some ρ > 0 and large R > 0. Namely, it has been proven that if u(0, ·), ut(0, ·) ≥ 0 and

1 < p ≤ 1 +
2β + ρ

1 + βN – 2β
,

then (1.4) admits no weak solution.
The novelty of this work with respect to the above cited contributions (in particular [22])

lies in the following facts:
(a) Problem (1.1) is posed in a bounded domain;
(b) Problem (1.1) is governed by a fourth-order differential operator.

In this paper, our approach is based on nonlinear capacity estimates specifically adapted
to the fourth-order differential operator ∂4

∂x4 , the domain, the initial conditions (1.2) and
the boundary condition (1.3).

The rest of the paper is organized as follows. Section 2 is devoted to some preliminaries
on fractional calculus. In Sect. 3, we define weak solutions to the considered problem and
state our obtained results. In Sect. 4, we etsablish some useful lemmas. Finally, we prove
our obtained results in Sect. 5.

Throughout this paper, we shall use the following notations. By C (or Ci), we mean a
positive constant that is independent of the parameters T , R and the solution u. The value
of this constant is not important and is not necessarily the same from one line to another.
For a positive real number �, the notation � � 1 means that � is sufficiently large.

2 Preliminaries
In this section, we briefly recall some notions and results related to fractional operators
and fix some notations. For more details, we refer to [12].

Let T > 0. The left-sided and right-sided Riemann–Liouville fractional integrals of order
γ > 0 of f ∈ C([0, T]) are defined respectively by

Iγ
0 f (t) =

1
	(γ )

∫ t

0
(t – s)γ –1f (s) ds, 0 < t ≤ T
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and

Iγ

T f (t) =
1

	(γ )

∫ T

t
(s – t)γ –1f (s) ds, 0 ≤ t < T ,

where 	 is the Gamma function. It can be easily seen that

lim
t→0+

Iγ
0 f (t) = lim

t→T–
Iγ

T f (t) = 0. (2.1)

We have the following integration by parts rule.

Lemma 2.1 Let γ > 0 and f , g ∈ C([0, T]). We have

∫ T

0
g(t)Iγ

0 f (t) dt =
∫ T

0
f (t)Iγ

T g(t) dt.

For T > 0 and � � 1, let

M(t) = T–�(T – t)�, 0 ≤ t ≤ T . (2.2)

For the proof of the following lemma, see [12, Property 2.1, p 71].

Lemma 2.2 Let 0 < κ < 1. For all t ∈ [0, T], we have

Iκ
T M(t) =

	(� + 1)
	(� + 1 + κ)

T–�(T – t)�+κ , (2.3)

d
dt

Iκ
T M(t) = –

	(� + 1)
	(� + κ)

T–�(T – t)�+κ–1, (2.4)

d2

dt2 Iκ
T M(t) =

	(� + 1)
	(� + κ – 1)

T–�(T – t)�+κ–2. (2.5)

Let γ ∈ (n – 1, n), where n is positive integer and f ∈ Cn([0, T]). The Caputo fractional
derivative of order γ of f is defined by

CDγ
0 f (t) = In–γ

0
dnf
dtn (t)

=
1

	(n – γ )

∫ t

0
(t – s)n–γ –1 dnf

dsn (s) ds, 0 < t < T .

Let F = F(t, x) : [0, T] × J → R, where J ⊂ R. The left-sided and right-sided Riemann–
Liouville fractional integrals of order γ > 0 of F with respect to the time-variable t are
defined respectively by

Iγ
0 F(t, x) = Iγ

0 F(·, x)(t)

=
1

	(γ )

∫ t

0
(t – s)γ –1F(s, x) ds



Jleli and Samet Boundary Value Problems         (2024) 2024:66 Page 4 of 17

and

Iγ

T F(t, x) = Iγ

T F(·, x)(t)

=
1

	(γ )

∫ T

t
(s – t)γ –1F(s, x) ds.

If γ ∈ (n – 1, n), where n is positive integer, the Caputo fractional derivative of order γ of
F with respect to the time-variable t is denoted by ∂

γ
t F(t, x) and is defined by

∂
γ
t F(t, x) = CDγ

0 F(·, x)(t)

= In–γ
0

∂nF
∂tn (t, x)

=
1

	(n – γ )

∫ t

0
(t – s)n–γ –1 ∂nF

∂sn (s, x) ds.

3 The results
Let us first define weak solutions to (1.1)–(1.3). For all T > 0, let

QT = [0, T] × (0, 1].

We introduce the set

�T =
{
ϕ ∈ C4(QT ) : ϕ ≥ 0, supp(ϕ) ⊂⊂ QT ,ϕ(T , ·) ≡ 0,ϕ(·, 1) = ϕxx(·, 1) ≡ 0

}
.

Definition 3.1 We say that u ∈ Lp
loc([0,∞) × (0, 1], h(t, x) dt dx) ∩ L1

loc([0,∞) × (0, 1]) is a
weak solution to (1.1)–(1.3), if

∫

QT

|u|ph(t, x)ϕ dx dt +
∫ 1

0
u0(x)

(
I1–α

T ϕ(0, x) –
(
I2–β

T ϕ
)

t(0, x)
)

dx

+
∫ 1

0
u1(x)I2–β

T ϕ(0, x) dx

=
∫

QT

u
(
–
(
I1–α

T ϕ
)

t +
(
I2–β

T ϕ
)

tt + ϕxxxx
)

dx dt

(3.1)

for every T > 0 and ϕ ∈ �T .

Notice that if u is a classical solution to (1.1)–(1.3), then multiplying (1.1) by ϕ ∈ �T ,
integrating by parts, using property (2.1), the integration by parts rule given by Lemma 2.1,
(1.2) and (1.3), we obtain (3.1).

We are now in position to state our main results. We first consider the case

u1 ≡ 0, u0 ∈ L1((0, 1)
)
,

∫ 1

0
u0(x)(1 – x) dx > 0. (3.2)

Theorem 3.1 Let 0 < α < 1 < β < 2, p > 1, h(t, x) > 0 almost everywhere in (0,∞) × (0, 1)
and h

–1
p–1 ∈ L1

loc([0,∞) × (0, 1]). Assume that the initial data satisfy (3.2). If there exists
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θ > 0 such that

lim inf
T→∞ Tα–1+ 4θp

p–1

∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt = 0, (3.3)

then (1.1)–(1.2)–(1.3) admits no weak solution.

We next consider the case

u0 ≡ 0, u1 ∈ L1((0, 1)
)
,

∫ 1

0
u1(x)(1 – x) dx > 0. (3.4)

Theorem 3.2 Let 0 < α < 1 < β < 2, p > 1, h(t, x) > 0 almost everywhere in (0,∞) × (0, 1)
and h

–1
p–1 ∈ L1

loc([0,∞) × (0, 1]). Assume that the initial data satisfy (3.4). If there exists
θ > 0 such that

lim inf
T→∞ Tβ–2+ 4θp

p–1

∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt = 0, (3.5)

then (1.1)–(1.2)–(1.3) admits no weak solution.

We finally consider the case

ui ∈ L1((0, 1)
)
,

∫ 1

0
ui(x)(1 – x) dx > 0, i = 0, 1. (3.6)

Theorem 3.3 Let 0 < α < 1 < β < 2, p > 1, h(t, x) > 0 almost everywhere in (0,∞) × (0, 1)
and h

–1
p–1 ∈ L1

loc([0,∞) × (0, 1]). Assume that the initial data satisfy (3.6). If there exists
θ > 0 such that

lim inf
T→∞ T– max{1–α,2–β}+ 4θp

p–1

∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt = 0, (3.7)

then (1.1)–(1.2)–(1.3) admits no weak solution.

We discuss below some particular cases of weight functions h. We first consider the case
when h

–1
p–1 is a L1-function.

Corollary 3.4 Let 0 < α < 1 < β < 2, p > 1, h(t, x) > 0 almost everywhere in (0,∞) × (0, 1)
and h

–1
p–1 ∈ L1([0,∞)×(0, 1)). If the initial data satisfy (3.2) or (3.4) or (3.6), then (1.1)–(1.3)

admit no weak solution.

We now study the case when

h(t, x) = tρxσ , t > 0, 0 < x < 1. (3.8)

From Theorem 3.1, we deduce the following result.

Corollary 3.5 Let 0 < α < 1 < β < 2 and h be the function defined by (3.8), where ρ > 0 and
σ ∈R. Assume that the initial data satisfy (3.2). If

1 + ρ < p < 1 +
ρ

α
, (3.9)

then (1.1)–(1.3) admit no weak solution.
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From Theorem 3.2, we deduce the following result.

Corollary 3.6 Let 0 < α < 1 < β < 2 and h be the function defined by (3.8), where ρ > 0 and
σ ∈R. Assume that the initial data satisfy (3.4). If

1 + ρ < p < 1 +
ρ

β – 1
, (3.10)

then (1.1)–(1.3) admit no weak solution.

From Theorem 3.3, we deduce the following result.

Corollary 3.7 Let 0 < α < 1 < β < 2 and h be the function defined by (3.8), where ρ > 0 and
σ ∈R. Assume that the initial data satisfy (3.6). If

1 + ρ < p < 1 +
ρ

1 – max{1 – α, 2 – β} , (3.11)

then (1.1)–(1.3) admit no weak solution.

4 Auxiliary results
Some useful estimates are established in this section. Throughout this section, we have
0 < α < 1 < β < 2, p > 1 and h = h(t, x) > 0 almost everywhere.

Let us consider a cut-off function ξ ∈ C∞([0,∞)) satisfying

0 ≤ ξ ≤ 1, ξ ≡ 0 in
[

0,
1
2

]
, ξ ≡ 1 in [1,∞).

For �, R � 1, let

ξR(x) = (1 – x)ξ�(Rx), x ∈ (0, 1],

that is,

ξR(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if 0 < x ≤ 1
2R ,

(1 – x)ξ�(Rx) if 1
2R ≤ x ≤ 1

R ,

1 – x if 1
R ≤ x ≤ 1.

(4.1)

For �, T , R � 1, let

ϕ(t, x) = M(t)ξR(x), (t, x) ∈ QT , (4.2)

where M is the function defined by (2.2). The following lemma follows immediately from
the properties of ξ , (4.1) and (4.2).

Lemma 4.1 We have ϕ ∈ �T .
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We now introduce the nonlinear capacity terms

Cap1(ϕ) =
∫

QT

ϕ
–1

p–1
∣∣(I1–α

T ϕ
)

t

∣∣
p

p–1 h
–1

p–1 dx dt (4.3)

Cap2(ϕ) =
∫

QT

ϕ
–1

p–1
∣∣(I2–β

T ϕ
)

tt

∣∣
p

p–1 h
–1

p–1 dx dt, (4.4)

Cap3(ϕ) =
∫

QT

ϕ
–1

p–1 |ϕxxxx|
p

p–1 h
–1

p–1 dx dt. (4.5)

Lemma 4.2 Let h
–1

p–1 ∈ L1
loc([0,∞) × (0, 1]). We have

Cap1(ϕ) ≤ CT
–αp
p–1

∫ T

t=0

∫ 1

x= 1
2R

h
–1

p–1 (t, x) dx dt. (4.6)

Proof By (2.2), (2.4) (with κ = 1 – α) and (4.2), for all (t, x) ∈ QT , we have

ϕ
–1

p–1
∣∣(I1–α

T ϕ
)

t

∣∣
p

p–1 h
–1

p–1 = M
–1

p–1 (t)ξ
–1

p–1
R (x)ξ

p
p–1

R (x)
∣
∣∣∣
dI1–α

T M
dt

∣
∣∣∣

p
p–1

h
–1

p–1 (t, x)

= ξR(x)M
–1

p–1 (t)
∣
∣∣
∣
dI1–α

T M
dt

∣
∣∣
∣

p
p–1

h
–1

p–1 (t, x)

= CξR(x)
[
T–�(T – t)�

] –1
p–1

[
T–�(T – t)�–α

] p
p–1 h

–1
p–1 (t, x)

= CT–�ξR(x)(T – t)�– αp
p–1 h

–1
p–1 (t, x).

Integrating over QT , we get by the properties of ξ , (4.1) and (4.3) that

Cap1(ϕ) ≤ CT–�

∫ T

t=0

∫ 1

x= 1
2R

ξR(x)(T – t)�– αp
p–1 h

–1
p–1 (t, x) dx dt

≤ CT–�

∫ T

t=0

∫ 1

x= 1
2R

(T – t)�– αp
p–1 h

–1
p–1 (t, x) dx dt

≤ CT
–αp
p–1

∫ T

t=0

∫ 1

x= 1
2R

h
–1

p–1 (t, x) dx dt,

which proves (4.6). �

Similarly, using (2.2), (2.5) (with κ = 2 – β), (4.2) and (4.4), we obtain the following esti-
mate.

Lemma 4.3 Let h
–1

p–1 ∈ L1
loc([0,∞) × (0, 1]). We have

Cap2(ϕ) ≤ CT
–βp
p–1

∫ T

t=0

∫ 1

x= 1
2R

h
–1

p–1 (t, x) dx dt. (4.7)

Lemma 4.4 Let h
–1

p–1 ∈ L1
loc([0,∞) × (0, 1]). We have

Cap3(ϕ) ≤ CR
4p

p–1

∫ T

t=0

∫ 1
R

x= 1
2R

h
–1

p–1 (t, x) dx dt. (4.8)
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Proof By (2.2) and (4.2), for all (t, x) ∈ QT , we have

ϕ
–1

p–1 |ϕxxxx|
p

p–1 h
–1

p–1 = T–�(T – t)�ξ
–1

p–1
R (x)

∣∣
∣∣
d4ξR

dx4

∣∣
∣∣

p
p–1

h
–1

p–1 (t, x). (4.9)

On the other hand, for all x ∈ (0, 1), we have by (4.1) that

d4ξR

dx4 (x) =
d4

dx4

[
(1 – x)ξ�(Rx)

]

=
d2

dx2

(
d2

dx2

[
(1 – x)ξ�(Rx)

]
)

=
d2

dx2

(
(1 – x)

d2

dx2

[
ξ�(Rx)

]
– 2

d
dx

[
ξ�(Rx)

]
)

= (1 – x)
d4

dx4

[
ξ�(Rx)

]
– 4

d3

dx3

[
ξ�(Rx)

]
,

which implies by (4.1) that (recall that 0 ≤ ξ ≤ 1)

supp

(
d4ξR

dx4

)
⊂

[
1

2R
,

1
R

]
(4.10)

and for all x ∈ supp( d4ξR
dx4 ),

∣∣
∣∣
d4ξR

dx4

∣∣
∣∣ ≤ C

(
(1 – x)

∣∣
∣∣

d4

dx4

[
ξ�(Rx)

]
∣∣
∣∣ +

∣∣
∣∣

d3

dx3

[
ξ�(Rx)

]
∣∣
∣∣

)

≤ C
(
R4ξ�–4(Rx) + R3ξ�–3(Rx)

)

≤ CR4ξ�–4(Rx).

(4.11)

Then, from (4.5), (4.9), (4.10) and (4.11), we deduce that

Cap3(ϕ) ≤ CR
4p

p–1 T–�

∫ T

t=0

∫ 1
R

x= 1
2R

(T – t)�ξ �– 4p
p–1 (Rx)h

–1
p–1 (t, x) dx dt

≤ CR
4p

p–1

∫ T

t=0

∫ 1
R

x= 1
2R

h
–1

p–1 (t, x) dx dt,

which proves (4.8). �

5 Proofs of the obtained results
This section is devoted to the proofs of Theorems 3.1, 3.2, 3.3 and Corollaries 3.4, 3.5, 3.6
and 3.7.

Proof of Theorem 3.1 Let us suppose that

u ∈ Lp
loc

(
[0,∞) × (

0, 1], h(t, x) dt dx
) ∩ L1

loc

(
[0,∞) × (

0, 1]
)
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is a weak solution to (1.1)–(1.3). By Lemma 4.1 and (3.1), for all �, T , R � 1, we have

∫

QT

|u|ph(t, x)ϕ dx dt +
∫ 1

0
u0(x)

(
I1–α

T ϕ(0, x) –
(
I2–β

T ϕ
)

t(0, x)
)

dx

+
∫ 1

0
u1(x)I2–β

T ϕ(0, x) dx

≤
∫

QT

|u|(∣∣(I1–α
T ϕ

)
t

∣
∣ +

∣
∣(I2–β

T ϕ
)

tt

∣
∣ + |ϕxxxx|

)
dx dt,

(5.1)

where ϕ is the function defined by (4.2). On the other hand, by Young’s inequality, we have

∫

QT

|u|∣∣(I1–α
T ϕ

)
t

∣∣dx dt =
∫

QT

(|u|h 1
p ϕ

1
p
)(

ϕ
–1
p
∣∣(I1–α

T ϕ
)

t

∣∣h
–1
p
)

dx dt

≤ 1
3

∫

QT

|u|ph(t, x)ϕ dx dt + C Cap1(ϕ),
(5.2)

where Cap1(ϕ) is the integral term given by (4.3). Similarly, we have

∫

QT

|u|∣∣(I2–β

T ϕ
)

tt

∣∣dx dt ≤ 1
3

∫

QT

|u|ph(t, x)ϕ dx dt + C Cap2(ϕ) (5.3)

and
∫

QT

|u||ϕxxxx|dx dt ≤ 1
3

∫

QT

|u|ph(t, x)ϕ dx dt + C Cap3(ϕ), (5.4)

where Capi(ϕ), i = 2, 3, are given by (4.4) and (4.5). In view of (5.1), (5.2), (5.3) and (5.4),
we get

∫ 1

0
u0(x)

(
I1–α

T ϕ(0, x) –
(
I2–β

T ϕ
)

t(0, x)
)

dx +
∫ 1

0
u1(x)I2–β

T ϕ(0, x) dx

≤ C
3∑

i=1

Capi(ϕ). (5.5)

On the other hand, by (4.2), (2.3) (with κ ∈ {1 – α, 2 – β}) and (2.4) (with κ = 2 – β), for all
x ∈ (0, 1), we have

I1–α
T ϕ(0, x) = C1T1–α(1 – x)ξ�(Rx),
(
I2–β

T ϕ
)

t(0, x) = –C2T1–β (1 – x)ξ�(Rx),

I2–β

T ϕ(0, x) = C3T2–β (1 – x)ξ�(Rx).

Then, it holds that

∫ 1

0
u0(x)

(
I1–α

T ϕ(0, x) –
(
I2–β

T ϕ
)

t(0, x)
)

dx +
∫ 1

0
u1(x)I2–β

T ϕ(0, x) dx

=
(
C1T1–α + C2T1–β

)∫ 1

0
u0(x)(1 – x)ξ�(Rx) dx (5.6)
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+ C3T2–β

∫ 1

0
u1(x)(1 – x)ξ�(Rx) dx.

Since u1 ≡ 0, (5.6) reduces to

∫ 1

0
u0(x)

(
I1–α

T ϕ(0, x) –
(
I2–β

T ϕ
)

t(0, x)
)

dx +
∫ 1

0
u1(x)I2–β

T ϕ(0, x) dx

=
(
C1T1–α + C2T1–β

)∫ 1

0
u0(x)(1 – x)ξ�(Rx) dx.

(5.7)

Since u0 ∈ L1((0, 1)), the properties of ξ and the dominated convergence theorem give us
that

lim
R→∞

∫ 1

0
u0(x)(1 – x)ξ�(Rx) dx =

∫ 1

0
u0(x)(1 – x) dx.

Furthermore, the positivity of
∫ 1

0 u0(x)(1 – x) dx (by (3.2)) and the definition of the limit
imply that for R � 1,

∫ 1

0
u0(x)(1 – x)ξ�(Rx) dx ≥ 1

2

∫ 1

0
u0(x)(1 – x) dx,

which yields (for T � 1)

(
C1T1–α + C2T1–β

)∫ 1

0
u0(x)(1 – x)ξ�(Rx) dx ≥ CT1–α

∫ 1

0
u0(x)(1 – x) dx. (5.8)

Now, it follows from (5.5), (5.7), (5.8), Lemmas 4.2, 4.3 and 4.4 that

T1–α

∫ 1

0
u0(x)(1 – x) dx ≤ C

(
T

–αp
p–1 + T

–βp
p–1 + R

4p
p–1

)∫ T

t=0

∫ 1

x= 1
2R

h
–1

p–1 (t, x) dx dt

≤ C
(
T

–αp
p–1 + R

4p
p–1

)∫ T

t=0

∫ 1

x= 1
2R

h
–1

p–1 (t, x) dx dt,

that is,

∫ 1

0
u0(x)(1 – x) dx ≤ C

(
T–( α

p–1 +1) + Tα–1R
4p

p–1
)∫ T

t=0

∫ 1

x= 1
2R

h
–1

p–1 (t, x) dx dt. (5.9)

We now take 2R = Tθ , where θ > 0, and (5.9) reduces to

∫ 1

0
u0(x)(1 – x) dx ≤ C

(
T–( α

p–1 +1) + Tα–1+ 4θp
p–1

)∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt

= C
(
T–( α

p–1 +α+ 4θp
p–1 ) + 1

)
Tα–1+ 4θp

p–1

∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt,

which implies that

∫ 1

0
u0(x)(1 – x) dx ≤ CTα–1+ 4θp

p–1

∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt. (5.10)
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Hence, if (3.3) is satisfied for some θ > 0, then passing to the infimum limit as T → ∞ in
(5.10), we obtain

∫ 1
0 u0(x)(1 – x) dx ≤ 0, which contradicts (3.2). This completes the proof

of Theorem 3.1. �

Proof of Theorem 3.2 We also use the contradiction argument supposing that u is a weak
solution to (1.1)–(1.3). Following exactly the first steps of the proof of Theorem 3.1, we
obtain (5.5) and (5.6). Since u0 ≡ 0, (5.6) reduces to

∫ 1

0
u0(x)

(
I1–α

T ϕ(0, x) –
(
I2–β

T ϕ
)

t(0, x)
)

dx +
∫ 1

0
u1(x)I2–β

T ϕ(0, x) dx

= C3T2–β

∫ 1

0
u1(x)(1 – x)ξ�(Rx) dx.

(5.11)

As in the proof of Theorem 3.1, by (3.4), the properties of ξ and the dominated conver-
gence theorem, we have

lim
R→∞

∫ 1

0
u1(x)(1 – x)ξ�(Rx) dx =

∫ 1

0
u1(x)(1 – x) dx > 0,

which implies that for R � 1,

∫ 1

0
u1(x)(1 – x)ξ�(Rx) dx ≥ 1

2

∫ 1

0
u1(x)(1 – x) dx. (5.12)

Now, using (5.5), (5.11), (5.12), Lemmas 4.2, 4.3 and 4.4, we get

T2–β

∫ 1

0
u1(x)(1 – x) dx ≤ C

(
T

–αp
p–1 + R

4p
p–1

)∫ T

t=0

∫ 1

x= 1
2R

h
–1

p–1 (t, x) dx dt,

that is,

∫ 1

0
u1(x)(1 – x) dx ≤ C

(
Tβ–2– αp

p–1 + Tβ–2R
4p

p–1
)∫ T

t=0

∫ 1

x= 1
2R

h
–1

p–1 (t, x) dx dt. (5.13)

We now take 2R = Tθ , where θ > 0, and (5.13) reduces to

∫ 1

0
u1(x)(1 – x) dx ≤ C

(
Tβ–2– αp

p–1 + Tβ–2+ 4θp
p–1

)∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt

= C
(
T–( αp

p–1 + 4θp
p–1 ) + 1

)
Tβ–2+ 4θp

p–1

∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt,

which implies that

∫ 1

0
u1(x)(1 – x) dx ≤ CTβ–2+ 4θp

p–1

∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt. (5.14)

Hence, if (3.5) is satisfied for some θ > 0, then passing to the infimum limit as T → ∞ in
(5.14), we obtain

∫ 1
0 u1(x)(1 – x) dx ≤ 0, which contradicts (3.4). This completes the proof

of Theorem 3.2. �
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Proof of Theorem 3.3 Assuming that u is a weak solution to (1.1)–(1.3) and following ex-
actly the first steps of the proof of Theorem 3.1, we obtain (5.5) and (5.6). On the other
hand, by (3.6), the properties of ξ and the dominated convergence theorem, for all i = 0, 1,
we get

lim
R→∞

∫ 1

0
ui(x)(1 – x)ξ�(Rx) dx =

∫ 1

0
ui(x)(1 – x) dx > 0,

which yields (for T , R � 1)

(
C1T1–α + C2T1–β

)∫ 1

0
u0(x)(1 – x)ξ�(Rx) dx + C3T2–β

∫ 1

0
u1(x)(1 – x)ξ�(Rx) dx

≥ C
(

T1–β

∫ 1

0
u0(x)(1 – x) dx + T2–β

∫ 1

0
u1(x)(1 – x) dx

)

≥ CTmax{1–α,2–β}
∫ 1

0

(
u0(x) + u1(x)

)
(1 – x) dx. (5.15)

Then, by (5.5), (5.6), (5.15), Lemmas 4.2, 4.3 and 4.4, we obtain

Tmax{1–α,2–β}
∫ 1

0

(
u0(x) + u1(x)

)
(1 – x) dx

≤ C
(
T

–αp
p–1 + T

–βp
p–1 + R

4p
p–1

)∫ T

t=0

∫ 1

x= 1
2R

h
–1

p–1 (t, x) dx dt

≤ C
(
T

–αp
p–1 + R

4p
p–1

)∫ T

t=0

∫ 1

x= 1
2R

h
–1

p–1 (t, x) dx dt,

that is,

∫ 1

0

(
u0(x) + u1(x)

)
(1 – x) dx

≤ C
(
T– max{1–α,2–β}– αp

p–1 + T– max{1–α,2–β}R
4p

p–1
)∫ T

t=0

∫ 1

x= 1
2R

h
–1

p–1 (t, x) dx dt.
(5.16)

Taking 2R = Tθ , where θ > 0, (5.16) reduces to

∫ 1

0

(
u0(x) + u1(x)

)
(1 – x) dx

≤ C
(
T– max{1–α,2–β}– αp

p–1 + T– max{1–α,2–β}+ 4θp
p–1

)∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt

= C
(
T–( αp

p–1 + 4θp
p–1 ) + 1

)
T– max{1–α,2–β}+ 4θp

p–1

∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt,

which yields

∫ 1

0

(
u0(x) + u1(x)

)
(1 – x) dx ≤ CT– max{1–α,2–β}+ 4θp

p–1

∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt. (5.17)
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Hence, if (3.7) is satisfied for some θ > 0, then passing to the infimum limit as T → ∞ in
(5.17), we obtain

∫ 1
0 (u0(x) + u1(x))(1 – x) dx ≤ 0, which contradicts (3.6). This completes

the proof of Theorem 3.3. �

Proof of Corollary 3.4 If h
–1

p–1 ∈ L1([0,∞) × (0, 1)), then for all θ > 0, we have

lim
T→∞

∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt =
∫ ∞

t=0

∫ 1

x=0
h

–1
p–1 (t, x) dx dt ∈ (0,∞).

Then, for T � 1,

0 <
∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt ≤ C. (5.18)

(i) If the initial data satisfy (3.2), then for all θ > 0, we have by (5.18) that

Tα–1+ 4θp
p–1

∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt ≤ CTα–1+ 4θp
p–1 . (5.19)

In particular, for

0 < θ <
(p – 1)(1 – α)

4p
,

we have α – 1 + 4θp
p–1 < 0, which implies by (5.19) that

lim
T→∞ Tα–1+ 4θp

p–1

∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt = 0.

Then Theorem 3.1 applies.
(ii) If the initial data satisfy (3.4), then for all θ > 0, we have by (5.18) that

Tβ–2+ 4θp
p–1

∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt ≤ CTβ–2+ 4θp
p–1 . (5.20)

In particular, for

0 < θ <
(p – 1)(2 – β)

4p
,

we have β – 2 + 4θp
p–1 < 0, which implies by (5.20) that

lim
T→∞ Tβ–2+ 4θp

p–1

∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt = 0.

Then Theorem 3.2 applies.
(iii) If the initial data satisfy (3.6), then for all θ > 0, we have by (5.18) that

T– max{1–α,2–β}+ 4θp
p–1

∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt ≤ CT– max{1–α,2–β}+ 4θp
p–1 . (5.21)
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In particular, for

0 < θ <
(p – 1) max{1 – α, 2 – β}

4p
,

we have – max{1 – α, 2 – β} + 4θp
p–1 < 0, which implies by (5.21) that

lim
T→∞ T– max{1–α,2–β}+ 4θp

p–1

∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt = 0.

Then Theorem 3.3 applies. This completes the proof of Corollary 3.4. �

Proof of Corollary 3.5 For all θ > 0, we have (since p > 1 + ρ by (3.9))

∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt =
∫ T

t=0

∫ 1

x=T–θ

t
–ρ
p–1 x

–σ
p–1 dx dt

= CT1– ρ
p–1

∫ 1

T–θ

x
–σ
p–1 dx.

(5.22)

On the other hand, we have

∫ 1

T–θ

x
–σ
p–1 dx ≤

⎧
⎪⎪⎨

⎪⎪⎩

C if 1 – σ
p–1 > 0,

C ln T if 1 – σ
p–1 = 0,

CT–θ (1– σ
p–1 ) if 1 – σ

p–1 < 0,

which implies that

∫ 1

T–θ

x
–σ
p–1 dx ≤ C

(
ln T + T–θ (1– σ

p–1 )). (5.23)

Then, (5.22) and (5.23) yield

Tα–1+ 4θp
p–1

∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt ≤ C
(
Tγ1(θ ) ln T + Tγ2(θ )), (5.24)

where

γ1(θ ) =
α(p – 1) – ρ + 4θp

p – 1
,

γ2(θ ) =
α(p – 1) – ρ + θ (3p + σ + 1)

p – 1
.

We now take θ so that

⎧
⎨

⎩
0 < θ < ρ–α(p–1)

4p ,

(3p + σ + 1)θ < ρ – α(p – 1).
(5.25)
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Notice that due to (3.9), the set of θ satisfying (5.25) is nonempty. Namely, we know from
(3.9) that ρ – α(p – 1) > 0. So, if 3p + σ + 1 ≤ 0, then for all

0 < θ <
ρ – α(p – 1)

4p
,

(5.25) is satisfied. If 3p + σ + 1 > 0, then for all

0 < θ < min

{
ρ – α(p – 1)

4p
,
ρ – α(p – 1)
3p + σ + 1

}
,

(5.25) is satisfied. Remark also that by (5.25), we have γi(θ ) < 0 for all i = 1, 2. Then, passing
to the limit as T → ∞ in (5.24), we get

lim
T→∞ Tα–1+ 4θp

p–1

∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt = 0,

so Theorem 3.1 applies. This completes the proof of Corollary 3.5. �

Proof of Corollary 3.6 Using (5.22) and (5.23), for all θ > 0, we get

Tβ–2+ 4θp
p–1

∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt ≤ C
(
Tμ1(θ ) ln T + Tμ2(θ )), (5.26)

where

μ1(θ ) =
(β – 1)(p – 1) – ρ + 4θp

p – 1
,

μ2(θ ) =
(β – 1)(p – 1) – ρ + θ (3p + σ + 1)

p – 1
.

We now take θ so that
⎧
⎨

⎩
0 < θ < ρ–(β–1)(p–1)

4p ,

(3p + σ + 1)θ < ρ – (β – 1)(p – 1).
(5.27)

Due to (3.10), the set of θ satisfying (5.27) is nonempty. Furthermore, we have μi(θ ) < 0
for all i = 1, 2. Then, passing to the limit as T → ∞ in (5.26), we get

lim
T→∞ Tβ–2+ 4θp

p–1

∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt = 0,

so Theorem 3.2 applies. This completes the proof of Corollary 3.6. �

Proof of Corollary 3.7 Using (5.22) and (5.23), for all θ > 0, we get

T– max{1–α,2–β}+ 4θp
p–1

∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt ≤ C
(
Tλ1(θ ) ln T + Tλ2(θ )), (5.28)

where

λ1(θ ) =
(1 – max{1 – α, 2 – β})(p – 1) – ρ + 4θp

p – 1
,
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λ2(θ ) =
(1 – max{1 – α, 2 – β})(p – 1) – ρ + θ (3p + σ + 1)

p – 1
.

We now take θ so that
⎧
⎨

⎩
0 < θ < ρ–(1–max{1–α,2–β})(p–1)

4p ,

(3p + σ + 1)θ < ρ – (1 – max{1 – α, 2 – β})(p – 1).
(5.29)

Due to (3.11), the set of θ satisfying (5.29) is nonempty. We also have by (5.29) that λi(θ ) < 0
for all i = 1, 2. Then, passing to the limit as T → ∞ in (5.28), we get

lim
T→∞ T– max{1–α,2–β}+ 4θp

p–1

∫ T

t=0

∫ 1

x=T–θ

h
–1

p–1 (t, x) dx dt = 0,

so Theorem 3.3 applies. The proof of Corollary 3.7 is then completed. �
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