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1 Introduction and background

In recent years, partial differential equations and variational problems using a double-
phase operator have the attracted attention of many researchers; see, for example [14—
16] and the references therein. It sheds light on various fields of applications, including
but not limited to anisotropic materials, Lavrentiev’s phenomenon, and elasticity theory.
The study of mathematical problems involving variable exponents lies in the modeling of
many physical applications, for example, image processing [1, 7, 9, 17, 21, 24, 35], space
technology, the field of robotics, and electrorheological fluids. Winslow [32] studied the
electrofluids, which were noted at the beginning of the last century, and they possess a
very important property, namely, the electric field affects the viscosity of theses liquids.
Furthermore, it was discovered that viscosity is inversely proportional to the strength of
the fluid when the electric field occurs. In this case, it is called the Winslow effect, for
more benefit, see Halsey [8]. Radulescu’s [21] work on electrorheological fluids and image
restoration via Gaussian smoothing can also be found in the work by Chen et al. [4].

This paper deals with the p(&)-Laplacian fractional Kirchhoff double-phase equation

KUENRY) () = 0 @ED L+ g(x,8), in A
£>0, in A (1.1)
§=0, ondA
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with A =[0,T] x [0,T] C R%,0< 0 € L®(A), » € C(A) with A > 1;and R;((:)),q(.) denotes the
double-phase operator given by

K (%) _ HpvS¥ (Hy Y8V & |[P®)-2 Hmy .59 Hy V8% & [4%)-2 Hpyv.8:%
Rygws = D ("D e| MDYV E + k()| DR E| HDyve),

where HD’}"W () and H]D)gfw (.) are the ¥ -Hilfer fractional operator of order ﬁ <yx) <1
and type § (0 <3 <1),and

_ LH V.5¥ g |PX) @H 85 & |4() >
1(5)—/A(p(x)| Dy Y E| dx+q(x)| Dy & dax (1.2)

In addition, we assume the following:
(a) The functions p(.),g(.) € C(A) verify the following assumptions:
2p(x) q(x)

3 _
, —— < —, foranyxeA.
2-p)  pl) 2 Y

p(x) <2, 1<px) <qlx)<p*=

Equation (1.1) is a generalization of the nonlocal problem

3% (po E [Hog]* | \d%
— =+ = d =0,
F (h+2L/0 x)

ax?
which represents a general case of D’Alembert’s vibration equation Provided by Kirchhoff

0
0x

[12]. Additionally, in [33], a time-related equation was given in the following form:

£ + AP — K(IVEI3) AE = f(x, £). (1.3)

Many authors have worked on problems related to double-phase operators and have
obtained several results, including the following:

In [15], Liu and Dai proved the existence and multiplicity of solutions to the double-
phase problem of the form

—div(|VulP~2Vu + a(x)|Vu|72Vu) = f(x,u), in A,
u=0, ondA,

where A is abounded domain with smooth boundary, N >2,1<p<g, 1% <1+ %, a.:A—
[0; +00) is Lipschitz continuous, and f fulfills certain conditions. For more information,
one can also see the works by Ragusa and Tachikawa [22] and Wulong et al. [34].

In [19], the existence of positive solutions to a class of double-phase Dirichlet equations
that have combined effects of the singular term and the parametric linear term is studied.
The reader can be referred to many other papers that discuss double-phase problems,
including but not limited to [2, 5] and the references therein.

It is worth noting that fractional differential equations have led to the modeling of many
phenomena in many fields of science [11, 26], and applications of the latter have appeared
in engineering, medicine, and mechanics, which increased the researchers’ interest in
these equations, especially in mathematical aspect; see, for example, [15, 36]. In [26], the
authors were able to construct the i -Hilfer fractional operator with several examples. See
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also [30], where the space Hj,’ Y ([0, T],R) is created, allowing the study of many of these
equations involving the v -Hilfer fractional in the appropriate spaces.

In [31], using the Nehari manifolds technique and combining it with fiber maps, the
authors presented an analysis of weak solutions by studying a fractional problem of the

following form:

DI (DG E @D £ (1) = ME@IPE @) + b)IE D)5 ), 14

[P0V E0) = 7 e (T) '
where 117 <a<l,0<B8<1,1<g<p-1<00,beL*®([0,T]),and A > 0. In [31], the result
of bifurcation from infinity to equation (1.4) is also given.

In [23], the authors present the existence and multiplicity of solutions of the Kirchhoff
Y -Hilfer fractional p-Laplacian equation using critical point theory.

Researchers worked on many models of fractional differential equations using varia-
tional problems that include fractional operators, for example, Nyamoradi and Tayyebi
[18], Ghanmi and Zhang [6], Kamache et al. [10], Sousa et al. [27, 30]. For example, in
[10], Kamache et al. discussed a class of perturbed nonlinear fractional p-Laplacian dif-
ferential systems and proved the existence of three weak solutions using the variational
method and Ricceri’s critical points theorems. On the other hand, in [29], the existence
and multiplicity of solutions of the following « (§)-Kirchhoff equation are proven using the

variational method

R, o "D @€ dg )L ¢ = g(x,8), in A =[0,T] x [0,T],
¢=0, ondA,

(1.5)

where

LM 0 w‘p =Ry ()q
g(x,&): A x R — Ris the Caratheodory function, satisfying some conditions, and 2R(¢) is
a continuous function.

In [28], the author discusses the multiplicity nontrivial solution for a new class of frac-
tional differential equations of the Kirchhoff type in the 1 -fractional space SHﬁ 0‘/’ via crit-
ical point result and variational methods.

In [3], Tahar et al. studied the existence and multiplicity of solutions for problem (1.1)
with k (x) = 0,and A(x) = g(x) proving their results using the mountain pass theorem com-
bined with the sub-supersolution method.

Motivated by these works, we study the existence and multiplicity of solutions for class
of fractional fractional Kirchhoff double-phase problem involving a v -Hilfer fractional
operator with variable exponent using the sub-supersolution method and mountain pass
theorem.

Here, we take the Kirchhoff function K and the source term g with the following condi-
tions:

(Ko) Let KC: [0, +00) — [ko, +00) be a continuous function, kp > 0, and nondecreasing;
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(K7) Let 6 € (0,1) such that
. t
K(t) = / K(t)dt > (1 -0)K(#)t forallt> 0;
0
(g¢1) g € C(A x [0,+00),R) and 3! > 0 such that
g )= o(x)(1-®1) forall (x,) € A x [0,1];
(¢2) There is a function y : A — (1, +00), which fulfills
’g(x, t)‘ < a(x)(l + t”(")_l) for all (x,£) € A x [0, +00);

(g3) Thereis u > % such that

t

0< uG(x,t):= u/ glx,t)dr <gx,t)t ae.xe Aandforall0<T <t
0

We now give our results as follows:

Theorem 1.1 Let us consider that (Ko) and (g1)—(g>) are satisfied. Then, for some o, > 0,
the problem (1.1) has at least one solution with condition ||o || < 0.

Theorem 1.2 Let us consider that (Ko)—(K1) and (g1)—(gs) are satisfied. If A* < p~ < (p*)
or (A > % or ), then for some o* > 0, the problem (1.1) accepts two solutions under the
condition ||o ||« < a*.

We arrange our paper in the following manner: In Sect. 2, we give some definitions and
lemmas for the Lebesgue and Musielak-Orlicz Sobolev spaces. In Sect. 3, we present some
results that will be needed in our study of the problem (1.1). Sections 4 and 5 deal with
the main proofs of the Theorems 1.1 and 1.2, respectively.

2 Preliminaries
In this section, the basic concepts and ideas on Lebesgue and Musielak-Orlicz Sobolev
spaces that we will need in arriving at the results will be presented (see [25]).

Let v € C(A), with v > 1, and denote

v :=maxv(x) and v :=minv(x).
A A

The variable exponent Lebesgue space

L"®(A) = {u : A — R measurable : /
A

|u|"® dx < oo},

with the norm

v(x)

. u
el o) = 1nf{r >0 :/
AT

dx < 1},
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is a reflexive and separable Banach space, whose conjugate space is LV®(A), where v/ (x) =
v(x)
v(x)-1°

Lemma 2.1 ([28]) Let (u,v) € L"®(A) x L"@(A), then
/ luv|dz <2||ullywllvllvw (Holder-type inequality).
A
Lemma 2.2 ([28]) Foru € L'™, then

min (]| ]| 1241127 ) < / "™ dx < max ([l 124ll2) sy)-
A
Assume that (a) is achieved, and let A: A x [0, +00) — [0, +00) defined by
Alx, £) = 7% + i (x)219,

the modular associated with A is given by
oalu) = / .A(x, Iul) dx = / (up(x) + K(x)uq(x)) dx, forallu e ®(A),
A A

where ®(A) is a measurable functions space. Let L be the Musielak-Orlicz space defined
by

LA = {u € O(A): palu) < oo},

endowed with the norm

||u||A:inf{r >0:pA<E> < 1}.
T

Lemma 2.3 ([28]) Assuming that (a) is achieved, we confirm that the following is true:
(D) If llulla <1, then IIMIIQ = Pqle) = IIMII‘Q;
(2) If lulla > 1, then |ul’y < pyee) < llul?y.
Define the Musielak-Orlicz Sobolev space H(A) as follows:
HYA(A) = {u e LA : g7V ul e LAA))
equipped by
loella = leella + | D7 ] s
where DSV ull 4 = |IDE2Y ul]).

Let us denote Hy*(A) the closure of C(A) in HYA(A). From [28], LA(A), HYA(A)

and 'H(l)'A(A) are reflexive Banach spaces.



Bouali et al. Boundary Value Problems (2024) 2024:68 Page 6 of 20

Lemma 2.4 ([28]) Let (a) be verified and v € (A x (1, +00)). Then,

0] H(l)’A(A) s LY®W(A) is continuous when v(x) < p*(x) for any x € A;

G H(l)’A(A) — LY®(A) is compact when v(x) < p*(x) for any x € A;

(i) There is ¢ > 0 fulfilling ||u|| 4 < clngLﬁ'wuHAfor all u € H(l)’A(A) (Poincaré-type in-
equality).

3 Auxiliary results
We present some important definitions and concepts to create appropriate sub-
supersolutions to our problem.

Definition 3.1 Let w;,w; € ’H(l)’A(A). We say that

K@) Ry s < K@) REE

if for all nonnegative function ¢ € ’H(l)’A(A),
55 (x)-2 85
() [ (P05 oD o
A
+ K(x)|H]D)g;8;ww1 |Q(x)—2HD(})/;5;¢/wl)'H]D)glﬂﬂﬁ(p dx
8 (x)-2 85
< K (@) / ([FDEY o [P 2H D
A

+1c(%) ‘H]D)g;&‘//wz |q(x)fZHDg;&x/fwz).H]Dglﬂ;w(p dx.

Lemma 3.2 Let (Ky) be satisfied. Then, ¢: ’H(l)’A(A) — (’Hé’A(A))* of the form

<§0(E)rX) _ /C(](é—'))/A(|HD();JLMI§|p(x)_2HDgl&wé§ + K(x)|H]D>gf””$|q(")‘2HID>g;‘W$) -
< EDEV ) dx, £, x € Hy (M)

is strictly monotone and continuous.

Proof ¢ is clearly continuous. We are concerned here with monotonicity completely. Let
w1 Fwy € H(l)’A(A), and let us suppose that J(w;) > J(w,), and K is nondecreasing, imply-
ing that

K({J (@) = K(J(@2))). (3.2)
Further, we have

; ; 1 : 2 ; 2

HDg;&wa)l.HDgf’wa)g < E(‘HDE)/;&WG)J + ‘H]D)gfs’]/’a)ﬂ ) (33)
Thus,

’H]D)gf;x/f w1 ‘p(x) _ ‘H]D)g;’s”l' w1 ‘p(x)—z]ng;&v/ wl.HDgfﬂ// wy (3.4)

> 1 |HD5§;¢ w1 {P(x)—2(|HDg;5;¢w1 |2 _ |HDE)/§;¢ Wy ’2)
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and
|HDV 03 1// | i Dy 105 s// | 2HD§;‘S;‘”w2.HDg;‘S“”w1 (3.5)
2 2 Pl (D - [ o ),

Similarly, we have

[EDL5 o) |q<x> ~ DL oy |q(x)*2HDz)/;3;1// w1 DI o, (3.6)
S A (S I L
and
[FDL5 00|19 — [B DYV 3y |12 R DSV oy, B39 (3.7)
= D | (DG e - [FDG e ),
We put

Ar={xeA: "D o] = DL w,|)
and
AS = {xe A [FDIY o] < |TDE wy ).
By (3.2), (3.4)-(3.7) and (Ko), we get
= K@) [ /A (PO n " = [*DE 1P DL w01 FDE wr) d
;
. fA ) (DL e |1 — |HID>(})';‘S”/’a)1|q(x)2HDgla‘ww1.HDg;wa)2)dx]
1
« K(J(w)) [ /A I(IHD@W on [P — [EID Y g [P 50 o) E 0y

/ K(x)(|HDV 85 ww |q |HDV 85 1// |q(")‘2HDg;‘sz.HDg;‘*‘”w1) dx]
A

= 5K @)| [ D ol (g o - D ) 68)
/K(x)|HDy8w | (|HDV5‘/f | |}D)V8‘/’a)2|2)dx]
Ay
1 .
- 3K0@)| [ PO onf (D wnf - D ) d
1

/ (%) ’HDyﬁww2|q( (‘H]D)Véw ’2 _ ]HDg;‘szV) dx]
A

% (](wz))[/ (|HD)/8¢¢U1|P( | [D)VM/ 2ip(x)—Z)

Page 7 of 20
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x (|"D22Y | = [EDESY 0y [?) dx
| k@ (DY oy |17 - | EDEY 0,102
A
(D5 - D e |
%[/ (FD5 an 72 — DG [P 2) (FD Y o[~ [PD ) i
o [ AT -

x (BB w2 = (DY an 2) dx]

> 0.

So, we have

B:.= /C(](a)l )[/ (|HDV 85 Ww |P |]I-H]D)/ 55 1// ’ x)ﬂHD())/;S;l//wl'HDg;S;l/wa) dx

v

=

v

/A K (x) (‘H]D)y 2 e |q ’H]D)y Y ‘q(x)szDg;M’ wl.H]D)g;&w a)z) dx] (3.9)
« IC(](a)g )|:/ (}HDV 03 xlfw |10 ‘HDV 03 llfw |P(x)*2]I-HDg;5;x//wz‘HDgfﬂ/fwl) dx
/A i (x) (‘HDV 03 llfw |q ’HDV R ‘q(x)izﬂDgl&wwz.HDgl&w0)1) dx]
1
R T e (e e
o L e e (e A e yz)dx]
1
NS )[/ [FDEY an P2 (FDL e [~ [FDE ) i

/ K (%) |1H1Dy5ww ’q( (‘HDJM?W ’ ’H—HDyﬁww fz)dx}
AC

%K(](wg))[/ (‘H]D)wa ’p( }HD)/(SI/fw ‘p(x)—Z)

X (| ysx/f | |HDy8ww |2)dx
+/ K(x |H]D)781/f | x)—2_ |HDgl5;ww2|q(x)_2)

X (}HDyw | |HDV81/;w |2) dx}

%[/ |H}D)V51/f p(x)-2 |H]D)V61// |p(x)— )(|H—HDV81// ’ ’H]D)M‘/’ }2) dx

+/ K(x |H]D)V8w | x)—2_|HDg;5;1/fw2|q(x)—2)
A§

Page 8 of 20
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« ([EDL o[ = [EDY ) dx:|

> 0.
Then, we get

(p(@1) = p(@2), 01 - @)
= (p(w1), @1) - (p(@1), @)

+(@(@2), w2) = (p(@2), 1)
- k(o1 )[ / ([EDEY oy [P — (DY ey [P o BDYY ) e (310)
/ ) ([EDL 0y 1) _ (B o [10-2E D o B ) dx]
+ K(J(2))
[/ (D5 wal™ = "D > DG 0, P ) dix
/Al ) [FIDLY 00y ) _ (DY 0y |12 DY ) BV ) dx:|
=A+B>0.
Hence, (¢(1) — @(s), @1 — @3) > 0. On the other hand, using (3.8)~(3.10), we have
0 = (p(w1) — p(ws), w1 — w2)
. %[/ ([EDL e [P972 _ (BB 5y [P9-2) (EDYY i = [EDL g ) i
o [ D g 9
< (g o - D an) ]
> 0. (3.11)
i

Taking this into consideration x(x) > 0 in A yields |H]D)g;5;ww1| = wy| in a.e. A.

Hence
K (@) = K (/@)

and from (3.10)—(3.11), we get
0 = (p(@1) = (@), @1 — )

[ [ o D o) (D - PR ),

which leads to a contradiction w; = w; in Hé’A(A). This ensures that ¢ is strictly mono-

tonic. O

Page 9 of 20
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Lemma 3.3 Let (Ky) be satisfied, and wy, w; € ’Hé’A (A) verify
K@) Ry @1 < K@) Ry )2 (3.12)
and w1 < wy on A, i.e., (0] —wy)t € ”H(l,’A(A). Then, w; < wy a.e.,in A.

Proof We choose the test function x = (w; — w;)* in (3.12), then, by (3.1), the following is
obtained
(@(@1) = p(@2)), (@1 — w2)")

= K(J(w1)) / (|HDg§;w o }p(x)_zﬂDg;wwl

AN[w)>@2]
+ K(x)|HDg;Wa)1 |‘1(x)—2HD())/;8;x/fwl)
x "D (1 - @) dx
- K(J(w2)) [ (‘HDS;&W&)Z|p(x)—2HDz),;5;ww2
AN[w1>@2]
+ K(x)|HDg;s;ww2 |q(x)—2HD(})/;8;(/;w2)
x “DEY (1 - @) dx

<o0.
By monotonicity of ¢, we get

(p(@1) = @(@2)), (@1 — 2)*) = (p(w1) — (@2)), (w1 — w2)+)m[w1>w2] >0.

Hence, (¢p(w1) —¢(w3)), (w1 —w2)*) = 0. Through Lemma 3.2, we conclude that (w1 —w3)* =
0, and thus we complete the proof. O

Lemma 3.4 Assuming that (Ky) is satisfied, and o € L*°(A), the problem

Ky ))R;((.‘;'q(‘)f;‘ =o(x) inA

(3.13)
£=0 ondA
accepts a unique solution in Hé’A(A).
Proof According to (Kp) and Lemma 2.2 for all ||& ||,H1,A(A) > 1, we have
0
, k H]Dy:?ﬂ!f
(p®)8) . kopa("Dy " £1) (3.14)

n—+00 ”EH'H(I)"A(A) T om0 ”EH'H(I)’A(A)

> kollEIIP 4, -
HyA ()

Therefore,

(p(€),8)

m —22" = 400,
n—+00 ”g”'}-[(l)"A(A)
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that is, ¢ is coercive; thus, ¢ is a surjection. By applying the theorem of Minty-Browder
[37], the equation ¢ (£) = o is uniquely solvable in 7—[(1)'“4 (A). O

In the following lemma, /y indicates the best constant of ’Hé’A(A). < L*(A) by ly. Then,
1€ l2a) < bl gy, for all € € Hg(A).

Lemma 3.5 We suppose that (Ky) is satisfied. Let ¢ > 0 and &, be the unique solution of
the following

KUENR) 0 =€ in A
0=0 on dA.

(3.15)

Put § = ko~ . Then, when o > 68, §, € L°(A) with
2Co|A|2

VI U
€ llee < (1307 )07 T,
and when ¢ < 6,
1
&olloo < lio?™ T,

in which I3, I3, and I, > 0 are dependent on A, ko and p.

Proof Let ¢ > 0 be fixed, and put A; = {x € A : &,(x) > ¢} and &, > 0 using comparison
principle. Testing equation (3.15) with (§, — ¢)* and from the Young inequality

‘/A(|HD2)/+,-5;WEQ |[7(x) + K(x)|HD(})/+’-&wSQ |q(x)) dx

o
== —o)d .
Ko@) Jo, F 70 (3.16)
0lA;|2 .
= ’C(](Eg)) H(fg - {) HLZ(A)

1
Ar|2] .
§Q| k§| 0/ |HDgl8’¢§Q‘dZ
0 Ag
1
A2 .
SQ| ¢l 0/ |HDg;5’W§Q|p(x)dZ
ko A

1 5; /

A2 p) H? 3V & 1p(z) ')

§Q| ¢ |2 o</ el Ty &, dx+/ 8/ dx>. (3.17)
ko Ag px) A, P'(X)

For ¢ > §, taking

L

1
) )
20|A12 e
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one has € < 1. Thus,

1 .
olAc|2y / P @ HDY 3V g 1P ”
ko Ag p(x)
A 21 . "
< Q| /;(|p_o€ / | Dyf"#égv()dx, (3.19)
0

= p7
< DN [ (g 9 g5 1)
1

:2//\(|H]D)Vwég|p dx+/<(x)|HDM¢EQ|q(x))dx
¢

From (3.16) and (3.19), we get

/ (|HDV31//%.Q|P(?C) |HDy5w§Q’q(x))dx
2Q|A;|Zlo/ o 20l 3
eV gy =20 AL (3.20)
ko@*)  Ja, Koty

Similarly, with &, as test function in (3.15), we also obtain

* * 20Ce™ ) s
/(\HD”%@]"” ®)[D2 Y £, | ") dx < Qko(z;)/ IAl3. (3.21)

From (3.17), (3.21), and with K being monotonic, we find
. /C(/ ) x x
/ (€, —¢)"dx = NURSe)) / |HDV51//%.Q|P() |HD1/61//§Q‘¢1( ))dx
Ag

20lpe~ @ g)Zloe_ ®” 3
<K{———IA2 IA |
(kop‘(lﬂ*)/ ko(pr) F

Through Lemma 5.1 in [13], the following is achieved

20lpe~ @) §) 6lpe @)
o <K A2 Alz. 3.22
Il ( kop’(p*)/| | koY [Al (3.22)

It follows from (3.18) and (3.22) that

VA
IWolloo < LK (5507 Yo T,

where

3(26) @)
(PHky “(p)F T
and

@)Y
- (p+)/kgf)’(p,)(p—)/

-y
|A|1+<p2 .
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When o < §, taking
1 1
() ~()"
g=|—"7— =(-) ,
20|A |21 0
we have € < 1. By the same approach, we get

1
l5olloc < Lo?™ ",

where

3(200)%" vy

l*_ |A|

(281, )@*)/ Lo
R Ty M)
@*)ky “ ()Pt

IC(—+ d
kg ()
4 Proof of Theorem 1.1

We say that (£, &) are sub-supersolution of problem (1.1) if §,§ €L>(A), & < £ae,in A
and

K@) [,(FDp™ g o2 D
+ i () [T £ 9002 [ EDF Y g |409) HDEV ) gy (4.1)
< [, o@E D Indx + [, g(x,E)ndx
KUE) [,(FDg E o2 HDg Ve
+ () [TV E 4602, D PV E146) By Y (4.2)
> [ oWE " ndx+ [, glnEnda,

for all arbitrary nonnegative function n € ’H(l)’A(A).

Lemma 4.1 Let (Ky) and (g1)—(g>) be fulfilled. Then, there is o, > 0 such that (1.1) has sub-
supersolution (§, &) e (’H(l,’A(A) NL®(A) x (’Hé’A(A) N L>®(A)) with €]l <, provided
that ||o || < &, where [ is defined in (g1).

Proof Using the Lemmas 3.2, 3.3, and 3.4, there exists a unique solution (0,0) < (§, &) e
(Hy(A) N L™(A)) of the following problems

’CU(@)R;((:;JI(.) =o(x) inA

(4.3)
g =0 on oA
and
KUENRy) , =1+0() inA @
£=0 on dA
such that

-y 1 1
1€l < max((K(C3 I 1) lo 17, Lllor 1777,
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where /7, I3, and [, are given in Lemma 3.5. Next, consider that X is nondecreasing and
there exits o > 0 relying only on /7, /3, and /, such that ||§ || </, provided that [0 [l < .
Moreover, by Lemma 3.2, § < §

Let &€ in 7—[(1,’“4([\). By (4.1) and (g1), we get

K0©) [ (e i
A
+1(x) ‘HDg;‘S”/’gq(x)’z, ’HDglé;wg‘Q(x))‘HDg;&w ndx
— / o ()62 i + / g, £y dax
A - A -

5/;\a(x)r]dx—/;\a(x)g’\(x)_lndx—/o(x)(l—gx(")_l)ndxzo.

A

From (4.2) and (g,), we have
IC(](?))/ (|H]D)g),r5;lﬂ§|P(x)—2.HDg;8;¢g
A
+ /c(x)\ngﬁ‘”ﬂ"(@’z.yHDgf””E\q("’).HDg;““”ndx
—a(x)-1 _
- [ oW nds- [ s B
A A

z/(l—Aoononoo)ndx,
A
where
Aoo = max(|E[15 71 11127 + max (I1E1% 7 181 7).

Thus, choosing «, = min(«, t) yields

f(l—Aoonynoo)ndxzo for |10 1o < .
A

Hence, we get the expected result.
We now highlight the proof of Theorem 1.1:
Let§, Ee H(l)’A(A). N L>®(A). According to the previous lemma, we can write

o (RE) T + g, E() ift>E(x)
h(x,t) = { o ()P + g(x, 1) ifE(x) <t <&
o (®)E@) M +g(x,E(x)) if £ <& ().

We define the problem

KU©)YRED ) = hx€) i A
§=0 on dA

(4.5)
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and the energy functional attached to it 7 : H(l)'A(A) — R given by
7(6) - R(©) - [ Hem ),
A

where H(x, t) = fot h(x,7)dz. Then, T € C, it is clear that the critical points for Z are solu-
tions to (4.5). According to (Kp), Z is coercive and sequentially weakly lower semicontin-
uous. Hence, 7 attains its minimum in the weakly closed subset [£, 1N H(l)’A(A) at some
&, which represents a critical point in Z. The proof of Theorem 1.1 is complete. 0

5 Proof of Theorem 1.2
Let the function f be defined as

Fw) o (x)* @1 4 g(x, £) if £ > &(x),
X, = -
o (R)EX)O 1+ g(x E(x) ift <E(x).

Also, one can look at the problem

(5.1)

KUEIRE ) =f(€) inA
£=0 ondA.

To find solutions for (4.5), we follow the approach of identifying critical points of the
C'-functional J : Hy(A) — R, defined as:

76 =R0e) - /A Flx,£)dx,

where F(x, t) = fotf(x,r)dr.

Lemma 5.1 Assuming that the conditions of Theorem 1.2 are satisfied, the functional J
satisfies the Palais-Smale condition.

Proof Assume that {§,} C ’Hé’A(A) is a sequence such that
JE)—ceR and J(,)—0 in(HyA(A))" (5.2)

Here, we prove that {&,} is bounded in H(l)’A(A).
Casel: A~ > %. Let o € (%, min(u, 27)). By (Kp) — (K1), (¢3), and Lemmas 2.3 and 2.4,
for sufficiently large 1, we obtain

Lt 6l = T6) - (T 6.6
> (1-0)K ()6

——IC(]( )/(|HID>V“‘”gny”")dx+K )DL £, | dix

+ / (—f(x, £)E, —F(x,sn)) dx
A \ Mo
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> ko 20 ) (16, - )

p+
" / (—g(x, 6,6, - Hix, sn)) dx
(e2£] \ Ko

1 1 A
7 Vdx - C1[1€,] 0.4, — C
+ -/[;n>§](“'0 q(x)>o.(x)g X — 1”5 ”H(I)A(A) 2

1-6 1 -
> ko( o %)(nsnnﬂé,%) ~1) = Cillénllyga )~ Cov

where Cj, C; > 0. Thus, the sequence {§,} is bounded in Hé’A(A) asp” > 1.
Case 2: p > 1*~. Using (Ky)—(K3), (g3), and Lemmas 2.3 and 2.4, we get

l+c+ IIS,,IIH1A J (&) - —< "), §n>

1-6
(N )nsnnw -1)

8g(x,&,)6, — H( ,f;‘n)>d
+/[n>$]< x,E0)E X x

+_/[En>§](;—m>a(x)g  dx - Cslléullyga ) = Co

1-6 1 -
Zko< - ;)(nsnn%,A(A)—U

-C At + AT
5181514 * 18815 14)

- C3”‘§””H(1)'A(A) - C4y

where Cs, Cy, and Cs > 0. Thus, {£,} is bounded in ’Hé’A(A) and is proved because p~ > A*.

Further, we have

L& inHyH(A)
£, —> & aeinA

£, — & inL"@(A)with1<w™ <w'<(p*)".
Thus,

On(l) = (j/(gn)’gn - g)

= K(&) / (D27 £, 772 4 1) [FD2 Y £, | "2 EDY (g, - £)) dx

- /A FlnEn)(En— &) d.

From the Holder inequality (g3), (5.3), we get

/I;f(x: gn)(%-n - ‘i:) - 0

Page 16 of 20
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so that

K1) /A (D5 " 4 k@)D &, " FDEY (8, - £)) dx — 0.
From the hypothesis (Ko), we get

/A (g &P + k@) DG &, "7 FDY (6, - £)) dx — .

Thus, &, — & in Hé’A(A). From the (S,) property, we finish the proof.
Combining with Lemma 2.3, we have v, — v in H(l)’A(A). a

Lemma 5.2 Assuming that the conditions of Theorem 1.2 are satisfied, for |0 |l suffi-
ciently small, we have
(i)d¢ >0and v > ||§||H5,A(A) such that

JE)<0<gc < inf J(&);
> £€0By (0)

(i) 3e € HEA(A) such that lell ;.45 > 20 and J(e) < .
0

Proof (i) We choose 7 = £ in the first inequality of (4.1). By applying the nondecreasing
property to C, we have

TE) = K(©) - / Flx, ) dx
A
< K(@©)IE) - / o (R)EM) dlx - / o £)E d
A A
<IU@) [ (FDEPYEPY )DL E ™) v
A
—/ a(x)g)‘(z)dx—/g(x,g)gdx
A A
<0.

Therefore, J(§) < 0. Further, assume that & € Hé’A(A) with ||& ||,H(1),.A(A) > 1. By (Ko), (g2),
(3.12) Lemmas 2.3 and 2.4, we infer

JE) >

k
_0 - C7;
q+

s At r*
(N5 = 1) = Collo o (1€ g ca) + 1 1.0 ) + V100, )

where Cg, C; > 0. Observe that one can choose ¢ >0 and ¢ > ||& ||,H1,A(A) such that
- 0

-
19100 1)~ Cr = 2.

Then, letting [0 [l < m, this implies that 7 (£) > ¢ for ||“§||H(1),A(A) =,

(ii) By (K7), there is Cg > 0 such that

K(t) < Gt forallt>1. (5.4)
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From (5.2) and (g3), for all £ > 1, we have

J(t€) = IC(](tg))—f F(x, t€) dx

A

§C7t%(/'(‘f§))ﬁ —t’v/‘ a(x)é"\(x)dx—Cgt“/ ' dz + Co.
S R W2

Then, for some ¢y > 1 large enough, j(tog) <0and ||t0§”H(1),A(A) > 2%, due to % < . Thus,
we take e = £o§, the proof is complete.

We currently prove Theorem 1.2.

Let & € [§, £]1N Hé’A(A) be the previous solution of (1.1) obtained from Theorem 1.1,
which satisfies

T(&) = inf 7(6),

with & € A := [§, £1N 7—[(1)'“4 (A). Using mountain pass theorem [20] and Lemmas 5.1 and
5.2, we determine the value

d* := inf max j({(t)),
¢€Btel0,1]
with

E:={¢ € C([0,1], Hy™(1));£(0) = §,¢(1) = e}

being a critical value of 7. Then, there exist &; € H(l)'A(A) fulfilling 7'(£1) =0and J'(&1) =
d*. Taking into consideration that Z(¢) = J (¢) for all £ € [0,£] N H(l)’A(A), it follows that
J(60) < J(&). Now, we prove that £ > & a.e.in A. Utilizing (§ - £1)* as a test function in
J'(&1) = 0 and from the first inequality of (4.1), we have

K (/1) / (D2 & [P 4 1c(o) D &) FDE 6 — 1) e
- [ sz -6 ax
- /A o (E@HI 4 g, O)E — &) dx
= K(/(¢) x / (FRE £ 4 e )] “D €| 77) FDP (6 - )" d
so that

(@) - p(&1), ( -&)") <0.

So, because ¢ is strictly monotone, then (§ —§;)* =0 a.e. in A. This leads to §; > & a.e. in
A. Therefore, &) and & are nonnegative solutions to the problem with

J(E) < TJE) <0<c <d* =T(&).

We finished the proof of Theorem 1.2. d
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6 Conclusion

In this work, we have analyzed the existence of solutions to a double-phase fractional
equation of the Kirchhoff type in Musielak-Orlicz Sobolev space with variable exponents.
Our approach is mainly based on the sub-supersolution method and the mountain pass
theorem. In future work, we will follow the current study with general source terms.
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