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Abstract
This paper focuses on exploring the existence of solutions for a specific class of FDEs
by leveraging fixed point theorem. The equation in question features the Caputo
fractional derivative of order 3 < û≤ 4 and includes a term �(β ,Z (β)) alongside
boundary conditions. Through the application of a fixed point theorem in appropriate
function spaces, we consider nonlocal conditions along with necessary assumptions
under which solutions to the given FDE exist. Furthermore, we offer an example to
illustrate the results.
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1 Introduction
The focus of this research delves into the existence of solutions of the following problems:

⎧
⎨

⎩

cDûZ (β) = �(β ,Z (β)), 3 < û ≤ 4, 0 ≤ ĉ < σ ,β ∈ [0,σ ],

Z (i)(ĉ) = –Z (i)(σ ), i = 0, 1, 2, 3,
(1.1)

where cDû represents the Caputo fractional derivative with a specific order denoted by the
symbol û, and � : [0,σ ] ×R −→R.

In the last few decades, noninteger-order calculus became very interesting to mathe-
maticians and modelers. Fractional differential equations play a major role in applied sci-
ences. The fractional derivatives provide an excellent description of the ecological models,
anomalous diffusion, turbulent flow in a porous medium, synchronization of chaotic sys-
tems, and disease models; see [1–6].

The investigation of differential equations involving fractional calculus has attracted
considerable attention and importance in the realm of mathematics research due to their
capability to describe nonlinear and nonlocal phenomena in diverse scientific disciplines.
These equations incorporate fractional derivatives and generalizations of integer-order
derivatives employed in classical calculus. Nevertheless, solving fractional differential
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equations explicitly can be a difficult task, mainly when the order of the equation lies be-
tween 3 and 4.

Fractional differential equations (FDEs) have emerged as a subject of considerable in-
terest from researchers due to their ability to capture hereditary effects and long-term
memory. The use of fractional calculus has proven to be a potent tool in modeling dy-
namic phenomena that exhibit such characteristics. This makes fractional calculus a suit-
able methodology for analyzing anomalous transport in complex heterogeneous aquifers
and for exploring various applications in disciplines like biology, chemistry, physics, and
economics. It is crucial to solve FDEs with antiperiodic boundary conditions, which are
observed in many situations, including local or midpoint conditions, as demonstrated by
several studies in the literature [7–12].

In fractional calculus, several researchers have explored the existence of solutions for
antiperiodic boundary value problems in many methods theoretically and numerically.
Ahmad and Nieto [13] used Leray–Schauder degree theory to investigate the existence
results for

⎧
⎨

⎩

cDûZ (β) = �(β ,Z (β)), 1 < û ≤ 2,β ∈ [0,σ ],

Z (i)(0) = –Z (i)(σ ), i = 0, 1,

where cDû represents the Caputo fractional derivative of order û, and � : [0,σ ]×R−→ R.
Agarwal and Bashir [14] expanded the analysis to include fractional differential equa-

tions and inclusions. They utilized the nonlinear alternative degree and Leray–Schauder
theory to obtain their results. The research contributes to the theoretical understanding
of antiperiodic boundary conditions and provides insights into the behavior of solutions
under such conditions.

Ahmed [15] explored the existence of solutions to FDEs of order û ∈ (2, 3] for
⎧
⎨

⎩

cDûZ (β) = �(β ,Z (β)), 2 < û ≤ 3,β ∈ [0,σ ],

Z (i)(0) = –Z (i)(σ ), i = 0, 1, 3,

where cDû represents the Caputo fractional derivative of order û, and � : [0,σ ]×U −→ U
for a Banach space (U ,‖ · ‖). The paper contributes to understanding fractional calculus
and its application to boundary value problems, where the existence results were obtained
via the contraction mapping principle and Krasnoselskii’s fixed point theorem.

Furthermore, in [16], scholars acquired the existence of solutions to
⎧
⎨

⎩

cDûZ (β) = �(β ,Z (β)), 1 < û ≤ 2, 0 ≤ ĉ < σ ,β ∈ [0,σ ],

Z (i)(ĉ) = –Z (i)(σ ), i = 0, 1,

where cDû represents the Caputo fractional derivative of order û, and � : [0,σ ]×R−→ R.
This research expands the understanding of fractional differential equations with non-
standard boundary conditions and provides insights into the behavior of solutions under
parametric antiperiodic constraints.

We structured this paper as follows. The following section provides a background infor-
mation, including definitions and theorems. Section 3 presents the results. Finally, Sect. 4
concludes the paper.
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2 Preliminaries
Definition 1 For Z (β) ∈ Cn([0,∞],R), the Caputo fractional derivative of order û > 0,
denoted by cDû, is defined by

cDûZ (β) =
1

�(n – û)

∫ β

0
(β – δ)n–û–1Z (n)(δ) dδ,

where n = [û] + 1.

Definition 2 For any order û > 0, the Riemann–Liouville fractional integral of a function
Z (β), denoted Iû, is defined by

IûZ (β) =
1

�(û)

∫ β

0
(β – δ)û–1Z (δ) dδ.

Lemma 2.1 [17, 18]
For û > 0, the general solution of cDûZ (β) = 0 is given by

Z (β) = η1 + η2β + η2β
2 + · · · + ηnβ

n–1, (2.1)

where ηκ ∈R, τ = 1, 2, . . . , n.

Lemma 2.2 The unique solution of

⎧
⎨

⎩

cDûZ (β) = Z(β), β ∈ [0,σ ], 3 < û ≤ 4, 0 ≤ ĉ < σ ,

Z (i)(ĉ) = –Z (i)(σ ), i = 0, 1, 2, 3,
(2.2)

where Z ∈ C[0,σ ], is given by

Z (β) =
∫ β

0

(β – δ)û–1

�(û)
Z(δ) dδ –

1
2

[∫ ĉ

0

(ĉ – δ)û–1

�(û)
Z(δ) dδ +

∫ σ

0

(σ – δ)û–1

�(û)
Z(δ) dδ

]

+
(ĉ + σ ) – 2β

4

[∫ ĉ

0

(ĉ – δ)û–2

�(û – 1)
Z(δ) dδ +

∫ σ

0

(σ – δ)û–2

�(û – 1)
Z(δ) dδ

]

+
β((ĉ + σ ) – β) – ĉσ

4

[∫ ĉ

0

(ĉ – δ)û–3

�(û – 2)
Z(δ) dδ +

∫ σ

0

(σ – δ)û–3

�(û – 2)
Z(δ) dδ

]

+
6β2(ĉ + σ ) – 4β3 – 12β ĉσ – (ĉ + σ )[σ 2 – 4ĉσ + ĉ3]

48

[∫ ĉ

0

(ĉ – δ)û–4

�(û – 3)
Z(δ) dδ

+
∫ σ

0

(σ – δ)û–4

�(û – 3)
Z(δ) dδ

]

. (2.3)

Proof By utilizing equation (2.1) for the constants ηκ ∈R, κ = 1, 2, 3, 4, we have

Z (β) = Iû
Z(β) – η1 – η2β – η3β

2 – η4β
3

=
∫ β

0

(β – δ)û–1

�(û)
Z(δ) dδ – η1 – η2β – η3β

2 – η4β
3, (2.4)
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where

η1 =
1
2

[∫ ĉ

0

(ĉ – δ)û–1

�(û)
Z(δ) dδ +

∫ σ

0

(σ – δ)û–1

�(û)
Z(δ) dδ

]

–
(ĉ + σ )

4

[∫ ĉ

0

(ĉ – δ)û–2

�(û – 1)
Z(δ) dδ +

∫ σ

0

(σ – δ)û–2

�(û – 1)
Z(δ) dδ

]

+
(ĉσ )

4

[∫ ĉ

0

(ĉ – δ)û–3

�(û – 3)
Z(δ) dδ +

∫ σ

0

(σ – δ)û–3

�(û – 2)
Z(δ) dδ

]

+
(ĉ + σ )[σ 2 – 4ĉσ + ĉ2]

48

[∫ ĉ

0

(ĉ – δ)û–4

�(û – 3)
Z(δ) dδ +

∫ σ

0

(σ – δ)û–4

�(û – 3)
Z(δ) dδ

]

,

η2 =
1
2

[∫ ĉ

0

(ĉ – δ)û–2

�(û – 1)
Z(δ) dδ +

∫ σ

0

(σ – δ)û–2

�(û – 1)
Z(δ) dδ

]

–
(ĉ + σ )

4

[∫ ĉ

0

(ĉ – δ)û–3

�(û – 2)
Z(δ) dδ +

∫ σ

0

(σ – δ)û–3

�(û – 2)
Z(δ) dδ

]

+
(ĉσ )

4

[∫ ĉ

0

(ĉ – δ)û–4

�(û – 3)
Z(δ) dδ +

∫ σ

0

(σ – δ)û–4

�(û – 3)
Z(δ) dδ

]

,

η3 =
1
4

[∫ ĉ

0

(ĉ – δ)û–3

�(û – 2)
Z(δ) dδ +

∫ σ

0

(σ – δ)û–3

�(û – 2)
Z(δ) dδ

]

–
(ĉ + σ )

8

[∫ ĉ

0

(ĉ – δ)û–4

�(û – 3)
Z(δ) dδ +

∫ σ

0

(σ – δ)û–4

�(û – 3)
Z(δ) dδ

]

,

η4 =
1

12

[∫ ĉ

0

(ĉ – δ)û–4

�(û – 3)
Z(δ) dδ +

∫ σ

0

(σ – δ)û–4

�(û – 3)
Z(δ) dδ

]

.

Substituting the values of η1,η2, η3, and η4 into equation (2.4) leads to the solution to
equation (2.3). �

Remark 2.1 It is worth noting that the expressions in (2.3) pertain to the nonlocal FDE,
which is characterized by an order û ∈ (1, 2] as per the findings of [16]. Similarly, the first
four terms correspond to the nonlocal FDE with order û ∈ (2, 3]. Upon raising the order
to û ∈ (3, 4], the solution to the problem will incorporate an additional term, as indicated
in Lemma 2.2.

Remark 2.2 The solution of the classical problem

⎧
⎨

⎩

cDûZ (β) = Z(β), β ∈ [0,σ ], 3 < û ≤ 4,

Z (i)(0) = –Z (i)(σ ), i = 0, 1, 2, 3,

is

Z (β) =
∫ β

0

(β – δ)û–1

�(û)
Z(δ) dδ –

1
2

∫ σ

0

(σ – δ)û–1

�(û)
Z(δ) dδ

+
(σ – 2β)

4

∫ σ

0

(σ – δ)û–2

�(û – 1)
Z(δ) dδ +

(σβ – β2)
4

∫ σ

0

(σ – δ)û–3

�(û – 2)
Z(δ) dδ

+
6β2σ – 4β3 – σ 3

48

[∫ σ

0

(σ – δ)û–4

�(û – 3)
Z(δ) dδ

]

. (2.5)
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Upon careful examination of equations (2.3) and (2.5), it becomes apparent that four
supplementary terms have been introduced in comparison to [14]. Furthermore, the first
two components in (2.5) correspond to the problem characterized by an order of û ∈ (1, 2],
as observed in [13]. Similarly, the first three terms in (2.5) dovetail to the problem of order
û ∈ (2, 3], as reported in [15].

Theorem 2.1 Let B be a Banach space. Let P ∈ B be an open bounded subset with 0 ∈
P , and let K : P −→ B be a completely continuous operator such that ‖Kω‖ ≤ ‖ω‖ for
every ω ∈ ∂P . Then K has a fixed point in ∂P .

Theorem 2.2 [19, 20] Let B be a Banach space, and let ω ∈ B be a nonempty closed
convex subset. Let K1 and K2 be e operators such that K1β1 + K2β2 ∈ ω for β1,β2 ∈ ω.
Suppose that K1 is continuous and compact and K2 is a contraction mapping. Then there
exists δ ∈ ω such that δ = K1δ + K2δ.

3 Results
Let W = C([0,σ ],R) with ‖Z ‖ = supβ∈[0,σ ] |Z (β)|. Define K : W −→ W by

(KZ )(β)

=
∫ β

0

(β – δ)û–1

�(û)
�

(
δ,Z (δ)

)
dδ

–
1
2

[∫ ĉ

0

(ĉ – δ)û–1

�(û)
�

(
δ,Z (δ)

)
dδ +

∫ σ

0

(σ – δ)û–1

�(û)
�

(
δ,Z (δ)

)
dδ

]

+
ĉ + σ – 2β

4

[∫ ĉ

0

(ĉ – β)û–2

�(û – 1)
�

(
δ,Z (δ)

)
dδ +

∫ σ

0

(σ – δ)û–2

�(û – 1)
�

(
δ,Z (δ)

)
dδ

]

+
β[(ĉ + σ ) – β] – ĉσ

4

[∫ ĉ

0

(ĉ – δ)û–3

�(û – 2)
�

(
δ,Z (δ)

)
dδ

+
∫ σ

0

(σ – δ)û–3

�(û – 2)
�

(
δ,Z (δ)

)
dδ

]

+
6β2(ĉ + σ ) – 4β3 – 12β ĉσ – (ĉ + σ )[σ 2 – 4ĉσ + ĉ2]

48

×
[∫ ĉ

0

(ĉ – δ)û–4

�(û – 3)
�

(
δ,Z (δ)

)
dδ

+
∫ σ

0

(σ – δ)û–4

�(û – 3)
�

(
δ,Z (δ)

)
dδ

]

. (3.1)

Theorem 3.1 Let � : [0,σ ] × R −→ R be a continuous function satisfying ‖�(β ,Z1) –
�(β ,Z2)‖ ≤ L‖Z1 – Z2‖ for all β ∈ [0,σ ] and Z1,Z2 ∈R, with LM < 1, where

M = max
β∈[0,σ ]

{
3σ û + ĉû

�(û + 1)
+

|(σ + ĉ) – 2β|(σ û–1 + ĉû–1)
2�(û)

+
|β[(ĉ + σ ) – β] – ĉσ |(σ û–2 + ĉû–2)

2�(û – 1)

+
|6β2(ĉ + σ ) – 4β3 – 12β ĉσ – (ĉ + σ )[σ 2 – 4βσ + ĉ2]|(σ û–3 + ĉû–3)

24�(û – 2)

}

.

Then problem (1.1) has a unique solution.
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Proof Define K : W −→ W as in (3.1). For a fixed point, setting maxβ∈[0,σ ] ‖�(β , 0)‖ = μ <
∞ and taking r ≥ μM, we will show that KBr ⊂ Br := {Z ∈ W : ‖Z ‖ ≤ r}. For β ∈ Br , we
have

∥
∥(KZ )(β)

∥
∥

≤
∫ β

0

(β – δ)û–1

�(û)
[∥
∥�

(
δ,Z (δ)

)
– �(δ, 0)

∥
∥ +

∥
∥�(δ, 0)

∥
∥
]

dδ

+
1
2

[
∫ ĉ

0

(ĉ – δ)û–1

�(û)
[∥
∥�

(
δ,Z (δ)

)
– �(δ, 0)

∥
∥ +

∥
∥�(δ, 0)

∥
∥
]

dδ

+
∫ σ

0

(σ – δ)û–1

�(û)
[∥
∥�

(
δ,Z (δ)

)
– �(δ, 0)

∥
∥ +

∥
∥�(δ, 0)

∥
∥
]

dδ

+
|(ĉ + σ ) – 2β|

4

[∫ ĉ

0

(ĉ – δ)û–2

�(û – 1)
[∥
∥�

(
δ,Z (δ)

)
– �(δ, 0)

∥
∥ +

∥
∥�(δ, 0)

∥
∥
]

dδ

+
∫ σ

0

(σ – δû–2

�(û – 1)
[∥
∥�

(
δ,Z (δ)

)
– �(δ, 0)

∥
∥ +

∥
∥�(δ, 0)

∥
∥
]

dδ

]

+
|β[(ĉ + σ ) – β] – ĉσ |

4

[∫ ĉ

0

(ĉ – δ)û–3

�(û – 2)
[∥
∥�

(
δ,Z (δ)

)
– �(δ, 0)

∥
∥ +

∥
∥�(δ, 0)

∥
∥
]

dδ

+
∫ σ

0

(σ – δ)û–3

�(û – 2)
[∥
∥�

(
δ,Z (δ)

)
– �(δ, 0)

∥
∥ +

∥
∥�(δ, 0)

∥
∥
]

dδ

]

+
|6β2(ĉ + σ ) – 4β3 – 12β ĉσ – (ĉ + σ )[σ 2 – 4ĉσ + ĉ2]|

48

×
[∫ ĉ

0

(ĉ – δ)û–4

�(û – 3)
[∥
∥�

(
δ,Z (δ)

)
– �(δ, 0)

∥
∥ +

∥
∥�(δ, 0)

∥
∥
]

dδ

+
∫ σ

0

(σ – δ)û–4

�(û – 3)
[∥
∥�

(
δ,Z (δ)

)
– �(δ, 0)

∥
∥ +

∥
∥�(δ, 0)

∥
∥
]

dδ

]

≤ (Lr + μ)[
∫ β

0

(β – δ)û–1

�(û)
dδ +

1
2

[∫ ĉ

0

(ĉ – δ)û–1

�(û)
dδ +

∫ σ

0

(σ – δ)û–1

�(û)
dδ

]

+
|(ĉ + σ ) – 2β|

4

[∫ ĉ

0

(ĉ – δ)û–2

�(û – 1)
dδ +

∫ σ

0

(σ – δ)û–2

�(û – 1)
dδ

]

+
|β[(ĉ + σ ) – β] – ĉσ |

4

[∫ ĉ

0

(ĉ – δ)û–3

�(û – 2)
dδ +

∫ σ

0

(σ – δ)û–3

�(û – 2)
dδ

]

+
|6β2(ĉ + σ ) – 4β3 – 12β ĉσ – (ĉ + σ )[σ 2 – 4βσ + ĉ2]|

48

[∫ ĉ

0

(ĉ – δ)û–4

�(û – 3)
dδ

+
∫ σ

0

(σ – δ)û–4

δ(û – 3)
dδ

]

≤ (Lr + μ)
1
2

[
2|β û| + σ û + ĉû

�(û + 1)
+

|(ĉ + σ ) – 2β|(σ û–1 + ĉû–1)
2�(û)

+
|β[(ĉ + σ ) – β] – ĉσ |(σ û–2 + ĉû–2)

2�(û – 1)

+
|6β2(ĉ + σ ) – 4β3 – 12β ĉσ – (ĉ + σ )[β2 – 4ĉσ + ĉ2]|(σ û–3 + ĉû–3)

24�(û – 2)

]
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≤
(

Lr
2

+
μ

2

)

M ≤ r,

× ‖(KZ1(β) – (KZ2)(β)‖ ≤
∫ β

0

(β – δ)û–1

�(û)
∥
∥�

(
δ,Z1(δ)

)
– �

(
δ,Z2(δ)

)∥
∥dδ

+
1
2

[∫ ĉ

0

(ĉ – δ)û–1

�(û)
∥
∥�

(
δ,Z1(δ)

)
– �

(
δ,Z2(δ)

)∥
∥dδ

+
∫ σ

0

(σ – δ)û–1

�(û)
∥
∥�

(
δ,Z1(δ)

)
– �

(
δ,Z2(δ)

)∥
∥dδ

]

+
|(ĉ + σ ) – 2β|

4

[∫ ĉ

0

(ĉ – δ)û–2

�(û – 1)
∥
∥�

(
δ,Z1(δ)

)
– �

(
δ,Z2(δ)

)∥
∥dδ

+
∫ σ

0

(σ – δ)û–2

�(û – 1)
∥
∥�

(
δ,Z1(δ)

)
– �

(
δ,Z2(δ)

)∥
∥dδ

]

+
|β[(ĉ + σ ) – β] – ĉσ |

4

[∫ ĉ

0

(ĉ – δ)û–3

�(û – 2)
∥
∥�

(
δ,Z1(δ)

)
– �

(
δ,Z2(δ)

)∥
∥dδ

+
∫ σ

0

(σ – δ)û–3

�(û – 2)
∥
∥�

(
δ,Z1(δ)

)
– �

(
δ,Z2(δ)

)∥
∥dδ

]

+
6β2(β + σ ) – 4β3 – 12β ĉσ – (ĉ + σ )[σ 2 – 4ĉσ + ĉ2]

48

× [
∫ ĉ

0

(ĉ – δ)û–4

�(û – 3)
[
∥
∥�

(
δ,Z1(δ)

)
– �

(
δ,Z2(δ)

)∥
∥dδ

+
∫ σ

0

(σ – δ)û–4

�(û – 3)
[∥
∥�

(
δ,Z1(δ)

)
– �

(
δ,Z2(δ)

)∥
∥dδ

]

≤ L‖Z1 – Z2‖[
∫ β

0

(β – δ)û–1

�(û)
dδ +

1
2

[∫ ĉ

0

(ĉ – δ)û–1

�(û)
dδ +

∫ σ

0

(σ – δ)û–1

�(û)
dδ

]

+
|(ĉ + σ ) – 2β|

4

[∫ ĉ

0

(ĉ – δ)û–2

�(û – 1)
dδ +

∫ σ

0

(σ – δ)û–2

�(û – 1)
dδ

]

+
|β[(ĉ + σ ) – β] – ĉσ |

4

[∫ ĉ

0

(ĉ – δ)û–3

�(û – 2)
dδ +

∫ σ

0

(σ – δ)û–3

�(û – 2)
dδ

]

+
|6β2(ĉ + σ ) – 4β3 – 12β ĉσ – (ĉ + σ )[σ 2 – 4ĉσ + ĉ2]|

48

[∫ ĉ

0

(ĉ – δ)û–4

�(û – 3)
dδ

+
∫ σ

0

(σ – δ)û–4

�(û – 3)
dδ

]

≤ M
2

L‖Z1 – Z2‖,

so that ‖(KZ1)(β) – (KZ2)(β)‖ ≤ LM‖Z1 – Z2‖.
By the assumption LM < 1 it follows by the Banach contraction principle that K is a

contraction, which implies that there exists a unique solution for the antiperiodic problem
(1.1). �

Lemma 3.1 The operator K defined in (3.1) is completely continuous.

Proof Let U ⊂ W . Then there exists A1 > 0 such that |�(Z1,Z2)| ≤ A1 for all β ∈ [0,σ ]
and Z ∈ U .
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Define the operator K as in (3.1). Then

∣
∣(KZ )(β)

∣
∣

≤
∫ β

0

(β – δ)û–1

�(û)
∣
∣�

(
δ,Z (δ)

)∣
∣dδ

+
1
2

[∫ ĉ

0

(ĉ – δ)û–1

�(û)
∣
∣�

(
δ,Z (δ)

)∣
∣dδ +

∫ σ

0

(σ – δ)û–1

�(û)
∣
∣�

(
δ,Z (δ)

)∣
∣dδ

]

+
|(ĉ + σ ) – 2β|

4

[∫ ĉ

0

(ĉ – δ)û–2

�(û – 1)
∣
∣�

(
δ,Z (δ)

)∣
∣dδ +

∫ σ

0

(σ – δ)û–2

�(û – 1)
∣
∣�

(
δ,Z (δ)

)∣
∣dδ

]

+
|β[(ĉ + σ ) – β] – ĉσ |

4

[∫ ĉ

0

(ĉ – δ)û–3

�(û – 2)
∣
∣�

(
δ,Z (δ)

)∣
∣dδ

+
∫ σ

0

(σ – δ)û–3

�(û – 2)
∣
∣�

(
δ,Z (δ)

)∣
∣dδ

]

+
|6β2(ĉ + σ ) – 4β3 – 12β ĉσ – (ĉ + σ )[σ 2 – 4ĉσ + ĉ2]|

48

×
[∫ ĉ

0

(ĉ – δ)û–4

�(û – 3)
∣
∣�

(
δ,Z (δ)

)∣
∣dδ

+
∫ σ

0

(σ – δ)û–4

�(û – 3)
∣
∣�

(
δ,Z (δ)

)∣
∣dδ

]

≤ A1

[

max
β∈[0,σ ]

{
2|β û| + σ û + ĉû

2�(û + 1)
+

|(û + σ ) – 2β|(σ û–1 + ĉû–1)
4�(û)

+
|β[(ĉ + σ ) – β] – ĉσ |(σ û–2 + ĉû–2)

4�(û – 1)

+
|6β2(ĉ + σ ) – 4β3 – 12β ĉσ – (ĉ + σ )[σ 2 – 4ĉσ + ĉ2]|(σ û–3 + ĉû–3)

48�(û – 2)

}]

= A2,

which implies that ‖(KZ )‖ ≤ A2. Further,

∣
∣(KZ )′(β)

∣
∣

≤
∫ β

0

(β – δ)û–2

�(û – 1)
∣
∣�

(
δ,Z (δ)

)∣
∣dδ

+
1
2

[∫ ĉ

0

(ĉ – δ)û–2

�(û – 1)
∣
∣�

(
δ,Z (δ)

)∣
∣dδ +

∫ σ

0

(σ – δ)û–2

�(û – 1)
∣
∣�

(
δ,Z (δ)

)∣
∣dδ

]

+
|(ĉ + σ ) – 2β|

4

[∫ ĉ

0

(ĉ – δ)û–3

�(û – 2)
∣
∣�

(
δ,Z (δ)

)∣
∣dδ +

∫ σ

0

(σ – δ)û–3

�(û – 2)
∣
∣�

(
δ,Z (δ)

)∣
∣dδ

]

+
|β[(ĉ + σ ) – β] – ĉσ |

4

[∫ ĉ

0

(ĉ – σ )û–4

�(û – 3)
∣
∣�

(
σ ,Z (σ )

)∣
∣dσ

+
∫ σ

0

(σ – δ)û–4

�(û – 3)
∣
∣�

(
δ,Z (δ)

)∣
∣dδ

]

≤ A1

[

max
β∈[0,σ ]

{
2|β û–1| + σ û–1 + ĉû–1

2�(û)
+

|(ĉ + σ ) – 2β|(σ û–2 + ĉû–2)
4�(û – 1)
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+
|β[(ĉ + σ ) – β] – ĉσ |

4�(û – 2)

}]

= A3.

Hence, for all β1,β2 ∈ [0,σ ], we have

∣
∣(KZ )(β2) – (KZ )(β1)

∣
∣ ≤

∫ β2

β1

∣
∣(KZ )′(δ)

∣
∣dδ ≤ A3(β2 – β1),

so that K is equicontinuous on [0,σ ] and thus, by the Arzelá–Ascoli theorem, is com-
pletely continuous. �

Theorem 3.2 Let � : [0,σ ] × R −→ R be continuous, and let the following assumptions
hold:

1. ‖�(β ,Z1) – �(β ,Z2)‖ ≤ L‖�(β ,Z1) – �(β ,Z2)‖ ∀β ∈ [0,σ ] and Z1,Z2 ∈R;
2. |�(β ,Z )| ≤ g(β), ∀(β , g) ∈ [0, 1] ×R, where g ∈ L1([0,σ ], R+);

Then problem (1.1) has at least one solution on [0,σ ] if LK < 1, where

K = max
β∈[0,σ ]

{ |σ û + ĉû

�(û + 1)
+

|(ĉ + σ ) – 2β|(σ û–1 + ĉû–1)
2�(û)

+
|β[(ĉ + σ ) – β] – ĉσ |(σ û–2 + ĉû–2)

2�(û – 1)

+
|6β2(ĉ + σ ) – 4β2 – 12β ĉσ – (ĉ + σ )[σ 2 – 4ĉσ + ĉ2]|(σ û–3 + ĉû–3)

24�(û – 2)

}

.

Proof Fix r ≥ ‖g‖L1
2 M, where M is defined in Theorem 3.1, and consider Br = {Z ∈ W :

‖Z ‖ ≤ r}. Define the operators K1 and K2 on Br by

(K1Z )(β) =
∫ β

0

(β – δ)û–1

�(û)
�

(
δ,Z (δ)

)
dδ,

(
K2(β)

)
(β)

= –
1
2

[∫ ĉ

0

(ĉ – δ)û–1

�(û)
�

(
δ,Z (δ)

)
dδ +

∫ σ

0

(σ – δ)û–1

�(û)
�

(
δ,Z (δ)

)
dδ

]

+
(ĉ + σ ) – 2β

4

[∫ ĉ

0

(ĉ – δ)û–2

�(û – 1)
�

(
δ,Z (δ)

)
dδ +

∫ σ

0

(σ – δ)û–2

�(û – 1)
�

(
δ,Z (δ)

)
dδ

]

+
β[(ĉ + σ ) – β] – ĉσ

4

[∫ ĉ

0

(ĉ – δ)û–3

�(û – 2)
�

(
δ,Z (δ)

)
dδ

+
∫ σ

0

(σ – δ)û–3

�(û – 2)
�

(
δ,Z (δ)

)
dδ

]

+
6β2(ĉ + σ ) – 4β2 – 12β ĉσ – (ĉ + σ )[σ 2 – 4ĉσ + ĉ2]

48

×
[∫ ĉ

0

(ĉ – δ)û–4

�(û – 3)
�

(
δ,Z (δ)

)
dδ +

∫ σ

0

(σ – δ)û–4

�(û – 3)
�

(
β ,Z (δ)

)
dδ

]

.

For Z1,Z2 ∈ Br , we have

‖K1Z1 + K2Z2‖ ≤ ‖g‖L1

2
M ≤ r.
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Thus K1Z1 + K2Z2 ∈ Br . By assumption 1, K2 is a contraction mapping if LK < 1. Also,
the operator K1 is continuous due to the continuity of � and is uniformly bounded on Br :

∥
∥(K1Z )(β)

∥
∥ ≤

∫ β

0

(β – δ)û–1

�(û)
∣
∣�

(
δ,Z (δ)

)∣
∣dδ ≤ ‖g‖L1 |β û|

�(û + 1)
.

Moreover, in view of assumption 1, we define sup(Z1,Z2)∈[0,σ ]×Br ‖�(β ,Z )‖ = �max, and
we have

∥
∥(K1Z )(β1) – (K2Z )(β2)

∥
∥

=
1

�(û)

∥
∥
∥
∥

∫ β1

0

[
(β1 – δ)û–1 – (β2 – δ)û–1]�

(
δ,Z (δ)

)
dδ

+
∫ β2

β1

(β2 – δ)û–1�
(
δ,Z (δ)

)
dδ

∥
∥
∥
∥ ≤ ‖�‖∞

�(û + 1)
∣
∣2(β2 – β1)û + β û

1 – β û
2
∣
∣.

According to [21], the norm value is does not depend of Z and approaches zero as β2

tends to β1. This implies that K1 is relatively compact on Br . By the Arzelà–Ascoli theo-
rem, K1 is compact on Br . Therefore problem (1.1) has at least one solution on [0,σ ]. �

Theorem 3.3 Let � : [0,σ ] × R −→ R be a given continuous function satisfying |�(β ,
Z (β))| ≤ Q(β) + E |Z | for β ∈ [0,σ ], Z ∈ R, and E > 0, and let Q ∈ L∞([0,σ ],R+) with
E < 1

ν
, where

ν = max
β∈[0,σ ]

{
3σ û + ĉû

2�(û + 1)
+

|(σ + ĉ) – 2β|(σ û–1 + ĉû–1)
4�(û)

+
|β[(ĉ + σ ) – β] – ĉσ |(σ û–2 + ĉû–2)

4�(û – 1)

+
|6β2(ĉ + σ ) – 4β3 – 12β ĉσ – (ĉ + σ )[σ 2 – 4βσ + ĉ2]|(σ û–3 + ĉû–3)

48�(û – 2)

}

.

Then problem (1.1) has at least one solution.

Proof Define the operator K as in (3.1) with Z = KZ , and let Br = {Z ∈ C[0,σ ]|‖Z (β) <
r‖}. Setting D(ρ,Z ) = ρKZ , ρ ∈ [0, 1] and Z ∈ C(R), we have that dρ(Z ) = Z –
D(ρ,Z ) = Z – ρKZ is completely continuous.

If Z �= ρKZ for all Z ∈ ∂Br , then for all ρ ∈ [0,σ ], deg(dρ ,Br , 0) = deg(I –ρKZ ,Br , 0) =
deg(d1,Br , 0) = deg(d0,Br , 0) = 1 �= 0 ∈ Br .

For at least one Z ∈ Br , we have Z – ρKZ = 0. Then

∣
∣Z (β)

∣
∣ =

∣
∣ρKZ (β)

∣
∣

≤
∫ β

0

(β – δ)û–1

�(û)
∣
∣�

(
δ,Z (δ)

)∣
∣dδ +

1
2

[∫ ĉ

0

(ĉ – δ)û–1

�(û)
∣
∣�

(
δ,Z (δ)

)∣
∣dδ

+
∫ σ

0

(σ – δ)û–1

�(û)
∣
∣�

(
δ,Z (δ)

)∣
∣dδ

]

+
|ĉ + σ – 2β|

4

[∫ ĉ

0

(ĉ – β)û–2

�(û – 1)
∣
∣�

(
δ,Z (δ)

)∣
∣dδ
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+
∫ σ

0

(σ – δ)û–2

�(û – 1)
∣
∣�

(
δ,Z (δ)

)∣
∣dδ

]

+
|β[(ĉ + σ ) – β] – ĉσ |

4

[∫ ĉ

0

(ĉ – δ)û–3

�(û – 2)
∣
∣�

(
δ,Z (δ)

)∣
∣dδ

+
∫ σ

0

(σ – δ)û–3

�(û – 2)
∣
∣�

(
δ,Z (δ)

)∣
∣dδ

]

+
|6β2(ĉ + σ ) – 4β3 – 12β ĉσ – (ĉ + σ )[σ 2 – 4ĉσ + ĉ2]|

48

×
[∫ ĉ

0

(ĉ – δ)û–4

�(û – 3)
∣
∣�

(
δ,Z (δ)

)∣
∣dδ

+
∫ σ

0

(σ – δ)û–4

�(û – 3)
∣
∣�

(
δ,Z (δ)

)∣
∣dδ

]

≤ [‖Q‖ + E |Z |] max
β∈[0,σ ]

{
3σ û + ĉû

2δ(û + 1)
+

|(σ + ĉ) – 2β|(σ û–1 + ĉû–1)
4�(û)

+
|β[(ĉ + σ ) – β] – ĉσ |(σ û–2 + ĉû–2)

4�(û – 1)

+
|6β2(ĉ + σ ) – 4β3 – 12β ĉσ – (ĉ + σ )[σ 2 – 4βσ + ĉ2]|(σ û–3 + ĉû–3)

48�(û – 2)

}

,

|Z | ≤ [‖Q‖ + E |Z |]ν

Therefore

‖Z ‖ ≤ ‖Q‖ν
1 – E ν

.

The proof is complete by choosing r > ‖Q‖ν
1–E ν

. �

Example 3.1 Consider the following FDE problem:

⎧
⎨

⎩

cD 7
2 Z (β) = 1

(β+3)4
‖Z ‖

1+‖Z ‖ , β ∈ [0, 2.01],

Z (i)( ˆ0.01) = –Z (i)(2.01), i = 0, 1, 2, 3,
(3.2)

All the assumptions of Theorem 3.1 are satisfied, since ‖�(β ,Z1) – �(β ,Z2)‖ ≤ 1
81‖Z1 –

Z2‖, û = 7
2 , ĉ = 0.01, σ = 2.01 with M ≈ 6.721799, and LM ≈ 0.082882 < 1 Therefore the

solution to (3.2) exists.

4 Conclusions
The nonlocal antiperiodic boundary conditions in a fractional differential equation result
in additional terms in the integral solutions, as discussed in this paper. The outcomes of
the study are in agreement with the situation where the classical antiperiodic problem
of the interval [0,σ ] is shifted. As ĉ approaches zero from the positive side, the results
obtained in this paper are consistent with the results of the classical antiperiodic problem,
as reported in [14].
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