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Abstract
In this paper, we provide some appropriate conditions for the existence of solutions
for a perturbed fractional neutral integro-differential system under the deformable
derivative in a Banach space. Using the Banach contraction principle and
Krasnoselskii’s fixed point theorem, we establish some new existence theorems.
Moreover, we provide two numerical examples to demonstrate the applicability of
the theoretical results
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1 Introduction
On 30 September 1695, L’Hôpital said to Leibniz about a particular notation that he had
used in his manuscripts for the n-derivative of the function f (x) = x, i.e., dnf

dxn . The question
posed to Leibniz by L’Hôpital: What would happen when n = 1

2 ? Leibniz [1] answered
as follows: “An apparent paradox, this will have useful effects one day.” As predicted by
Leibniz, fractional calculus was born with this simple idea.

Fractional calculus was primarily a spark for the best creative minds in mathematics.
There have already been several forms of fractional derivative presented. Interestingly,
the majority of fractional derivative formulations have an integral form. The readers of
this research are advised to read some well-known monographs such as [2–4] for a com-
plete knowledge of fractional calculus and also are asked to see the related research pub-
lications on fractional differential (or integro-differential) equations (FDEs) in [5–17]. By
reading these papers we can easily understand the continual contribution of fractional
calculus in the field of dynamic systems and mathematical modeling. These papers, and
many others, show the role of fractional derivatives in describing relationships between
differential equations. Nowadays, it is clear that the results of fractional models are more
accurate and flexible in most cases than the results of classical models, which are based
on integer-order derivatives.
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As was already mentioned, the integral form is used in the majority of definitions of
fractional derivatives. In contrast, Khalil et al. [18] proposed a limit-based definition of a
fractional derivative, which characterizes it as a conformable fractional derivative that is
comparable to a traditional one. Then Zulfeqarr, Ahuja, and Ujlayan came up with the new
concept of the deformable derivative [DD] [19]. This new derivative makes use of the same
limit method as the conventional derivative. They called it “deformable” as it possesses
the inherent quality of constantly deforming functions into derivatives. This idea opens
up new research possibilities, such as analyzing qualitative and quantitative behavior in
diverse systems. A definition, an integral operator, properties, and an inverse property of
deformable derivatives are also provided by Zulfeqarr et al. [19], who then go on to explain
how a deformable derivative is used with homogeneous linear FDEs. Recently, Ahuja et
al. [20] developed their studies on the deformable Laplace transform and solved some
deformable differential equations based on this technique.

A review of the previous works will serve as an introduction to this research. Especially,
the authors in [21] discussed the existence of mild solutions of the model

DDDϑw(δ) = Aw(δ) + f
(
δ, w(δ)

)
, δ ∈ [0, T], 0 < ϑ < 1,

w(0) = w0,

where deformable fractional-order derivatives are used. The conclusions are made by the
Banach contraction principle and Schauder fixed point theorem in the semigroup theory.
Later, Mebrat et al. [22] examined the same properties including the existence of unique
solutions for two fractional deformable differential (integro-differential) equations

DDDϑw(δ) = f
(
δ, w(δ)

)
, δ ∈ [0, T], 0 < ϑ < 1,

w(0) + g(w) = w0,

and

DDDϑw(δ) = h
(
w(δ)

)
+ f

(
δ, w(δ)

)
+

∫ δ

0
K

(
δ,σ , w(σ )

)
dσ , δ ∈ [0, T],

w(0) = w0.

These existence results were proved by Krasnoselskii’s fixed point theorem. Recently, an-
other existence study was conducted by Etefa et al. [23] for the fractional impulsive de-
formable system

DDDϑw(δ) = f
(
δ, w(δ)

)
, δ ∈ I = [0, T], δ �= δk , k = 1, 2, . . . , m,

�w|δ=δk = Ik(
(
w

(
δ–

k
))

, w(0) = w0.

By the above ideas the main aim of the present work is to investigate some qualitative
properties like the existence of a unique solution for the following fractional perturbed
neutral integro-differential system under the deformable derivative:

DDDϑ
[
w(δ) – H

(
δ, w(δ)

)]
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= F
(

δ, w(δ),
∫ δ

0
h
(
δ,σ , w(σ )

)
dσ

)
+ G

(
δ, w(δ),

∫ δ

0
h
(
δ,σ , w(σ )

)
dσ

)
,

w(0) = w0, δ ∈ [0, ζ ], 0 < ϑ < 1, (1.1)

where DDDϑ is the deformable fractional derivative, F , G : [0, ζ ] ×X×X→X are contin-
uous functions, h : Z × X → X is a continuous function with Z = {(δ,φ) : 0 ≤ φ ≤ δ ≤ ζ },
H : [0, ζ ] × X → X is a continuously differentiable function, and w0 ∈ X, where X is a
Banach space (real or complex).

The significant findings of the present study are as follows:
1. This is the first effort, to the best of our knowledge, to address the structure of the

fractional perturbed neutral integro-differential system that includes the fractional
deformable operator in the context of the system introduced in (1.1).

2. By using the fractional derivative of deformable type and its properties we provide
the exponential-based solution to the given peturbed system (1.1); see Lemma 2.6.

3. The alternative fixed point criteria attributed to Banach and Krasnoselskii are used to
obtain the main existence theorems. We provide few instances to highlight how our
main results may be used in the final section of our presentation.

4. In addition, the results of this work generalized and also upgraded the previous
studies published in the literature, including those cited in [22–24].

This research is organized as follows. The equivalent solution to the mentioned de-
formable perturbed system is built under the fractional deformable integral equation in
Sect. 2. The initial result is based on the Banach contraction principle, and the next one is
based on Krasnoselskii’s fixed point theorem, which will be proved in Sect. 3. Moreover,
we consider a nonlocal perturbed integro-differential version of the system and extend
our results in this case. Two numerical examples, as some applications of the given de-
formable perturbed systems, are provided in Sect. 4. The conclusion of this paper is given
in Sect. 5 and suggests some future ideas whether we can use these results under artificial
intelligence algorithms to simulate dynamics of the models.

2 Preliminaries
This section provides an overview of the essential concepts and properties of the fractional
deformable derivatives, which will be used in establishing our main theorems.

Let X be a Banach space with norm ‖ · ‖, and let C([0, ξ ],X) be the Banach space of
all continuous functions from [0, ξ ] into X endowed with the supremum norm ‖p‖C =
supδ∈[0,ξ ] ‖p(δ)‖.

Definition 2.1 [20] The fractional deformable derivative of order ϑ ∈ [0, 1] for a function
w : (a, b) → R is defined by

DDDϑw(δ) = lim
ε→0

(1 + ερ)w(δ + εϑ) – w(δ)
ε

with ϑ + ρ = 1, provided that the limit exists.

Remark 2.2 If ϑ = 0, then DDD0w(δ) = w(δ), and if ϑ = 1, then DDDw(δ) = w′(δ).
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Definition 2.3 [20] Let ϑ + ρ = 1 and ϑ ∈ (0, 1]. The fractional deformable integral of
order ϑ for the continuous function w on [a, b] is given by

DIϑ
a w(δ) =

1
ϑ

e
–ρ
ϑ

δ

∫ δ

a
e

ρ
ϑ

φw(φ) dφ. (2.1)

Note that if a = 0 in (2.1), then

DIϑw(δ) =
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φw(φ) dφ.

Theorem 2.4 [19] Let a function w be differentiable at a point δ ∈ (a, b). Then w is always
ϑ-differentiable in the sense of deformable derivative at that point for every ϑ . Furthermore,
in such a case,

DDDϑw(δ) = ρw(δ) + ϑDw(δ),

where Dw = d
dδ

w is an ordinary derivative.

Theorem 2.5 [19] Assume that w is continuous on [a, b]. Then DIϑ
a w is ϑ-differentiable in

the sense of deformable derivative in (a, b). Moreover,

DDDϑ
(DIϑ

a w
)
(δ) = w(δ) and DIϑ

a
(DDDϑw

)
(δ) = w(δ) – e

ρ
ϑ

(a–δ)w(a).

For more properties and characteristics of deformable operators, we invite the readers
to carefully read [19, 20].

Before we go on to define the solution structure of system (1.1), let us consider the fol-
lowing linear system and find its solution structure:

DDDϑ
[
w(δ) – h(δ)

]
= f (δ) + g(δ), δ ∈ [0, ζ ], 0 < ϑ < 1,

w(0) = w0. (2.2)

Here DDDϑ is the deformable fractional derivative.

Lemma 2.6 Let f , g : [0, ζ ] → X be continuous functions, and let h be a continuously dif-
ferentiable function. A function w is the solution of the integral equation

w(δ) = e
–ρ
ϑ

δ
[
w0 – h(0)

]
+ h(δ) +

1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ
[
f (φ) + g(φ)

]
dφ (2.3)

if and only if w is a solution of the linear system (2.2).

Proof Applying DIϑ
0 to both sides of (2.2), we have

DIϑ
0
(DDDϑ

[
w(δ) – h(δ)

])
= DIϑ

0
(
f (δ) + g(δ)

)
.

Using the linearity of the fractional deformable derivative DDDϑ , we have

DIϑ
0
(DDDϑw(δ)

)
– DIϑ

0
(DDDϑh(δ)

)
= DIϑ

0
(
f (δ)

)
+ DIϑ

0
(
g(δ)

)
.
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By using Theorem 2.5 and w(0) = w0 we get

w(δ) – e
–ρ
ϑ

δw0 – h(δ) + e
–ρ
ϑ

δh(0) =
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ
[
f (φ) + g(φ)

]
dφ.

Therefore

w(δ) = e
–ρ
ϑ

δ
[
w0 – h(0)

]
+ h(δ) +

1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

s[f (s) + g(s)
]

ds.

On the other hand, assume that w satisfies (2.3). Applying DDDϑ to both sides of (2.3),
by Theorem 2.4 we get

DDDϑ
[
w(δ) – h(δ)

]

= ρ

(
e

–ρ
ϑ

δ
[
w0 – h(0)

]
+

1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ
[
f (φ) + g(φ)

]
dφ

)

+ ϑ
d

dδ

(
e

–ρ
ϑ

δ
[
w0 – h(0)

]
+

1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ
[
f (φ) + g(φ)

]
dφ

)

= ρe
–ρ
ϑ

δ
[
w0 – h(0)

]
+

ρ

ϑ
e

–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ
[
f (φ) + g(φ)

]
dφ

+ ϑ
d

dδ

(
e

–ρ
ϑ

δ
[
w0 – h(0)

])
+

d
dδ

(
e

–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ
[
f (φ) + g(φ)

]
dφ

)
. (2.4)

Since

ϑ
d

dδ

(
e

–ρ
ϑ

δ
[
w0 – h(0)

])
= ϑ

[
w0 – h(0)

](–ρ

ϑ

)
e

–ρ
ϑ

δ = –ρe
–ρ
ϑ

δ
[
w0 – h(0)

]

and

d
dδ

(
e

–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ
[
f (φ) + g(φ)

]
dφ

)

=
(

–ρ

ϑ

)
e

–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ
[
f (φ) + g(φ)

]
dφ

+ e
–ρ
ϑ

δ d
dδ

[∫ δ

0
e

ρ
ϑ

φ
[
f (φ) + g(φ)

]
dφ

]

=
–ρ

ϑ
e

–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ
[
f (φ) + g(φ)

]
dφ + e

–ρ
ϑ

δe
ρ
ϑ

δ
[
f (δ) + h(δ)

]
,

(2.4) becomes

DDDϑ
[
w(δ) – h(δ)

]
= f (δ) + h(δ).

The proof is complete. �

We now can define the solution to the nonlinear fractional deformable perturbed neutral
integro-differential system (1.1) using the information provided in the previous lemma.
For our convenience, we denote Ew(δ) =

∫ δ

0 h(δ,φ, w(φ)) dφ.
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Definition 2.7 A function w is said to be a solution to the fractional deformable perturbed
neutral integro-differential system (1.1) if

w(δ) = e
–ρ
ϑ

δ
[
w0 – H(0, w0)

]
+ H

(
δ, w(δ)

)
+

1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φF
(
φ, w(φ), Ew(φ)

)
dφ

+
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φG
(
φ, w(φ), Ew(φ)

)
dφ, δ ∈ [0, ζ ], (2.5)

provided that the above integral is finite.

3 Existence theorems
In this section, we present and establish the existence results for the given deformable sys-
tem (1.1) under the Banach contraction principle and Krasnoselskii’s fixed point theorems.
To apply these fixed point theorems, we need the following hypotheses:

(M0) The function h : Z ×X →X, where Z = {(δ,φ) : 0 ≤ φ ≤ δ ≤ ζ }, is continuous,
and there is a constant Kh > 0 such that

∥∥
∥∥

∫ δ

0
h
(
δ,φ, u(φ)

)
dφ –

∫ δ

0
h
(
δ,φ, v(φ)

)
dφ

∥∥
∥∥ ≤Kh‖u – v‖,

(δ,φ) ∈ [0, ζ ] × [0, ζ ], u, v ∈X,

and Kh = sup(φ,τ )∈[0,ζ ]×[0,ζ ] ‖
∫ φ

0 h(φ, τ , 0) dτ‖.
(M1) The functions F , G : [0, ζ ] ×X×X →X are continuous, H : [0, ζ ] ×X →X is

continuously differentiable, and there are KF ,KG,KH > 0 such that
(i)

∥
∥F(δ, u, v) – F(δ, ū, v̄)

∥
∥ ≤KF

[‖u – ū‖ + ‖v – v̄‖], δ ∈ [0, ζ ], u, ū, v, v̄ ∈X,

and KF = supδ∈[0,ζ ] ‖F(δ, 0, 0)‖;
(ii)

∥∥G(δ, u, v) – G(δ, ū, v̄)
∥∥ ≤KG

[‖u – ū‖+‖v – v̄‖], δ ∈ [0, ζ ], u, ū, v, v̄ ∈X,

and KG = supδ∈[0,ζ ] ‖G(δ, 0, 0)‖;
(iii)

∥∥H(δ, u) – H(δ, ū)
∥∥ ≤KH‖u – ū‖, δ ∈ [0, ζ ], u, ū ∈ X,

and KH = supδ∈[0,ζ ] ‖H(δ, 0)‖.
(M2) There are nonnegative constants K̂F , K̂G, K̂H , K̃F , K̃G, K̃H such that

(i)

∥
∥F(δ, u, v)

∥
∥ ≤ K̂F + K̃F

[‖u‖ + ‖v‖], δ ∈ [0, ζ ], u, v ∈X.

(ii)

∥∥G(δ, u, v)
∥∥ ≤ K̂G + K̃G

[‖u‖ + ‖v‖], δ ∈ [0, ζ ], u, v ∈X.
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(iii)

∥∥H(δ, w)
∥∥ ≤ K̂H + K̃H‖w‖, δ ∈ [0, ζ ], w ∈ X.

(M3) (i) There is K̃F ∈ L1([0, ζ ],X) such that

∥
∥F(δ, u, v)

∥
∥ ≤ K̃F (δ), (δ, u, v) ∈ [0, ζ ] ×X×X.

(ii) There is K̃G ∈ L1([0, ζ ],X) such that

∥∥G(δ, u, v)
∥∥ ≤ K̃G(δ), (δ, u, v) ∈ [0, ζ ] ×X×X.

(iii) There is K̃H ∈ L1([0, ζ ],X) such that

∥
∥H(δ, u)

∥
∥ ≤ K̃H (δ), (δ, u) ∈ [0, ζ ] ×X.

Moreover, we consider the Banach space Q := C([0, ζ ],X) of all continuous functions
with values in X with sup-norm ‖ · ‖Q. In this theorem, we prove that a unique solution
exists for the mentioned perturbed problem.

Theorem 3.1 Let F , G, H , h satisfy (M0)–(M1). If

� =
[
KH +

1
ρ

[
(KF + KG)(1 + Kh)

]
]

< 1, (3.1)

then the fractional deformable perturbed neutral integro-differential system (1.1) has a
unique solution on [0, ζ ].

Proof To use the well-known fixed point theorem, we define ψ : Q → Q by

(ψw)(δ) = e
–ρ
ϑ

δ
[
w0 – H(0, w0)

]
+ H

(
δ, w(δ)

)
+

1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φF
(
φ, w(φ), Ew(φ)

)
dφ

+
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φG
(
φ, w(φ), Ew(φ)

)
dφ, δ ∈ [0, ζ ]. (3.2)

We now show that ψBO ⊂ BO, where BO is the ball B(0, O) = {w ∈ C([0, ζ ],X) = Q : ‖w‖Q ≤
O} with radius

O >
‖�1‖
1 – μ̃

,

so that ‖�1‖ = ‖�‖ + (KH + 1
ρ

(Kh(KF + KG) + KF + KG)),‖�‖ = [‖w0‖ + ‖H(0, w0)‖], and
μ̃ = KH + 1

ρ
[(KF + KG)(1 + Kh)]. Indeed, let w ∈ BO and consider (M0)–(M1). We have

∥∥(ψw)(δ)
∥∥

=
∥∥
∥∥e

–ρ
ϑ

δ
[
w0 – H(0, w0)

]
+ H

(
δ, w(δ)

)
+

1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φF
(
φ, w(φ), Ew(φ)

)
dφ
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+
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φG
(
φ, w(φ), Ew(φ)

)
dφ

∥∥∥
∥

≤ ‖�‖ +
∥∥H

(
δ, w(δ)

)
– H(δ, 0)

∥∥ +
∥∥H(δ, 0)

∥∥

+
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ

(∥∥
∥∥F

(
φ, w(φ),

∫ φ

0
h
(
φ, τ , w(τ )

)
dτ

)
– F(φ, 0, 0)

∥∥
∥∥

+
∥∥F(φ, 0, 0)

∥∥
)

dφ

+
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ

(∥
∥∥∥G

(
φ, w(φ),

∫ φ

0
h
(
φ, τ , w(τ )

)
dτ

)
– G(φ, 0, 0)

∥
∥∥∥

+
∥∥G(φ, 0, 0)

∥∥
)

dφ

≤ ‖�‖ + KHO + KH

+
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ

[
KF

{
‖w‖ +

∥∥
∥∥

∫ φ

0
h
(
φ, τ , w(τ )

)
dτ

∥∥
∥∥

}
+ KF

]
dφ

+
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ

[
KG

{
‖w‖ +

∥∥
∥∥

∫ φ

0
h
(
φ, τ , w(τ )

)
dτ

∥∥
∥∥

}
+ KG

]
dφ

≤ ‖�‖ + KHO + KH +
[
KF

[
(1 + Kh)O + Kh

]
+ KF

] 1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ dφ

+
[
KG

[
(1 + Kh)O + Kh

]
+ KG

] 1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ dφ

≤ ‖�‖ + KHO + KH +
[
KF

[
(1 + Kh)O + Kh

]
+ KF

] 1
ρ

(
1 – e

–ρ
ϑ

δ
)

+
[
KG

[
(1 + Kh)O + Kh

]
+ KG

] 1
ρ

(
1 – e

–ρ
ϑ

δ
)

= ‖�‖ + KHO + KH +
1
ρ

[
(KF + KG)(1 + Kh)O + Kh(KF + KG)

+ KF + KG
](

1 – e
–ρ
ϑ

δ
)

≤ ‖�1‖ +
[
KH +

1
ρ

(KF + KG)(1 + Kh)
]

O.

Thus, for δ ∈ [0, ζ ] and w ∈ BO, we have

∥
∥ψ(w)

∥
∥

Q ≤ ‖�1‖ +
[
KH +

1
ρ

(KF + KG)(1 + Kh)
]

O < O.

This shows that the ball BO is mapped into itself under the operator ψ , that is, ψBO ⊂ BO.
Following the proof, for each w, w ∈ BO, we estimate

∥
∥(ψw)(δ) – (ψw)(δ)

∥
∥

≤ ∥∥H
(
δ, w(δ)

)
– H

(
δ, w(δ)

)∥∥

+
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ
∥∥F

(
φ, w(φ), Ew(φ)

)
– F

(
φ, w(φ), Ew(φ)

)∥∥dφ

+
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ
∥
∥G

(
φ, w(φ), Ew(φ)

)
– G

(
φ, w(φ), Ew(φ)

)∥∥dφ
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≤KH‖w – w‖Q +
1
ρ

[
(KF + KG)(1 + Kh)

]‖w – w‖Q
(
1 – e

–ρ
ϑ

δ
)

≤
[
KH +

1
ρ

[
(KF + KG)(1 + Kh)

]]‖w – w‖Q.

Hence, for each δ ∈ [0, ζ ], we obtain

∥∥ψ(w) – ψ(w)
∥∥

Q ≤ �‖w – w‖Q,

where � = �(KF ,KG,KH ,Kh,ρ), defined in (3.1), depends on the system parameters. Now,
as � < 1, ψ is a contraction. Hence the fractional deformable perturbed neutral integro-
differential system (1.1) has a unique solution on [0, ζ ]. �

Now we will prove that there are solutions for the fractional deformable perturbed neu-
tral integro-differential system (1.1) under the hypotheses of Krasnoselskii’s fixed point
theorem.

Theorem 3.2 Suppose that hypotheses (M0), (M1)(ii)(iii) and (M2) are satisfied and
that [KH + 1

ρ
KG(1 + Kh)] < 1. Then the fractional deformable perturbed neutral integro-

differential system (1.1) has at least one solution on [0, ζ ].

Proof Consider two operators on Q participating in (2.5),

(ψ1w)(δ) = e
–ρ
ϑ

δ
[
w0 – H(0, w0)

]
+ H

(
δ, w(δ)

)

+
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φG
(
φ, w(φ), Ew(φ)

)
dφ (3.3)

and

(ψ2w)(δ) =
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φF
(
φ, w(φ), Ew(φ)

)
dφ. (3.4)

We now show that ψBO ⊂ BO, where BO is the ball B(0, O) = {w ∈ C([0, ζ ],X) = Q : ‖w‖Q ≤
O} with radius O > ‖�∗

1‖
1–μ̃1

, so that ‖�∗
1‖ = ‖�‖ + K̂H + 1

ρ
[(K̂G + K̂F ) + Kh(K̃G + K̃F )],‖�‖ =

[‖w0‖ + ‖H(0, w0)‖], and μ̃1 = K̃H + 1
ρ

[(K̃G + K̃F )(1 + Kh)].
For all w, w1 ∈ BO, we have

∥∥ψ1w(δ) + ψ2w1(δ)
∥∥

≤
∥∥
∥∥e

–ρ
ϑ

δ
[
w0 – H(0, w0)

]
+ H

(
δ, w(δ)

)
+

1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φG
(
φ, w(φ), Ew(φ)

)
dφ

+
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φF
(
φ, w1(φ), Ew1(φ)

)
dφ

∥∥
∥∥

≤ ‖�‖ + K̂H + K̃HO +
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ
[
K̂G + K̃G

[
(1 + Kh)O + Kh

]]
dφ

+
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ
[
K̂F + K̃F

[
(1 + Kh)O + Kh

]]
dφ

≤ ‖�‖ + K̂H +
1
ρ

[
(K̂G + K̂F ) + Kh(K̃G + K̃F )

]
+

[
K̃H +

1
ρ

(K̃G + K̃F )(1 + Kh)
]

O
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≤ ∥
∥�∗

1
∥
∥ +

[
K̃H +

1
ρ

(K̃G + K̃F )(1 + Kh)
]

O.

Thus, for all δ ∈ [0, ζ ] and w ∈ BO, it becomes

∥∥ψ1(w) + ψ2(w1)
∥∥

Q ≤ ∥∥�∗
1
∥∥ +

[
K̃H +

1
ρ

(K̃G + K̃F )(1 + Kh)
]

O < O.

Thus ψ1(w) + ψ2(w1) ∈ BO. Next, we prove that ψ1 is a contraction. Due to the continuity
of H , G, h, for w, w ∈ BO, using (3.3) and (M1)(ii)(iii), we estimate

∥∥(ψ1w)(δ) – (ψ1w)(δ)
∥∥ ≤KH‖w – w‖Q +

1
ρ
KG(1 + Kh)‖w – w‖Q

(
1 – e

–ρ
ϑ

δ
)

≤
(
KH +

1
ρ
KG(1 + Kh)

)
‖w – w‖Q.

Thus, for all δ ∈ [0, ζ ] and w ∈ BO, we have

∥∥(ψ1w) – (ψ1w)
∥∥

Q ≤
(
KH +

1
ρ
KG(1 + Kh)

)
‖w – w‖Q.

Hence ψ1 is a contraction. Since the function F is continuous, it follows that the operator
ψ2 is continuous as well. Additionally, ψ2 is uniformly bounded on BO. We have

∥∥(ψ2w)(δ)
∥∥ ≤ 1

ϑ
e

–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ
∥∥F

(
φ, w(φ), Ew(φ)

)∥∥dφ

≤ 1
ρ

[
K̂F + K̃F

[
(1 + Kh)O + Kh

]]
= A,

and thus ‖ψ2w‖Q ≤ A.
The uniform boundedness of the operator ψ2 implies that it is compact. It suffices to

check the equicontinuity for ψ2. For all τ1, τ2 ∈ [0, ζ ] with τ1 < τ2 and w ∈ BO, we have

∥∥(ψ2w)(τ2) – (ψ2w)(τ1)
∥∥

=
1
ϑ

∥
∥∥
∥e

–ρ
ϑ

τ2

∫ τ2

0
e

ρ
ϑ

φF
(
φ, w(φ), Ew(φ)

)
dφ – e

–ρ
ϑ

τ1

∫ τ1

0
e

ρ
ϑ

φF
(
φ, w(φ), Ew(φ)

)
dφ

∥
∥∥
∥

=
1
ϑ

∥
∥∥
∥

∫ τ2

τ1

e
–ρ
ϑ

τ2 e
ρ
ϑ

φF
(
φ, w(φ), Ew(φ)

)
dφ

–
∫ τ1

0

[
e

–ρ
ϑ

τ1 – e
–ρ
ϑ

τ2
]
e

ρ
ϑ

φF
(
φ, w(φ), Ew(φ)

)
dφ

∥
∥∥
∥

≤ 1
ϑ

∥∥∥
∥e

–ρ
ϑ

τ2

∫ τ2

τ1

e
ρ
ϑ

φF
(
φ, w(φ), Ew(φ)

)
dφ

–
[
e

–ρ
ϑ

τ1 – e
–ρ
ϑ

τ2
] ∫ τ1

0
e

ρ
ϑ

φF
(
φ, w(φ), Ew(φ)

)
dφ

∥
∥∥
∥

≤ 1
ρ

[
K̂F + K̃F

[
(1 + Kh)O + Kh

]]∥∥1 – e
–ρ
ϑ

(τ2–τ1) +
(
e

–ρ
ϑ

τ1 – e
–ρ
ϑ

τ2
)(

e
–ρ
ϑ

τ1
)∥∥

≤ 1
ρ

[
K̂F + K̃F

[
(1 + Kh)O + Kh

]]∥∥2 – 2e
–ρ
ϑ

(τ2–τ1) – e
–ρ
ϑ

τ1 + e
–ρ
ϑ

τ2
∥∥. (3.5)
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From (3.5) we see that as τ2 → τ1, the right-hand side of (3.5) goes to zero. So
‖(ψ2w)(τ2) – (ψ2w)(τ1)‖ → 0 as τ1 → τ2.

Thus ψ2 is equicontinuous, and so ψ2(X) ⊂ X. Therefore ψ2 is compact. According to
the Arzelà–Ascoli theorem, ψ has at least one fixed point. Hence we can find at least one
solution to the fractional deformable perturbed neutral integro-differential system (1.1). �

Now we give another criterion for the existence property.

Theorem 3.3 Suppose that conditions (M0)–(M1)(ii)(iii) and (M3) are and that [KH +
1
ρ
KG(1 + Kh)] < 1. Then the fractional deformable perturbed neutral integro-differential

system (1.1) has at least one solution on [0, ζ ].

Proof By (2.5) we define two operators as follows:

(ψ1w)(δ) = e
–ρ
ϑ

δ
[
w0 – H(0, w0)

]
+ H

(
δ, w(δ)

)

+
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φG
(
φ, w(φ), Ew(φ)

)
dφ, (3.6)

and

(ψ2w)(δ) =
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φF
(
φ, w(φ), Ew(φ)

)
dφ. (3.7)

We now show that ψBO ⊂ BO, where BO is the ball B(0, O) = {w ∈ C([0, ζ ],X) = Q : ‖w‖Q ≤
O} with radius O > ‖�∗

1‖ + 1
ϑ

[‖K̃G‖L1([0,ζ ]) + ‖K̃F‖L1([0,ζ ])], so that ‖�∗
1‖ = ‖�‖ + K̃H (ζ ) and

‖�‖ = [‖w0‖ + ‖H(0, w0)‖].
For all w, w1 ∈ BO, we may write

∥∥ψ1w(δ) + ψ2w1(δ)
∥∥

≤
∥∥
∥∥e

–ρ
ϑ

δ
[
w0 – H(0, w0)

]
+ H

(
δ, w(δ)

)
+

1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φG
(
φ, w(φ), Ew(φ)

)
dφ

+
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φF
(
φ, w1(φ), Ew1(φ)

)
dφ

∥∥
∥∥

≤ ‖�‖ + K̃H(δ) +
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ
∥
∥G

(
φ, w(φ), Ew(φ)

)∥∥dφ

+
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ
∥
∥F

(
φ, w(φ), Ew(φ)

)∥∥dφ

≤ ‖�‖ + K̃H(δ) +
1
ϑ

e
–ρ
ϑ

δe
ρ
ϑ

δ

∫ δ

0

∥∥G
(
φ, w(φ), Ew(φ)

)∥∥dφ

+
1
ϑ

e
–ρ
ϑ

δe
ρ
ϑ

δ

∫ δ

0

∥∥F
(
φ, w(φ), Ew(φ)

)∥∥dφ

≤ ‖�‖ + K̃H(δ) +
1
ϑ

e
–ρ
ϑ

δe
ρ
ϑ

δ

∫ δ

0
K̃G(φ) dφ

+
1
ϑ

e
–ρ
ϑ

δe
ρ
ϑ

δ

∫ δ

0
K̃F (φ) dφ
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≤ ∥∥�∗
1
∥∥ +

1
ϑ

[‖K̃G‖L1([0,ζ ]) + ‖K̃F‖L1([0,ζ ])
]
.

Thus, for all δ ∈ [0, ζ ] and w ∈ BO, we have

∥
∥ψ1(w) + ψ2(w1)

∥
∥

Q ≤ ∥
∥�∗

1
∥
∥ +

1
ϑ

[‖K̃G‖L1([0,ζ ]) + ‖K̃F‖L1([0,ζ ])
]

< O.

Thus ψ1(w)+ψ2(w1) ∈ BO. In the next step, we prove that ψ1 is a contraction. We know that
H , G, h are continuous. Letting w, w ∈ BO, from (3.6) and (M1)(ii)(iii) we get the estimate

∥∥(ψ1w)(δ) – (ψ1w)(δ)
∥∥ ≤KH‖p – w‖Q +

1
ρ
KG(1 + Kh)‖w – w‖Q

(
1 – e

–ρ
ϑ

δ
)

≤
(
KH +

1
ρ
KG(1 + Kh)

)
‖w – w‖Q.

Thus, for δ ∈ [0, ζ ] and w ∈ BO, we have

∥∥(ψ1w) – (ψ1w)
∥∥

Q ≤
(
KH +

1
ρ
KG(1 + Kh)

)
‖w – w‖Q.

Hence ψ1 is a contraction. Since the function F is continuous, it follows that the operator
ψ2 is also continuous. Additionally, ψ2 is uniformly bounded on BO, and so

∥∥(ψ2w)(δ)
∥∥ ≤ 1

ϑ
e

–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ
∥∥F

(
φ, w(φ), Ew(φ)

)∥∥dφ

≤ 1
ρ

‖K̃F‖L1([0,ζ ]) = A,

which shows that ‖ψ2w‖Q ≤ A.
Thus the uniform boundedness of the operator ψ2 implies that it is compact. Now we

prove that it is equicontinuous. For all τ1, τ2 ∈ [0, ζ ] with τ1 < τ2 and w ∈ BO, by Theorem
3.2 we have

∥
∥(ψ2w)(τ2) – (ψ2w)(τ1)

∥
∥

≤ N
ρ

∥∥1 – e
–ρ
ϑ

(τ2–τ1) +
(
e

–ρ
ϑ

τ1 – e
–ρ
ϑ

τ2
)(

e
–ρ
ϑ

τ1
)∥∥

≤ N
ρ

∥∥2 – 2e
–ρ
ϑ

(τ2–τ1) – e
–ρ
ϑ

τ1 + e
–ρ
ϑ

τ2
∥∥. (3.8)

From (3.8) we see that if τ1 → τ2, then the right-hand side of (3.8) goes to zero, so
‖(ψ2w)(τ2) – (ψ2w)(τ1)‖ → 0 as τ1 → τ2. Thus ψ2 is equicontinuous, and since ψ2(X) ⊂X,
ψ2 is compact by the Arzelà–Ascoli theorem. Therefore ψ has at least one fixed point.
Finally, there is at least one solution to the associated fractional deformable perturbed
neutral integro-differential system (1.1). �

3.1 Nonlocal integro-differential system
This subsection contains a generalization of the results discussed in the previous subsec-
tion. We focus on a generalized existence theorem in relation to the nonlocal fractional
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neutral integro-differential system given by

DDDϑ
[
w(δ) – H

(
δ, w(δ)

)]
= F

(
δ, w(δ), Ew(δ)

)
+ G

(
δ, w(δ), Ew(δ)

)
, δ ∈ [0, ζ ],

w(0) + q(w) = w0, 0 < ϑ < 1, (3.9)

where DDDϑ , F , G, H , E, w0 ∈ X are similar to those described in Sect. 3, and q : C([0, ζ ],
X) = Q → X is a continuous function.

During the year 1990, Byszewski was the first person to do groundbreaking research on
the nonlocal problem. In [25], Byszewski turns to this purpose that the nonlocal condition
w(δ0) + q(δ1, . . . , δk , w(·)) = w0 can be applied in physics to provide results that are better
than those described by the initial condition w(δ0) = w0. We recommend the readers to
follow [23, 25] for further information regarding nonlocal conditions and related applica-
tions.

To study the existence of a unique solution of the nonlocal fractional neutral integro-
differential system (3.9), we consider the following assumption:

(M4) The function q : Q →X is continuous, and M = supw∈Q ‖q(w)‖ < ∞. There is a
constant Kq > 0 such that ‖q(u) – q(v)‖ ≤Kq‖u – v‖Q for all u, v ∈ Q.

Theorem 3.4 Let F , G, H , h, and q satisfy hypotheses (M0)–(M1) and (M4). If

�1 =
[
Kq + KH +

1
ρ

[
(KF + KG)(1 + Kh)

]]
< 1, (3.10)

then the nonlocal integro-differential system (3.9) has a unique solution on [0, ζ ].

Proof We first transform system (3.9) into a fixed point problem. Define ψ : Q → Q by

(ψw)(δ) = e
–ρ
ϑ

δ
[
w0 – q(w) – H(0, w0)

]
+ H

(
δ, w(δ)

)

+
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φF
(
φ, w(φ), Ew(φ)

)
dφ

+
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φG
(
φ, w(φ), Ew(φ)

)
dφ, δ ∈ [0, ζ ]. (3.11)

We now show that ψBO ⊂ BO, where BO is the ball B(0, O) = {w ∈ C([0, ζ ],X) = Q : ‖w‖Q ≤
O} with radius O > ‖�1‖

1–μ̃
, so that

‖�1‖ =
∥
∥�∗∥∥ +

(
KH +

1
ρ

(
Kh(KF + KG) + KF + KG

))
,

∥
∥�∗∥∥ =

[‖w0‖ + M +
∥
∥H(0, w0)

∥
∥]

,

and μ̃ = KH + 1
ρ

[(KF + KG)(1 + Kh)].
Indeed, let w ∈ BO. We have

∥∥(ψw)(δ)
∥∥

=
∥∥
∥∥e

–ρ
ϑ

δ
[
w0 – q(w) – H(0, w0)

]
+ H

(
δ, w(δ)

)
+

1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φF
(
φ, w(φ), Ew(φ)

)
dφ
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+
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

sG
(
φ, w(φ), Ew(φ)

)
dφ

∥∥∥
∥

≤ ∥∥�∗∥∥ +
∥∥H

(
δ, w(δ)

)
– H(δ, 0)

∥∥ +
∥∥H(δ, 0)

∥∥

+
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ

(∥∥
∥∥F

(
φ, w(φ),

∫ φ

0
h
(
φ, τ , w(τ )

)
dτ

)
– F(φ, 0, 0)

∥∥
∥∥

+
∥∥F(φ, 0, 0)

∥∥
)

dφ

+
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ

(∥
∥∥∥G

(
φ, w(φ),

∫ φ

0
h
(
φ, τ , w(τ )

)
dτ

)
– G(φ, 0, 0)

∥
∥∥∥

+
∥∥G(φ, 0, 0)

∥∥
)

dφ

≤ ∥∥�∗∥∥ + KHO + KH +
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ

[
KF

{
‖w‖ +

∥
∥∥
∥

∫ φ

0
h
(
φ, τ , w(τ )

)
dτ

∥
∥∥
∥

}

+ KF

]
dφ

+
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ

[
KG

{
‖w‖ +

∥∥∥
∥

∫ φ

0
h
(
φ, τ , w(τ )

)
dτ

∥∥∥
∥

}
+ KG

]
dφ

≤ ∥∥�∗∥∥ + KHO + KH +
[
KF

[
(1 + Kh)O + Kh

]
+ KF

] 1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ dφ

+
[
KG

[
(1 + Kh)O + Kh

]
+ KG

] 1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ dφ

≤ ∥∥�∗∥∥ + KHO + KH +
[
KF

[
(1 + Kh)O + Kh

]
+ KF

] 1
ρ

(
1 – e

–ρ
ϑ

δ
)

+
[
KG

[
(1 + Kh)O + Kh

]
+ KG

] 1
ρ

(
1 – e

–ρ
ϑ

δ
)

=
∥
∥�∗∥∥ + KHO + KH +

1
ρ

[
(KF + KG)(1 + Kh)O + Kh(KF + KG)

+ KF + KG
](

1 – e
–ρ
ϑ

δ
)

≤ ‖�1‖ +
[
KH +

1
ρ

(KF + KG)(1 + Kh)
]

O.

For all δ ∈ [0, ζ ] and w ∈ BO, we have

∥∥ψ(w)
∥∥

Q ≤ ‖�1‖ +
[
KH +

1
ρ

(KF + KG)(1 + Kh)
]

O < O.

This proves that the ball BO is mapped into itself under the operation ψ , that is, ψBO ⊂ BO.
Further, for all w, w ∈ BO, we have the estimate

∥∥(ψw)(δ) – (ψw)(δ)
∥∥

≤ ∥∥q(w) – q(w)
∥∥ +

∥∥H
(
δ, w(δ)

)
– H

(
δ, w(δ)

)∥∥

+
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ
∥
∥F

(
φ, w(φ), Ew(φ)

)
– F

(
φ, w(φ), Ew(φ)

)∥∥dφ
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+
1
ϑ

e
–ρ
ϑ

δ

∫ δ

0
e

ρ
ϑ

φ
∥∥G

(
φ, w(φ), Ew(φ)

)
– G

(
φ, w(φ), Ew(φ)

)∥∥dφ

≤Kq‖w – w‖Q + KH‖w – w‖Q +
1
ρ

[
(KF + KG)(1 + Kh)

]‖w – w‖Q
(
1 – e

–ρ
ϑ

δ
)

≤
[
Kq + KH +

1
ρ

[
(KF + KG)(1 + Kh)

]
]
‖w – w‖Q.

Thus, for each δ ∈ [0, ζ ], we get

∥
∥ψ(w) – ψ(w)

∥
∥

Q ≤ �1‖w – w‖Q,

where �1 = �1(KF ,KG,KH ,Kh,Kq,ρ), defined in (3.10), depends on the parameters of the
system. According to (3.10), �1 < 1, so ψ is a contraction. As a result, the given nonlocal
integro-differential system (3.9) has a unique solution on [0, ζ ] by [6, Lemma 2.2] of the
Banach contraction principle. This completes the proof. �

4 Applications
Now we provide some examples to validate our results.

Example 4.1 Consider the nonlinear fractional deformable perturbed neutral integro-
differential system

DDD
1
2

[
w(δ) –

e–δ

49 + eδ
· w(δ)

1 + w(δ)

]

=
1

(δ + 4)2
|w(δ)|

1 + |w(δ)| +
1

16

∫ δ

0

e–φ

9
|w(δ)|

1 + |w(δ)| dφ

+
1

(δ + 5)2
|w(δ)|

1 + |w(δ)| +
1

25

∫ δ

0

e–φ

9
|w(δ)|

1 + |w(δ)| dφ, δ ∈ I,

w(0) = 1 = w0, (4.1)

where I = [0, 1]. Set

F(δ, w, Ew) =
1

(δ + 4)2
|w(δ)|

1 + |w(δ)| +
1

16
Ew(δ), (δ, w) ∈ [0, 1] × [0,∞);

G(δ, w, Ew) =
1

(δ + 5)2
|w(δ)|

1 + |w(δ)| +
1

25
Ew(δ), (δ, w) ∈ [0, 1] × [0,∞);

H(δ, w) =
e–δw

(49 + eδ)(1 + w)
, (δ, w) ∈ [0, 1] × [0,∞),

where Ew(δ) =
∫ δ

0
e–φ

9
|w(δ)|

1+|w(δ)| dφ.
For arbitrary y, y ∈ [0,∞) and δ ∈ [0, 1], we have

∥
∥h(δ,φ, y) – h(δ,φ, y)

∥
∥ =

∥∥
∥∥

e–φ

9
y

1 + y
–

e–φ

9
y

1 + y

∥∥
∥∥

≤ 1
9
‖y – y‖,
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∥∥F(δ, y, Hy) – F(δ, y, Hy)
∥∥

≤ 1
(δ + 4)2

‖y – y‖
(1 + ‖y‖)(1 + ‖y‖))

+
1

16
∥
∥Hy(δ) – Hy(δ)

∥
∥

≤ 1
(δ + 4)2 ‖y – y‖ +

1
16

‖Hy – Hy‖

≤ 1
16

[‖y – y‖ + ‖Hy – Hy‖],
∥
∥G(δ, y, Hy) – G(δ, y, Hy)

∥
∥

≤ 1
(δ + 5)2

‖y – y‖
(1 + ‖y‖)(1 + ‖y‖))

+
1

25
∥∥Hy(δ) – Hy(δ)

∥∥

≤ 1
(δ + 5)2 ‖y – y‖ +

1
25

‖Hy – Hy‖

≤ 1
25

[‖y – y‖ + ‖Hy – Hy‖],

and

∥∥H(δ, y) – H(δ, y)
∥∥ ≤ e–δ

(49 + eδ)

∥
∥∥
∥

y
1 + y

–
y

1 + y

∥
∥∥
∥

≤ 1
50

‖y – y‖.

Assumptions (M0)–(M1) hold with Kh = 1
9 , KF = 1

16 ,KG = 1
25 , and KH = 1

50 . Since ϑ = 1
2

and ρ + ϑ = 1, we get ρ = 1
2 . Then

� =
[
KH +

1
ρ

[
(KF + KG)(1 + Kh)

]
]

=
1

50
+

1
0.5

[(
1

16
+

1
25

)
(1.111)

]

= 0.2478 < 1.

As a result, condition (3.1) is to be held with � = 0.2478 < 1. Consequently, by Theo-
rem 3.1 the given nonlinear fractional deformable perturbed neutral integro-differential
system (4.1) has a unique solution on [0, 1].

Example 4.2 Consider the nonlinear fractional deformable perturbed neutral integro-
differential system given by (4.1). In view of Example 4.1, we have

∥
∥F(δ, y, Hy)

∥
∥ ≤ 5

72
;

∥
∥G(δ, y, Hy)

∥
∥ ≤ 2

45
;

∥
∥H(δ, y)

∥
∥ ≤ 1

50
.

Assumption (M3) holds with K̃F (δ) = 5
72 , K̃G(δ) = 2

45 , and K̃H (δ) = 1
50 . Moreover,

KH +
1
ρ
KG(1 + Kh) =

1
50

+ 2
(

1
25

)(
1 +

1
9

)

= 0.109 < 1.
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Then all the conditions of Theorem 3.3 are also satisfied. Therefore at least one solution
exists on [0, 1] for the given fractional neutral integro-differential system (4.1).

5 Conclusions
In this paper, Theorems 3.1, 3.2, and 3.3 were proved to conclude that we can find unique
solutions for the nonlinear fractional deformable perturbed neutral integro-differential
system (1.1). In this direction, Krasnoselskii’s fixed point theorem along with the Banach
contraction principle were used. Furthermore, we have proved Theorem 3.4 utilizing the
Banach contraction principle by using two independent cases in conditions for proving
the existence of unique solutions of the given fractional neutral integro-differential sys-
tem (3.9). Two examples showed the applicability of the main results. In the near future,
deformable fractional derivative may be applied in computer artificial intelligence algo-
rithms by using a suitable fixed point iteration method.
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