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Abstract
We provide here a novel approach for solving IVPs in ODEs and MTFDEs numerically
by means of a class of MSJPs. Using the SCM, we build OMs for RIs and RLFI for MSJPs
as part of our process. These architectures guarantee accurate and efficient numerical
computations. We provide theoretical assurances for the efficacy of an algorithm by
establishing its convergence and error analysis features. We offer five numerical
examples to prove that our method is accurate and applicable. Through these
examples, we demonstrate the greater accuracy and efficiency of our approach by
comparing our results with previously published findings. Tables and graphs show
that the method produces exact and approximate solutions that agree quite well
with each other.
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1 Introduction
A subfield of mathematics known as fractional calculus has recently attracted a lot of inter-
est due to involved integrals and derivatives of noninteger order. Complex systems display-
ing long-term memory effects and anomalous diffusion phenomena, such as heat trans-
port, can be effectively modeled and analyzed using this mathematical technique [1–3].
Financing, biology, engineering, physics, and many branches of applied calculus are all
included [4–8].

There has been a lot of research on numerical methods for solving IVPs and BVPs in
ordinary differential equations and partial differential equations (e.g., [9–24]). To numer-
ically solve various types of DEs, OMs constructed from orthogonal and nonorthogonal
polynomials have been extensively used [25–32]. As far as accuracy and computing effi-
ciency are concerned, many algorithms have shown promise. Nonetheless, new avenues
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should be investigated to improve the numerical solutions in terms of accuracy and effi-
ciency. Our new method for numerically solving ODEs takes the form

y(n)(z) +
n–1∑

q=0

ηqy(q)(z) = f1(z), z ∈ [0,L], n = 1, 2, 3, . . . , (1.1)

and, for solving MTFDEs,

Dνy(z) +
k∑

i=0

γiDβi y(z) + γk+1y(z) = f2(z), z ∈ [0,L], (1.2)

subject to the ICs

y(j)(0) = αj, j = 0, 1, . . . , n – 1, (1.3)

where ηi, αi (i = 0, 1, . . . , n – 1), βi, γi (i = 0, 1, . . . , k), γk+1, and ν are constants such that n –
1 ≤ ν < n, 0 < β1 < β2 < · · · < βk < ν . The functions f1 and f2 are supposed to be continuous.

First, we build OMs for RIs and RLFI for MSJPs using our technique. Then we apply
the SCM. We are able to acquire very close approximations of the solutions since these
architectures guarantee efficient and accurate numerical computations. Following these
basic stages, the suggested method may solve ODEs (1.1) and MTFDEs (1.2) susceptible
to ICs (1.3):

(i) We transform equations (1.1) and (1.2) together with ICs (1.3) into an equivalent
form with homogeneous conditions.

(ii) Fully integrated forms of (1.1) and (1.2) are obtained by applying RIs and RLFI,
respectively. This conversion allows for a more comprehensive representation of
the problem.

(iii) In the integrated forms of (1.1) and (1.2), the solution and all of its RIs and RLFI are
approximated by using the constructed OMs to write them as linear combinations
of MSJPs, followed by the application of the SCM.

(iv) Using a suitable numerical method, the systems of algebraic equations obtained in
(iii) can be solved, which provides the required numerical solutions.

We examine the convergence properties and perform a comprehensive error analysis to
prove that our suggested algorithm works. To prove that our method is accurate and effi-
cient, we offer theoretical guarantees. We also include five numerical examples that show
a variety of IVPs, from (1.1) to (1.3). By contrasting our findings with those of other re-
searchers we demonstrate how our method is more precise and efficient. The provided
graphs and tables show that the exact and approximate solutions correspond very well.

One notable aspect of our suggested approach is using MSJPs. An innovative method
for solving the aforementioned IVPs is presented by making use of these polynomials and
the OMs that are linked with them. Advantages of MSJPs over current approaches include
better accuracy, faster convergence, and lower computing cost.

The paper is outlined as follows. The definitions and properties of RFI and RIs are pro-
vided in Sect. 2. Section 3 details several features of SJPs and MSJPs. The main emphasis
is placed on developing new OMs for the RFI and RIs of MSJPs in Sect. 4. To construct
the algorithms that are to be used to resolve the IVPs (1.1)–(1.3), this act is carried out.
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Here in Sect. 5, we lay out our approach to solving IVPs in ODEs and MTFDEs with the
help of the built OMs and the SCM. The suggested method is the subject of the theoreti-
cal examination in Sect. 6. As part of our investigation of the convergence characteristics
of the method, we run an error analysis. Theoretical assurances regarding the precision
and performance of the algorithm are deduced and examined. We provide five numeri-
cal examples in Sect. 7 to verify that our method is accurate and applicable. To evaluate
the suggested algorithm, we may look at these examples that span a variety of IVPs, from
(1.1) to (1.3). We show that our method is more accurate and efficient in comparison with
those published earlier. There is a very close match between the exact and approximate
solutions, as seen in the tables and graphs. We highlight the merits, limits, and prospec-
tive enhancements of our algorithm in Sect. 8, where we also summarize the key findings
and offer conclusions based on our study.

2 Preliminaries and notation
This section introduces the key ideas and tools needed to construct the suggested ap-
proach. These ideas and technologies underpin our approach, helping us solve the chal-
lenge. In this context, the Riemann–Liouville definition of a fractional integration of order
ν > 0 is defined as follows [8].

Definition 2.1

Iν f (x) =
1

�(ν)

∫ x

0
(x – τ )ν–1f (τ ) dτ , ν > 0, x > 0, (2.1)

and I0f (x) = f (x), where m – 1 ≤ ν < m, and m ∈ N is the smallest integer greater than ν .

For μ,ν ≥ 0 and γ > –1, the following properties of are satisfied:

IμIν f (x) = Iμ+ν f (x), (2.2)

IμIν f (x) = IνIμf (x), (2.3)

Iμxγ =
�(γ + 1)

�(γ + μ + 1)
xγ +μ, (2.4)

Iν
(
λ1h1(x) + λ2h2(x)

)
= λ1Iνh1(x) + λ2Iνh2(x). (2.5)

The RLFD of order ν > 0, denoted by RDν , is defined as follows:

RDν f (x) =
dm

dxm

(
Im–ν f (x)

)
, x > 0. (2.6)

On the other hand, the CFD of order ν , denoted by CDν , is defined as follows:

CDν f (x) =
1

�(m – ν)

∫ x

0
(x – τ )m–ν–1f (m)(τ ) dτ , x > 0, (2.7)

which can be written in the form

CDν f (x) =
dm

dxm

(
Im–ν f (m)(x)

)
, x > 0. (2.8)
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The CFD satisfies the following properties:

CDνC = 0 (C is constant), (2.9)

IνCDν f (x) = f (x) –
m–1∑

j=0

f (j)(0+)
j!

xj, (2.10)

CDνxγ =
�(γ + 1)

�(γ + 1 – μ)
xγ –ν , (2.11)

CDν
(
λ1h1(x) + λ2h2(x)

)
= λ1Dνh1(x) + λ2Dνh2(x). (2.12)

The relation between the RLFI and CFD is given by [8, Eq. (2.4.6)]

CDν f (x) = RDν f (x) –
m–1∑

j=0

f (j)(0)
�(j – ν + 1)

xj–ν , m – 1 ≤ ν < m, (2.13)

so that if f (j)(0) = 0, j = 0, 1, . . . , m – 1, then

RDν f (x) = CDν f (x). (2.14)

To accomplish the proposed algorithm, we must define the q times repeated integral of
f (x) as follows.

Definition 2.2 Let f be a continuous function on the real line. Then the qth repeated
integral of f , Jqf , is defined as follows:

Jqf (x) =

q–times︷ ︸︸ ︷∫ x

0

∫ x

0
· · ·

∫ x

0
f (τ )

q–times
dτ dτ . . . dτ , (2.15)

which is known as the q-fold integral and has the form [33, Eq. (2.16)]

Jqf (x) =
1

(q – 1)!

∫ x

0
(x – τ )q–1f (τ ) dτ , x > 0. (2.16)

According to integral expressions (2.1) and (2.16), it is shown that

Jqf (x) = Iqf (x). (2.17)

Lemma 2.1

Jqf (r)(x) = Jq–rf (x) –
r–1∑

j=0

f (j)(0+)
(q – r + j)!

xq–r+j, r ≤ q, (2.18)

and for the case r = q, we have

Jqf (q)(x) = f (x) –
q–1∑

j=0

f (j)(0+)
j!

xj. (2.19)

Accordingly, if f (j)(0) = 0, j = 0, 1, . . . , r – 1, then Jqf (r)(x) = Jq–rf (x), r ≤ q.
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Proof It is easy to prove this lemma using induction on r. �

Remark 2.1 Riemann’s modified form of Liouville’s fractional integral operator is a di-
rect generalization of Cauchy’s formula for a q-fold integral. Moreover, in view of formula
(2.16), we can see that formula (2.19) coincides with Taylor’s formula with remainder.

3 An overview on SJPs and MSJPs
The main objective of this section is to present the fundamental characteristics of JPs and
their shifted form. Furthermore, we will introduce a set of MSJPs.

3.1 An overview on SJPs
The orthogonal JPs, J(a,b)

n (x), a,b > –1, satisfy the following relationship [34]:

∫ 1

–1
wa,b(x)J(a,b)

n (x)J(a,b)
m (x) dx =

⎧
⎨

⎩
0, m �= n,

h(a,b)
n , m = n,

where wa,b(x) = (1 – x)a(1 + x)b and h(a,b)
n = 2λ�(n+a+1)�(n+b+1)

n!(2n+λ)�(n+λ) , λ = a + b + 1.
The SJPs, denoted as J(a,b)

L,n (z) = J
(a,b)
n (2z/L – 1), are in accordance with

∫ L

0
wa,b
L

(z)J(a,b)
L,n (z)J(a,b)

L,m (z) dz =

⎧
⎨

⎩
0, m �= n,

(L2 )λh(a,b)
n , m = n,

where wa,b
L

(z) = (L – z)azb.
The expansions that will serve as the foundation in this paper are the following funda-

mental ones [35, Sect. 11.3.4]:
1. The power form representation of J(a,b)

L,n (z) is as follows:

J
(a,b)
L,i (z) =

i∑

k=0

c(i)
k z

k , (3.1)

where

c(i)
k =

(–1)i–k�(i + b + 1)�(i + k + λ)
Lkk!(i – k)!�(k + b + 1)�(i + λ)

. (3.2)

2. Alternatively, the expression for zk in relation to J
(a,b)
L,r (z) has the form

z
k =

k∑

r=0

b(k)
r J

(a,b)
L,r (z), (3.3)

where

b(k)
r =

Lkk!(λ + 2r)�(k + b + 1)�(r + λ)
(k – r)!�(r + b + 1)�(k + r + λ + 1)

. (3.4)
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3.2 Presenting MSJP
In this section, we define the polynomials {K(a,b)

n,j (z)}j≥0 as follows:

K
(a,b)
n,j (z) = z

n
J

(a,b)
L,j (z), n = 1, 2, . . . . (3.5)

They are needed to satisfy the homogeneous form of the given ICs (1.3) for a suitable
choice of p. Subsequently, these polynomials satisfy the orthogonality relation:

∫ L

0

wa,b
L

(z)
z2n K

(a,b)
n,i (z)K(a,b)

n,j (z) dz =

⎧
⎨

⎩
0, i �= j,

(L2 )λh(a,b)
i , i = j.

(3.6)

4 OM for RIs and RLFI for K(a,b)
n,i (z)

In this section, we prove Theorems 4.1 and 4.2, which give the qth integrals for all q ≥ 1
and fractional integrals of Kn,i(z) in terms of the same polynomials.

Theorem 4.1 JqK
(a,b)
n,i (z), i ≥ 0, can be written in the form

Jq
K

(a,b)
n,i (z) =

i+q∑

j=0

P
(a,b)
i,j (n, q)K(a,b)

n,j (z) (4.1)

with

P
(a,b)
i,j (n, q) = C̃a,b

i,j

i∑

r=max(0,j–q)

(–1)r(n + r)!(q + r)!(r + b + 1)q(i + λ)r

r!(i – r)!(q + r – j)!(n + q + r)!�(j + q + r + λ + 1)
, (4.2)

where

C̃a,b
i,j =

(–1)iLq�(i + b + 1)(λ + 2j)�(j + λ)
�(j + b + 1)

.

Consequently, JqK
(a,b)
n,N (z), q = 1, 2, . . . , n, have the form

JqK
(a,b)
n,N (z) = J(q)

n K
(a,b)
n,N+q(z), (4.3)

where J(q)
n = (g(q)

i,j (n)) is a matrix of order (N + 1) × (N + q + 1), expressed explicitly as

⎛

⎜⎜⎜⎜⎝

P
(a,b)
0,0 (n, q) · · · P

(a,b)
0,q (n, q) 0 · · · · · · · · ·0

P
(a,b)
1,0 (n, q) · · · · · · P

(a,b)
1,q+1(n, q) 0 · · · · · ·0

...
...

...
...

. . .
...

P
(a,b)
N ,0 (n, q) · · · · · · · · · · · · · · · P

(a,b)
N ,N+q(n, q)

⎞

⎟⎟⎟⎟⎠
(4.4)

with

g
(q)
i,j (n) =

⎧
⎨

⎩
P

(a,b)
i,j (n, q), j = 0, 1, . . . , i + q, i = 0, 1, . . . , N ,

0 otherwise,
(4.5)
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and

K
(a,b)
n,N (z) =

[
K

(a,b)
n,0 (z),K(a,b)

n,1 (z), . . . ,K(a,b)
n,N (z)

]T . (4.6)

Proof The following formula can be obtained by combining integrating operations q times
and relation (3.1):

Jq
K

(a,b)
n,i (z) =

i∑

j=0

c(i)
j

(j + n)!
(j + n + q)!

z
j+n+q. (4.7)

Now using formula (3.3), we obtain

Jq
K

(a,b)
n,i (z) =

i∑

j=0

c(i)
j

(j + n)!
(j + n + q)!

j+q∑

k=0

b(j+q)
k K

(a,b)
n,k (z). (4.8)

Expanding and collecting similar terms, after some algebra, we get

Jq
K

(a,b)
n,i (z) =

i+q∑

j=0

( i∑

k=max(0,j–q)

c(i)
k

(k + n)!
(k + n + q)!

b(k+q)
j

)
K

(a,b)
n,j (z). (4.9)

Then substituting formulae (3.2) and (3.4) into (4.9), after some manipulation, yields (4.1),
which can be expressed as follows:

Jq
K

(a,b)
n,i (z) =

[
P

(a,b)
i,0 (n, q),P(a,b)

i,1 (n, q), . . . ,P(a,b)
i,i+q (n, q), 0, . . . , 0

]
K

(a,b)
n,N+q(z), (4.10)

and this expression leads to the proof of (4.3). �

Theorem 4.2 IμK
(a,b)
n,i (z), i ≥ 0, can be written in the form

Iμ
K

(a,b)
n,i (z) = z

μ

i∑

j=0

F
(μ)
i,j (n)K(a,b)

n,j (z), (4.11)

and, consequently, IμK
(a,b)
n,N (z) has the form

IμK
(a,b)
n,N (z) = z

μI(μ)
n K

(a,b)
n,N (z), (4.12)

where I(μ)
n = (h(μ)

i,j (n)) is a matrix of order (N + 1)× (N + 1), which can be expressed explicitly
as

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F
(μ)
0,0 (n) 0 · · · · · · · · · 0

F
(μ)
1,0 (n) F

(μ)
1,1 (n) 0 · · · · · · 0

...
. . .

...
F

(μ)
i,0 (n) · · · F

(μ)
i,i (n) 0 · · · 0

...
. . .

...
...

. . . 0
F

(μ)
N ,0(n) · · · · · · · · · · · · F

(μ)
N ,N (n)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.13)
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where

h
(μ)
i,j (n) =

⎧
⎨

⎩
F

(μ)
i,j (n), i ≥ j,

0 otherwise,
(4.14)

and

F
(μ)
i,j (n) =

(–1)i–j(n + j)!�(i + b + 1)�(j + λ)�(i + j + λ)
(i – j)!�(j + b + 1)�(2j + λ)�(i + λ)�(n + j + μ + 1)

×3 F2

(
j – i, n + j + 1, i + j + λ

2j + λ + 1, n + j + μ + 1
; 1

)
. (4.15)

Proof Considering (3.1) and utilizing (2.4), we obtain

Iμ
K

(a,b)
n,i (z) = z

n+μ

i∑

k=0

c(i)
k

�(k + n + 1)
�(k + n + μ + 1)

z
k . (4.16)

By utilizing (3.3), (4.16) may be reformulated as (4.11), which can be represented as

Iμ
K

(a,b)
n,i (z) = z

μ
[
F

(μ)
i,0 (n),F(μ)

i,1 (n), . . . ,F(μ)
i,i (n), 0, . . . , 0

]
K

(a,b)
n,N (z), (4.17)

and this expression leads to the proof of (4.12). �

Note 4.1 It is easy to see that J(0)
n = I(0)

n = IN+1, where IN+1 is the identity matrix of size N +1,
and hence (4.3) and (4.12) are satisfied for q = 0 and μ = 0, respectively.

Remark 4.1 It is worth stating that the forms of P(a,b)
i,j (n, q) and F

(μ)
i,j (n) in Theorems 4.1

and 4.2 have a closed form for certain a, b. These include particular cases of Jacobi poly-
nomials: the Chebyshev polynomials of the first and second kinds, Legendre polynomials,
and ultraspherical polynomials.

Remark 4.2 The utilization of formula (3.3) in relation (4.16) leads to the lower triangular
structure of matrix (4.13). This structure reduces the complexity of the algorithm, allowing
it to handle larger problem sizes without excessive computational demands.

5 Numerical algorithm for solving ODE (1.1) and MTFDE (1.2) subject to ICs
(1.3)

In this section, we propose a numerical solution for Eq. (1.1) when we apply the homoge-
neous form of ICs, specifically, when αj = 0 for all j = 0, 1, 2, . . . , n – 1. With this respect, the
basis K(a,b)

n,i (z) is used to satisfy this homogeneous form of ICs. On the other hand, creat-
ing the suggested procedure requires converting (1.1) and (1.2) into equivalent forms with
homogeneous conditions, also taking into account the nonhomogeneous conditions (1.3).

5.1 Homogeneous ICs
Consider the homogeneous case of ICs (1.3). The first step of our algorithm is applying
the integral operators Jn and Iν to Eqs. (1.1) and (1.2), respectively. Using Lemma 2.1 and
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properties (2.2), (2.10), (2.12), (2.14), and (2.17), we get the following integrated forms of
(1.1) and (1.2):

y(z) +
n–1∑

q=0

ηqJn–qy(z) = g1(z), z ∈ [0,L], n = 1, 2, 3, . . . , (5.1)

and

y(z) +
k∑

i=0

γiIν–βi y(z) + γk+1Iνy(z) = g2(z), z ∈ [0,L], (5.2)

where g1(z) = Jnf1(z) is defined by (2.16), and g2(z) = Iν f2(z). Now consider the approximate
solution of y(z) in the form

y(z) � yN (z) =
N∑

i=0

ciK
(a,b)
n,i (z) = ATK

(a,b)
n,N (z), (5.3)

where A = [c0, c1, . . . , cN ]T . Finally, Theorems 4.1 and 4.2 enable us to approximate the
Jn–qy(z), q = 0, 1, . . . , n – 1, and Iν–βi y(z), i = 0, 1, . . . , k, in the matrix forms

Jn–qy(z) � Jn–qyN (z) = AT J(n–q)
n K

(a,b)
n,N+q(z) (5.4)

and

Iν–βi y(z) � Iν–βi yN (z) = z
ν–βi AT I(ν–βi)

n K
(a,b)
n,N (z). (5.5)

In this method, approximations (5.3), (5.4), and (5.5) allow us to write the residuals of
equations (5.1) and (5.2) as

Rn,N (z) = ATK
(a,b)
n,N (z) +

n–1∑

q=0

ηq AT J(n–q)
n K

(a,b)
n,N+n–q(z) – g1(z), (5.6)

Rn,N (z) = ATK
(a,b)
n,N (z) +

k∑

i=0

γi z
ν–βi AT I(ν–βi)

n K
(a,b)
n,N (z)

+ γk+1 z
νAT I(ν)

n K
(a,b)
n,N (z) – g2(z). (5.7)

In view of Note 4.1, Rn,N (z) and Rn,N (z) can be written in the forms

Rn,N (z) =
n∑

q=0

ηn–q AT J(q)
n K

(a,b)
n,N+q(z) – g1(z), ηn = 1, (5.8)

Rn,N (z) =
k+2∑

i=0

γi z
ν–βi AT I(ν–βi)

n K
(a,b)
n,N (z) – g2(z), γk+2 = 1,βk+1 = 0,βk+2 = ν. (5.9)

In this part, we suggest a spectral method called MSJCOMIM to numerically solve
Eqs. (1.1) and (1.2) under the ICs (1.3) (where αj = 0, j = 0, 1, . . . , n – 1). The collocation



Ahmed Boundary Value Problems         (2024) 2024:75 Page 10 of 19

points of this method are selected as the N + 1 zeros of J(a,b)
L,N+1(z) or, alternatively, as the

points zi = L(i+1)
N+2 , i = 0, 1, . . . , N . Then we get

Rn,N (zi) = 0, i = 0, 1, . . . , N , (5.10)

in the case of ODE (1.1), whereas in the case of MTFDE (1.2), we have

Rn,N (zi) = 0, i = 0, 1, . . . , N . (5.11)

Solving (5.10) or (5.11) by an appropriate solver, the coefficients ci (i = 0, 1, . . . , N ) can be
determined to obtain numerical solutions for the DEs (1.1) or (1.2), respectively.

Note 5.1 There are a number of aspects to think about deciding which collocation points
to use, such as the nature of the problem and the desired numerical solution properties.
We should perform a comparison analysis with the numerical solutions computed to de-
termine which of these choices is better. Applying both sets of collocation points to the
investigated problems and evaluating them according to accuracy, convergence, and com-
puting efficiency will shed light on the relative merits of the two options for the problem
class in consideration.

5.2 Nonhomogeneous ICs
An essential part of creating the suggested algorithm is changing the nonhomogeneous
conditions (1.3) and equations (5.1) and (5.2) into equivalent versions with homogeneous
conditions. The following transformation makes these changes possible:

ȳ(z) = y(z) – qn(z), qn(z) =
n–1∑

i=0

αi

i!
z

i. (5.12)

As a result, the current problems can be simplified by solving the following modified
equations:

n∑

q=0

ηqJn–qȳ(z) = g̃1(z), z ∈ [0,L], (5.13)

k+2∑

i=0

γiIν–βi ȳ(z) = g̃2(z), z ∈ [0,L], (5.14)

subject to

ȳ(j)(0) = 0, j = 0, 1, . . . , n – 1, (5.15)

where

g̃1(z) = Jnf1(z) –
n∑

q=0

ηqJn–qqn(z), (5.16)

g̃2(z) = Iν f2(z) –
k+2∑

i=0

γiIν–βi qn(z), (5.17)
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Algorithm 1 MSJCOMIM algorithm to solve ODE (1.1)

Action 1. Given n, a, b, L, N , αi, ηq, i = 0, 1, . . . , n – 1, and q = 0, 1, . . . , n.
Action 2. Define K

(a,b)
n,j (z), A, K(a,b)

n,N (z) and compute the elements of J (q)
n .

Action 3. Compute g1(z) and AT J (q)
n K

(a,b)
n,N+q(z), q = 0, 1, . . . , n.

Action 4. Define Rn,N (z) as in Eq. (5.8).
Action 5. List Rn,N (zi) = 0, i = 0, 1, . . . , N , defined in Eq. (5.10).
Action 6. Use Mathematica built-in numerical solver to solve the system in [Output 5].
Action 7. Compute yN (z) given by Eq. (5.3) (in the case of homogeneous ICs).
Action 8. Compute qn(z) and yN (z) given by Eq. (5.18) (in the case of nonhomogeneous
ICs).

Algorithm 2 MSJCOMIM algorithm to solve MTFDE (1.2)

Action 1. Given n, a, b, L, N , ν, αi, βj, γj, i = 0, 1, . . . , n – 1, j = 0, 1, . . . , k + 2.
Action 2. Define K(a,b)

n,j (z), A, K(a,b)
n,N (z) and compute the elements of I(ν–βj)

n , j = 0, 1, . . . , k + 2.
Action 3. Compute g2(z) and AT I(ν–βj)

n K
(a,b)
n,N (z), j = 0, 1, . . . , k + 2.

Action 4. Define Rn,N (z) as in Eq. (5.9).
Action 5. List Rn,N (zi) = 0, i = 0, 1, . . . , N , defined in Eq. (5.11).
Action 6. Use Mathematica’s built-in numerical solver to solve the system in [Output 5].
Action 7. Compute yN (z) given by Eq. (5.3) (in the case of homogeneous ICs).
Action 8. Compute qn(z) and yN (z) given by Eq. (5.18) (in the case of nonhomogeneous
ICs).

and then

yN (z) = ȳN (z) + qn(z). (5.18)

Remark 5.1 In Sect. 7, we use MSJCOMIM to solve numerous numerical problems.
A computer system with 3.60 GHz Intel(R) Core(TM) i9-10850 CPU, 10 cores, and 20
logical processors ran the calculations using Mathematica 13.3. The algorithmic steps for
solving the ODE and MTFDE using MSJCOMIM are expressed in Algorithms 1 and 2,
respectively:

6 Convergence and error analysis
In this section, we examine the convergence and error estimates of suggested method. The
space Sn,N is defined as follows:

Sn,N = Span
{
K

(a,b)
n,0 (z),K(a,b)

n,1 (z), . . . ,K(a,b)
n,N (z)

}
.

Additionally, we define the error between y(z) and its approximation yN (z) as

EN (z) =
∣∣y(z) – yN (z)

∣∣. (6.1)
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In the paper, the error of the numerical scheme is analyzed by using the estimate of the L2

norm error,

‖EN‖2 = ‖y – yN‖2 =
(∫ L

0

∣∣y(z) – yN (z)
∣∣2 dz

)1/2

, (6.2)

and the estimate of the L∞ norm error,

‖EN‖∞ = ‖y – yN‖∞ = max
0≤z≤L

∣∣y(z) – yN (z)
∣∣. (6.3)

Theorem 6.1 [36] suppose that y(z) = znu(z) and yN (z) is presented by (5.3) and represents
the best possible approximation for y(z) out of Sn,N . In that case, there exists a constant K
such that

‖EN‖∞ ≤ KLn+1

2λ

(
eL
4

)N

(N + 1)s–N–1 (6.4)

and

‖EN‖2 ≤ KLn+3/2

2λ

(
eL
4

)N

(N + 1)s–N–1, (6.5)

where s = max{a,b, –1/2} and K = maxz∈[0,L] | dN+1u(η)
dzN+1 |, η ∈ [0,L].

The following conclusion demonstrates that the obtained error converges at a fairly
rapid rate.

Corollary 6.1 For all N > s – 1, we have the estimates

‖EN‖∞ = O
(
(eL/4)N Ns–N–1) (6.6)

and

‖EN‖2 = O
(
(eL/4)N Ns–N–1). (6.7)

An estimate for error propagation is the focus of the next theorem, which stresses the
stability of error.

Theorem 6.2 For two iterative approaches to y(z), we have

|yN+1 – yN | �O
(
(eL/4)N Ns–N–1), N > s – 1, (6.8)

where � indicates that there exists a generic constant d such that |yN+1 – yN | ≤ d(eL/4)N ×
Ns–N–1.

Note 6.1 As eL/4 goes down, the error estimates in this section show that the rate of con-
vergence changes from an inverse polynomial to an exponential one.
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Table 1 Errors obtained for Example 7.2 using L = 1

a b Errors N = 1 N = 3 N = 5 N = 7 N = 9 N = 11

0 0 ‖EN ‖∞ 1.15 ×10–2 1.73 ×10–5 4.22 ×10–8 3.14 ×10–11 3.18 ×10–14 2.21 ×10–16

‖EN ‖2 7.01 ×10–3 2.21 ×10–5 3.13 ×10–8 2.16 ×10–11 2.13 ×10–14 2.08 ×10–16

1 0 ‖EN ‖∞ 3.01 ×10–2 2.21 ×10–4 3.17 ×10–7 6.11 ×10–11 2.12 ×10–13 4.21 ×10–16

‖EN ‖2 2.13 ×10–3 3.05 ×10–5 2.43 ×10–8 2.32 ×10–11 3.22 ×10–14 5.21 ×10–16

0 1 ‖EN ‖∞ 3.21 ×10–2 3.32 ×10–4 1.21 ×10–7 3.52 ×10–10 2.60 ×10–13 5.26 ×10–16

‖EN ‖2 2.21 ×10–2 8.23 ×10–5 2.78 ×10–7 2.72 ×10–10 2.23 ×10–13 4.32 ×10–16

–1/2 1/2 ‖EN ‖∞ 2.23 ×10–2 4.12 ×10–5 6.71 ×10–8 4.41 ×10–11 2.92 ×10–14 8.27 ×10–16

‖EN ‖2 6.22 ×10–3 4.21 ×10–5 5.81 ×10–8 3.81 ×10–11 3.61 ×10–14 4.91 ×10–16

1 1 ‖EN ‖∞ 2.13 ×10–2 2.74 ×10–4 3.32 ×10–7 4.19 ×10–10 3.91 ×10–13 3.81 ×10–16

‖EN ‖2 3.11 ×10–3 3.41 ×10–4 4.21 ×10–7 3.41 ×10–10 4.32 ×10–13 1.15 ×10–16

Table 2 Errors obtained for Example 7.2 using L = 4

a b Errors N = 5 N = 8 N = 11 N = 14 N = 17 N = 20

0 0 ‖EN ‖∞ 2.25 ×10–2 3.13 ×10–5 5.31 ×10–8 4.24 ×10–11 4.78 ×10–14 4.33 ×10–16

‖EN ‖2 5.11 ×10–3 3.44 ×10–5 4.63 ×10–8 6.46 ×10–11 7.23 ×10–14 3.18 ×10–16

1 0 ‖EN ‖∞ 4.11 ×10–2 3.91 ×10–4 4.21 ×10–7 7.71 ×10–11 3.92 ×10–13 1.29 ×10–15

‖EN ‖2 1.24 ×10–3 4.15 ×10–5 3.42 ×10–8 5.41 ×10–11 5.62 ×10–13 1.11 ×10–15

0 1 ‖EN ‖∞ 5.12 ×10–2 4.92 ×10–4 2.71 ×10–7 2.92 ×10–10 3.10 ×10–13 5.91 ×10–15

‖EN ‖2 2.11 ×10–2 7.43 ×10–5 4.18 ×10–7 5.13 ×10–10 1.33 ×10–13 4.51 ×10–15

–1/2 1/2 ‖EN ‖∞ 1.32 ×10–2 4.80 ×10–5 5.02 ×10–8 5.92 ×10–11 4.12 ×10–14 8.77 ×10–16

‖EN ‖2 5.10 ×10–3 4.44 ×10–5 4.72 ×10–8 3.23 ×10–11 5.23 ×10–14 4.01 ×10–16

1 1 ‖EN ‖∞ 2.73 ×10–2 1.01 ×10–5 4.82 ×10–8 5.20 ×10–11 4.22 ×10–14 3.57 ×10–16

‖EN ‖2 4.22 ×10–3 3.52 ×10–5 5.93 ×10–8 4.81 ×10–11 2.33 ×10–14 2.25 ×10–16

7 Numerical simulations
To demonstrate that the method given in Sect. 5 is effective and efficient, we give sev-
eral examples. To measure precision, we display the MAE between the exact and approx-
imate solutions. In particular, we demonstrate in Examples 7.1 and 7.4 that the suggested
method MSJCOMIM produces the exact solution for problems with a polynomial solu-
tion of degree N . We also show the calculated errors for numerical solutions yN (z) ob-
tained with MSJCOMIM for N = 1, . . . , 20. We can see the excellent computational accu-
racy in the findings summarized in Tables 1, 2, 4, 6, and 7. In addition, Tables 3, 5, and 7
compare MSJCOMIM with other techniques provided in [37–41]. The results show that
MSJCOMIM is the best method, giving more accurate predictions than the others. Fig-
ures 1a, 2a, 3a, 3b, and 4a show that the approximate and exact solutions for Examples
7.2, 7.3, and 7.5 are highly congruent with each other. Furthermore, the log-errors for dif-
ferent a and b values are shown in Figs. 1b, 2b, and 4b. This demonstrates that the solutions
for Problems 7.2 and 7.5 when employing MSJCOMIM are stable and converge.

7.1 Numerical simulations for handling ODE (1.1) with ICs (1.3)
Problem 7.1 Consider the differential equation

D3y(z) – D2y(z) + Dy(z) – y(z) = g(z), 0 ≤ z≤ L,

y(0) = 2, y′(0) = 0, and y′′(0) = 0,

⎫
⎬

⎭ (7.1)
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Table 3 A comparison of approaches [38] and MSJCOMIM for Example 7.2

a b L N MSJCOMIM N Method in [38] L N MSJCOMIM N Method in [38]

2 1 1 10 4.22 ×10–15 10 8.54 ×10–7 4 10 5.32 ×10–7 10 4.18 ×100

1 1 3.00 ×10–15 1.54 ×10–6 5.19 ×10–7 4.14 ×100

1/2 –1/2 5.10 ×10–15 8.28 ×10–8 4.53 ×10–7 1.15 ×100

–1/2 1/2 4.02 ×10–15 1.18 ×10–6 6.25 ×10–7 2.66 ×10–1

2 1 1 11 2.10 ×10–16 20 8.32 ×10–16 4 20 4.55 ×10–16 20 7.52 ×10–8

1 1 1.78 ×10–16 9.15 ×10–16 3.57 ×10–16 1.33 ×10–7

1/2 –1/2 2.17 ×10–16 8.04 ×10–16 5.14 ×10–16 2.30 ×10–9

–1/2 1/2 2.70 ×10–16 3.92 ×10–16 8.77 ×10–16 6.51 ×10–8

Table 4 Errors obtained for Example 7.3

a b Errors N = 1 N = 3 N = 5 N = 7 N = 9 N = 10

0 0 ‖EN ‖∞ 1.15 ×10–2 2.83 ×10–5 5.12 ×10–8 4.29 ×10–11 2.88 ×10–14 1.20 ×10–16

‖EN ‖2 9.11 ×10–3 1.11 ×10–5 2.23 ×10–8 3.36 ×10–11 1.23 ×10–14 1.18 ×10–16

1 0 ‖EN ‖∞ 2.11 ×10–2 1.11 ×10–4 2.27 ×10–7 7.81 ×10–11 1.32 ×10–13 5.16 ×10–16

‖EN ‖2 1.53 ×10–3 2.15 ×10–5 3.53 ×10–8 3.22 ×10–11 1.82 ×10–14 4.36 ×10–16

0 1 ‖EN ‖∞ 2.41 ×10–2 1.26 ×10–4 2.41 ×10–7 3.31 ×10–10 2.51 ×10–13 6.16 ×10–16

‖EN ‖2 2.13 ×10–2 9.13 ×10–5 1.89 ×10–7 1.71 ×10–10 1.13 ×10–13 5.12 ×10–16

1/2 1/2 ‖EN ‖∞ 1.12 ×10–2 2.28 ×10–5 6.92 ×10–8 5.42 ×10–11 2.81 ×10–14 7.87 ×10–16

‖EN ‖2 8.12 ×10–3 3.81 ×10–5 5.31 ×10–8 3.70 ×10–11 2.71 ×10–14 4.21 ×10–16

1 2 ‖EN ‖∞ 2.82 ×10–2 2.14 ×10–4 4.31 ×10–7 4.02 ×10–10 3.87 ×10–13 3.72 ×10–16

‖EN ‖2 3.66 ×10–3 2.51 ×10–4 3.12 ×10–7 3.37 ×10–10 3.30 ×10–13 1.33 ×10–16

Table 5 A comparison of approaches [39] and MSJCOMIM for Example 7.3 using a = 3, b = 1

N CPU MSJCOMIM Method in [39] Method in [40]

10 21.12 1.15 ×10–16 1.82 ×10–1 1.16 ×10–16

12 25.25 1.13 ×10–16 2.15 ×10–8 1.15 ×10–16

15 29.21 1.12 ×10–16 3.65 ×10–9 1.16 ×10–16

where g(z) is chosen such that y(z) = z4 + 2. The application of the proposed method
MSJCOMIM gives

y(z) = y1(z) =
(b + 1)L
λ + 1

K
(a,b)
3,0 (z) +

L

λ + 1
K

(a,b)
3,1 (z) + 2.

Problem 7.2 Consider the differential equation [38]

D3y(z) – 2D2y(z) – 3Dy(z) + 10y(z)

= (34z – 16)e–2z – 10z2 + 6z + 34, 0 ≤ z≤ L,

y(0) = 3, y′(0) = 0, y′′(0) = 0,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(7.2)

where y(z) = z2e–2z – z2 + 3. This solution agrees perfectly with the numerical solutions
obtained with accuracy of 10–16 when L = 1, 4 and N = 11, 20, respectively, as shown in
Tables 1 and 2.
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Table 6 Errors obtained for Example 7.5 (α = 1)

a b Errors N = 1 N = 4 N = 7 N = 10 N = 13 N = 16

0 0 ‖EN ‖∞ 1.16 ×10–2 2.83 ×10–4 3.18 ×10–7 4.19 ×10–10 1.98 ×10–13 4.66 ×10–15

‖EN ‖2 2.71 ×10–3 1.11 ×10–5 3.13 ×10–8 3.16 ×10–11 1.23 ×10–14 4.22 ×10–16

1 0 ‖EN ‖∞ 1.19 ×10–2 1.11 ×10–4 2.17 ×10–7 7.22 ×10–10 1.44 ×10–13 5.66 ×10–15

‖EN ‖2 7.53 ×10–3 2.15 ×10–5 4.13 ×10–8 3.23 ×10–11 1.51 ×10–14 3.46 ×10–16

0 1 ‖EN ‖∞ 3.18 ×10–2 1.55 ×10–4 2.49 ×10–7 2.87 ×10–10 1.55 ×10–13 6.16 ×10–15

‖EN ‖2 2.40 ×10–2 8.71 ×10–5 2.19 ×10–7 2.65 ×10–10 1.23 ×10–13 5.55 ×10–16

1/2 1/2 ‖EN ‖∞ 1.19 ×10–2 3.98 ×10–5 4.91 ×10–8 5.41 ×10–11 3.44 ×10–14 8.18 ×10–16

‖EN ‖2 8.15 ×10–3 2.77 ×10–5 4.54 ×10–8 3.10 ×10–11 2.18 ×10–14 4.51 ×10–16

1 2 ‖EN ‖∞ 2.81 ×10–2 1.14 ×10–4 4.32 ×10–7 5.52 ×10–10 2.77 ×10–13 3.11 ×10–15

‖EN ‖2 2.56 ×10–3 1.13 ×10–4 3.55 ×10–7 4.37 ×10–10 1.25 ×10–13 1.33 ×10–16

Table 7 Errors obtained for Example 7.5 (α = 4π )

a b Errors N = 1 N = 4 N = 7 N = 10 N = 13 N = 16

0 0 ‖EN ‖∞ 2.06 ×10–2 1.73 ×10–4 2.28 ×10–7 2.29 ×10–10 8.21 ×10–14 3.15 ×10–16

‖EN ‖2 1.11 ×10–3 1.22 ×10–5 2.23 ×10–8 5.26 ×10–11 2.13 ×10–14 3.32 ×10–16

1 0 ‖EN ‖∞ 2.09 ×10–2 2.21 ×10–4 3.27 ×10–7 6.32 ×10–10 2.14 ×10–13 4.56 ×10–15

‖EN ‖2 8.13 ×10–3 3.21 ×10–5 2.53 ×10–8 2.33 ×10–11 3.21 ×10–14 4.16 ×10–16

0 1 ‖EN ‖∞ 3.78 ×10–2 2.15 ×10–4 3.19 ×10–7 3.12 ×10–10 2.95 ×10–13 5.15 ×10–15

‖EN ‖2 1.41 ×10–2 5.72 ×10–5 3.10 ×10–7 2.15 ×10–10 2.25 ×10–13 4.95 ×10–16

1/2 1/2 ‖EN ‖∞ 3.29 ×10–2 4.18 ×10–5 6.01 ×10–8 4.51 ×10–11 4.40 ×10–14 6.28 ×10–16

‖EN ‖2 7.25 ×10–3 3.17 ×10–5 5.34 ×10–8 4.13 ×10–11 3.28 ×10–14 3.52 ×10–16

1 2 ‖EN ‖∞ 2.72 ×10–2 1.20 ×10–4 4.51 ×10–7 2.12 ×10–10 2.87 ×10–13 3.91 ×10–15

‖EN ‖2 3.16 ×10–3 1.13 ×10–4 2.15 ×10–7 1.17 ×10–10 2.21 ×10–13 1.83 ×10–15

Figure 1 Figures of obtained errors EN using variousN and a = 3/2, b = 1/2, L = 1 for Example 7.2

Problem 7.3 Consider the seventh-order linear IVP [39]

D7y(z) – y(z) = –7ez(2z + 5), 0 ≤ z≤ 1,

y(0) = 0, y(1)(0) = 1, y(2)(0) = 0, y(3)(0) = –3,

y(4)(0) = –8, y(5)(0) = –15, y(6)(0) = –24,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(7.3)

where y(z) = z(1 – z)ez. According to Table 4, this solution is in perfect agreement with the
numerical solutions produced with an accuracy of 10–16 for N = 10.
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Figure 2 Figures of obtained errors EN using variousN and a = 3/2, b = 1/2, L = 4 for Example 7.2

Figure 3 Figures of obtained errors and approximate solutions for Example 7.3 using variousN and a = 0,
b = 0

Figure 4 Figures of obtained errors for Example 7.5 at α = 1, 4π using variousN and a = 3/2, b = 5/2

7.2 Numerical simulations for handling MTFDE (1.2) with ICs (1.3)
Problem 7.4 Consider the Bagley–Torvik equations [37]

D2y(z) + D3/2y(z) + y(z) = gk(z), k = 1, 2, 0 ≤ z≤ L,

y(0) = y′(0) = 0,

⎫
⎬

⎭ (7.4)

where g1(z) and g2(z) are chosen such that the exact solutions are y(z) = z3 and y(z) = z4(z–
1), respectively.
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Table 8 Comparison of MAE between the methods [37, 41] and MSJCOMIM(a = 2,b = 3) for
Example 7.5

N CPU α = 1 α = 4π

MSJCOMIM FTM [37] CSM [41] MSJCOMIM FTM [37] CSM [41]

4 15.21 1.1 ×10–4 2.7 ×10–4 3.4 ×10–4 2.6 ×10–4 2.5 ×10–2 3.9 ×100

8 27.65 5.7 ×10–9 3.5 ×10–7 4.3 ×10–7 4.2 ×10–9 3.5 ×10–4 4.7 ×10–1

16 36.32 5.1 ×10–16 4.2 ×10–10 1.8 ×10–8 2.3 ×10–16 4.2 ×10–9 3.5 ×10–5

32 62.11 1.1 ×10–16 5.8 ×10–12 7.1 ×10–10 1.4 ×10–16 8.4 ×10–12 1.4 ×10–6

The application of MSJCOMIM give the exact solution y(z) = y1(z) = z3 in the form

y1(z) =
(b + 1)L
λ + 1

K
(a,b)
2,0 (z) +

L

λ + 1
K

(a,b)
2,1 (z) (7.5)

and the exact solution y(z) = y3(z) = z4(z – 1) in the form

y3(z) =
3∑

i=0

ciK
(a,b)
2,i (z), (7.6)

where

c0 =
(b + 1)(b + 2)(–λ + (b + 3)L – 3)L2

(λ + 1)(λ + 2)(λ + 3)
, c1 =

(b + 2)(3(b + 3)L – 2(λ + 4))L2

(λ + 1)(λ + 3)(λ + 4)
,

c2 = –
2(λ – 3(b + 3)L + 5)L2

(λ + 2)(λ + 3)(λ + 5)
, c3 =

6L3

(λ + 3)(λ + 4)(λ + 5)
.

Remark 7.1 It is worth noting that the exact solutions (7.5) and (7.6) are obtained using
N = 1, 3,a, b > –1, respectively, whereas these exact solutions are obtained in [37, Exam-
ple 3] using L = 2 and N = 4, 6, respectively.

Problem 7.5 Consider the Bagley–Torvik equation [37, 41]

D2y(z) + D3/2y(z) + y(z) = g(z), 0 < z < 1,

y(0) = 0, y′(0) = α,

⎫
⎬

⎭ (7.7)

where g(z) is chosen such that y(z) = sin(αz).
The numerical solutions atN = 16 agree precisely with this solution and are presented in

Tables 6 and 7, and their accuracy is 10–16. In Table 8 the comparison results of MAE using
MSJCOMIM significantly outperform those of [37, 41]. Additionally, the CPU (seconds) of
MSJCOMIM was found to be faster compared to the corresponding method [37, Table 1].

8 Conclusions
In this research, we have introduced a kind of shifted JPs that satisfy homogeneous ICs.
We have also developed a new method for approximating the ODE and MTFDE solutions
specified in Sect. 4 using the SCM in conjunction with the derived OMs. Using five dif-
ferent cases, MSJCOMIM has proven to be incredibly accurate and efficient in resolving
these issues. Based on the promising results obtained in this research, we envision several
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potential directions for future work. Firstly, an interesting avenue would be to investigate
the extension of MSJCOMIM to handle higher-dimensional problems, such as systems of
ODEs and MTFDEs. This expansion would require the development of suitable multidi-
mensional OMs and the adaptation of the spectral collocation framework. Furthermore, it
could be valuable to explore the applicability of MSJCOMIM to other classes of FDEs be-
yond those considered in this study. Various types of FDEs exist in different scientific and
engineering fields, and investigating their solutions using MSJCOMIM could provide valu-
able insights and contribute to advancing the field. Additionally, the theoretical findings
presented in this paper open up possibilities for further research in the area of numerical
methods for DEs. Exploring alternative modifications of shifted JPs or investigating the
use of different OPs could lead to the development of even more accurate and efficient
approximation techniques. In conclusion, the introduced MSJCOMIM has shown great
potential in solving ODEs and FDEs with high accuracy. We believe that the knowledge
and techniques presented in this work can serve as a foundation for addressing a broader
range of DEs and inspire further advancements in the field of numerical methods for DEs.
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