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1 Introduction

A subfield of mathematics known as fractional calculus has recently attracted a lot of inter-
est due to involved integrals and derivatives of noninteger order. Complex systems display-
ing long-term memory effects and anomalous diffusion phenomena, such as heat trans-
port, can be effectively modeled and analyzed using this mathematical technique [1-3].
Financing, biology, engineering, physics, and many branches of applied calculus are all
included [4-8].

There has been a lot of research on numerical methods for solving IVPs and BVPs in
ordinary differential equations and partial differential equations (e.g., [9-24]). To numer-
ically solve various types of DEs, OMs constructed from orthogonal and nonorthogonal
polynomials have been extensively used [25-32]. As far as accuracy and computing effi-
ciency are concerned, many algorithms have shown promise. Nonetheless, new avenues
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should be investigated to improve the numerical solutions in terms of accuracy and effi-
ciency. Our new method for numerically solving ODEs takes the form

n-1
G+ 16 =fiG), 3€0,Lln=1,23,..., (1.1)
q=0

and, for solving MTFDEs,

k
D'yG) + > viDPiyG) + viny() =26), 3 €10, €], (1.2)
i=0
subject to the ICs
Y0 =a; j=0,1,...,n-1, (1.3)

where n;, ; (i=0,1,...,n-1), Bi, v; (i=0,1,...,k), Yxs1, and v are constants such that n —
1<v<n0<py<pBy<---< Bk <v.Thefunctions f; and f; are supposed to be continuous.

First, we build OMs for RIs and RLFI for MSJPs using our technique. Then we apply
the SCM. We are able to acquire very close approximations of the solutions since these
architectures guarantee efficient and accurate numerical computations. Following these
basic stages, the suggested method may solve ODEs (1.1) and MTFDEs (1.2) susceptible
to ICs (1.3):

(i) We transform equations (1.1) and (1.2) together with ICs (1.3) into an equivalent
form with homogeneous conditions.

(i) Fully integrated forms of (1.1) and (1.2) are obtained by applying RIs and RLFI,
respectively. This conversion allows for a more comprehensive representation of
the problem.

(iii) In the integrated forms of (1.1) and (1.2), the solution and all of its RIs and RLFI are
approximated by using the constructed OMs to write them as linear combinations
of MS]Ps, followed by the application of the SCM.

(iv) Using a suitable numerical method, the systems of algebraic equations obtained in
(iii) can be solved, which provides the required numerical solutions.

We examine the convergence properties and perform a comprehensive error analysis to
prove that our suggested algorithm works. To prove that our method is accurate and effi-
cient, we offer theoretical guarantees. We also include five numerical examples that show
a variety of IVPs, from (1.1) to (1.3). By contrasting our findings with those of other re-
searchers we demonstrate how our method is more precise and efficient. The provided
graphs and tables show that the exact and approximate solutions correspond very well.

One notable aspect of our suggested approach is using MSJPs. An innovative method
for solving the aforementioned IVPs is presented by making use of these polynomials and
the OMs that are linked with them. Advantages of MS]Ps over current approaches include
better accuracy, faster convergence, and lower computing cost.

The paper is outlined as follows. The definitions and properties of RFI and Rls are pro-
vided in Sect. 2. Section 3 details several features of SJPs and MSJPs. The main emphasis
is placed on developing new OMs for the RFI and RIs of MS]Ps in Sect. 4. To construct
the algorithms that are to be used to resolve the IVPs (1.1)—(1.3), this act is carried out.
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Here in Sect. 5, we lay out our approach to solving IVPs in ODEs and MTFDEs with the
help of the built OMs and the SCM. The suggested method is the subject of the theoreti-
cal examination in Sect. 6. As part of our investigation of the convergence characteristics
of the method, we run an error analysis. Theoretical assurances regarding the precision
and performance of the algorithm are deduced and examined. We provide five numeri-
cal examples in Sect. 7 to verify that our method is accurate and applicable. To evaluate
the suggested algorithm, we may look at these examples that span a variety of IVPs, from
(1.1) to (1.3). We show that our method is more accurate and efficient in comparison with
those published earlier. There is a very close match between the exact and approximate
solutions, as seen in the tables and graphs. We highlight the merits, limits, and prospec-
tive enhancements of our algorithm in Sect. 8, where we also summarize the key findings

and offer conclusions based on our study.

2 Preliminaries and notation

This section introduces the key ideas and tools needed to construct the suggested ap-
proach. These ideas and technologies underpin our approach, helping us solve the chal-
lenge. In this context, the Riemann-Liouville definition of a fractional integration of order
v > 0 is defined as follows [8].

Definition 2.1
v — L * _ v—1
I'f(x) = o) /0 (x—1)"f(r)dr, v>0,x2>0, (2.1)

and 1°f(x) = f(x), where m — 1 <v < m, and m € N is the smallest integer greater than v.

For u,v >0 and y > -1, the following properties of are satisfied:

IIf () = I (), (2.2)

MIf(x) = I (x), (2.3)
Ty +1) .

IHxY = mx” M, (24')

I (Alhl(x) + )Lzhz(x)) = )\1[”]/11(%) + )Lzlvhz(x). (25)

The RLFD of order v > 0, denoted by XD, is defined as follows:

m

d
RDVf(x) = dx—m(lm_"f(x)), x> 0. (2.6)

On the other hand, the CFD of order v, denoted by “D", is defined as follows:

D'f(x) = ﬁ /0 (x—T)"V Y () dr, x>0, (2.7)

which can be written in the form

“D'f(x) = di—y: (""" (x)), x>0 (2.8)
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The CFED satisfies the following properties:

¢D'C=0 (Cisconstant),

1D () = fx) - Zf )
j=0

CDvxy — F(‘J/ + 1) xy—v,
Ly +1-w)

CDU ()\1]’11(96) + )»21/12(96)) = Alehl(x) + )»gDvhz(x).
The relation between the RLFI and CFD is given by [8, Eq. (2.4.6)]

i)
D= DI - Y

j=0

X7V, m-1<v<m,

so that if f(0) =0, =0,1,...,m — 1, then

RD"f(x) _ CDVf(x)

(2.9

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

To accomplish the proposed algorithm, we must define the g times repeated integral of

f(x) as follows.

Definition 2.2 Let f be a continuous function on the real line. Then the gth repeated

integral of f, J4f, is defined as follows:

q —times

Jif(x) = f / / Foydedr - dr,

which is known as the g-fold integral and has the form [33, Eq. (2.16)]

Jif (%) = /x(x—r)q‘lf(r)dr, x> 0.

(g-D' Jo

According to integral expressions (2.1) and (2.16), it is shown that
JUf (x) = 1f (x).

Lemma 2.1

-1

JFO @) = 17 )~ Z )

g-r+j
(q- r+/>"‘ r=a

’

and for the case r = q, we have

10,

JUfD(x) = f(x) Z
=/

Accordingly, § f(f)(O) =0,j=0,1,...,r =1, then ]qf(’)(x) =J17f(x), r<gq.

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

Page 4 of 19
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Proof 1t is easy to prove this lemma using induction on r. O

Remark 2.1 Riemann’s modified form of Liouville’s fractional integral operator is a di-
rect generalization of Cauchy’s formula for a g-fold integral. Moreover, in view of formula

(2.16), we can see that formula (2.19) coincides with Taylor’s formula with remainder.

3 Anoverview on SJPs and MSJPs
The main objective of this section is to present the fundamental characteristics of JPs and
their shifted form. Furthermore, we will introduce a set of MSJPs.

3.1 Anoverview on SJPs
The orthogonal JPs, 35,“’h)(x), a, b > —1, satisfy the following relationship [34]:

(a,b)

1 0, m+n,
/ WO () 300 ()3 ) (1) i = 7
-1 hy™, m=mn,

A
where w*®(x) = (1 — x)*(1 + x)® and /™% = %, A=a+b+1

The SJPs, denoted as 3(5":)(5) = Jff’b)(Zg/S — 1), are in accordance with

0, m#n,

£
a,b g \~(a,0) \~(a,b) _
‘/0 We (3)‘j2,n (Z)JL‘,WI (5) d3 - (%)Ahiu,b)’ m=n,

where w%°(3) = (€ - 3)%".
The expansions that will serve as the foundation in this paper are the following funda-
mental ones [35, Sect. 11.3.4]:
~(a,b)

1. The power form representation of J’,"(3) is as follows:

i
3&5)(5) _ ch)ék, (3.1)
k=0

where

@ (DT +b+ D0 +k+2)

T OG- (k+b+ DG+ 4) (32)
2. Alternatively, the expression for 3 in relation to Jg’rb)(g,) has the form
k
=Y BP3EYG), (3.3)
r=0
where
) _ LI+ 2T (k+ b+ DT (r + 1) (3.4)

T k=T +b+Dl(k+r+Ar+1)
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3.2 Presenting MSJP

In this section, we define the polynomials {ﬁ;’}’b)(g)}/zo as follows:

A0 =806, n=12... (3.5)

nj

They are needed to satisfy the homogeneous form of the given ICs (1.3) for a suitable
choice of p. Subsequently, these polynomials satisfy the orthogonality relation:

£ ab .
We ) c@b) ) aled) 0, i7)
R G)R,;"(G)d3 = (3.6)
|, St Er e, i=).

4 OM for Rls and RLFI for £ (;)

In this section, we prove Theorems 4.1 and 4.2, which give the gth integrals for all g > 1
and fractional integrals of £,,;(3) in terms of the same polynomials.

Theorem 4.1 ]qﬁfflf b)(g,), i >0, can be written in the form

i+q
J1R50G) =Y P, &S 6) (4.1)
j=0
with
2135‘?"”(;4, q)=C~° Xl: - CL)n r)}(q L +,1)q(i 2 ) (4.2)
/ ’ e -a) rMi-rg+r-Nn+qg+nTGi+g+r+xr+1)
where
gab _ (1)L + b+ 1)(A + 2)T(j + 1)
4 FG+b+1) ’
Consequently, ]qﬁ;‘;’\?)(g), q=1,2,...,n, have the form
JIR ) = TP RNLG), (4.3)

where ]Sqq) = (gg)(n)) is a matrix of order (N + 1) x (N + q + 1), expressed explicitly as

P g o PEAmg 0 0 o
b b
P (ng) - mx‘Niq(n,q)
with
(a,b) . . .
BV (mg), j=0,1,...,i+q,i=0,1,...,N,
o= | % , @

0 otherwise,

Page 6 of 19
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and

&) = [R5 ), &%), ..., 8% 5)] " (4.6)

Proof The following formula can be obtained by combining integrating operations g times
and relation (3.1):

q (ﬂf’ _ (@) (]+}’l) j+}’l+q
JIR5"G) = Z Gomrat (4.7)

Now using formula (3.3), we obtain

JIRSG) = Z 9 ; (i ; ! 72 Z PR ). (4.8)

Expanding and collecting similar terms, after some algebra, we get

i+q i
s i (k + I’l)! + ,
UENEORD) ( D L ) B (4.9)
j=0 \k=max(0,/—q) 1

Then substituting formulae (3.2) and (3.4) into (4.9), after some manipulation, yields (4.1),
which can be expressed as follows:

JIRD 6) = [ (1, 0), B0 (1, ), . spfcl‘f; (1,),0,...,0] nN+q(3) (4.10)
and this expression leads to the proof of (4.3). d

Theorem 4.2 Iﬂﬁfflf ®)(3), i > 0, can be written in the form
M&80G) =5 ZS" (M)A (5) 4.11)

and, consequently, I "ﬁ(nal\[; )(5) has the form
FMRE6) = 3 1P’ 6), (4.12)

where IE,“ ) = (bi’; )(n)) isa matrix of order (N + 1) x (N + 1), which can be expressed explicitly

as
om0 0
Flom e o 0
S(“;(n) . 3(“).(”) 0 ... 0
50 i , (4.13)
: . 0
Fenm) e )
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where
() 390(;/1), P>}
p = |0 2 (4.14)
0 otherwise,
and
W DT+ DT +b+ UG+ AT+ +A)
50 =

(=) +b+ DI+ A6+ A (m+j+p+1)

i i Litien
w3 Fy ]‘ll’l+]+ l‘+]+ ). (4.15)
2j+A+lLn+j+p+1

Proof Considering (3.1) and utilizing (2.4), we obtain

i

PR = ey (9 P D

Yk 4.1
Py k F(k+n+u+1)3 (4.16)

By utilizing (3.3), (4.16) may be reformulated as (4.11), which can be represented as
RS0 G) = 54 [30 (), ), ..., 3 (1),0,...,0] 85D (5), (4.17)
and this expression leads to the proof of (4.12). d

Note4.1 Itiseasy tosee that ]20) = ILO) = In,1, where Iy, is the identity matrix of size N + 1,
and hence (4.3) and (4.12) are satisfied for g = 0 and p = 0, respectively.

Remark 4.1 It is worth stating that the forms of ‘ij’b)(n, q) and Sf’; )(n) in Theorems 4.1
and 4.2 have a closed form for certain a, b. These include particular cases of Jacobi poly-
nomials: the Chebyshev polynomials of the first and second kinds, Legendre polynomials,
and ultraspherical polynomials.

Remark 4.2 The utilization of formula (3.3) in relation (4.16) leads to the lower triangular
structure of matrix (4.13). This structure reduces the complexity of the algorithm, allowing
it to handle larger problem sizes without excessive computational demands.

5 Numerical algorithm for solving ODE (1.1) and MTFDE (1.2) subject to ICs
(1.3)

In this section, we propose a numerical solution for Eq. (1.1) when we apply the homoge-

neous form of ICs, specifically, when o = 0 forall j = 0, 1,2, ..., n — 1. With this respect, the

basis Rﬁfgb)(g) is used to satisfy this homogeneous form of ICs. On the other hand, creat-

ing the suggested procedure requires converting (1.1) and (1.2) into equivalent forms with

homogeneous conditions, also taking into account the nonhomogeneous conditions (1.3).

5.1 Homogeneous ICs
Consider the homogeneous case of ICs (1.3). The first step of our algorithm is applying
the integral operators /” and I" to Egs. (1.1) and (1.2), respectively. Using Lemma 2.1 and
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properties (2.2), (2.10), (2.12), (2.14), and (2.17), we get the following integrated forms of
(1.1) and (1.2):

n-1
Y3+ Y "6 =@G), 3€(0,Ln=1,23,..., (5.1)
q=0
and
k
¥G) + > vl PiyG) + vienl"y() = 2:6), 3€[0,£], (5.2)
i=0

where g1(3) = J"f1(3) is defined by (2.16), and g2(3) = I"f2(3). Now consider the approximate
solution of y(3) in the form

N
1@ =G =Y R 6) = ATRING), (53)
i=0

where A = [co,c1,...,cn]”. Finally, Theorems 4.1 and 4.2 enable us to approximate the
T (), q=0,1,...,n—1,and I""Piy(3),i = 0,1,...,k, in the matrix forms

n— ~ TH— _ n— (a,b)

Iy =" yn () = AT R0, (6) (5.4)
and

1" Piy(a) = I Py (3) = 3" PATL R ). (5.5)

In this method, approximations (5.3), (5.4), and (5.5) allow us to write the residuals of
equations (5.1) and (5.2) as

n-1
Run(G) = ATRIG) + Y, AT ORI, 6) - 21 6), (5.6)
q=0
k
Ran() =ATK @) + ) vis PATIIIRIDG)
i=0
+ Vk+1 3VATI£IV).QESI’\?)(3) _g2(3) (57)

In view of Note 4.1, ;3,5 (3) and R, n(3) can be written in the forms

n
Run(G) = D 1ng AR G) -21G), ma=1, (5.8)
gq=0
k+2
Run() = Z )/izvfﬁ"ATIff*ﬂ")ﬁif,’\?)(é) —2G),  Vie2=1,Bre1 =0, Braz = v. (5.9)
i=0

In this part, we suggest a spectral method called MSJCOMIM to numerically solve
Egs. (1.1) and (1.2) under the ICs (1.3) (where o; = 0, j = 0,1,...,7 — 1). The collocation

Page 9 of 19
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points of this method are selected as the N + 1 zeros of Jg’]&rl(g) or, alternatively, as the

points 3; = ‘g]\([i:;), i=0,1,...,N. Then we get

E)%}'I,N(Zi) :0’ i:0’11---’N7 (510)
in the case of ODE (1.1), whereas in the case of MTFDE (1.2), we have
RunGi)=0, i=0,1,...,N. (5.11)

Solving (5.10) or (5.11) by an appropriate solver, the coefficients ¢; (i =0,1,...,N) can be
determined to obtain numerical solutions for the DEs (1.1) or (1.2), respectively.

Note 5.1 There are a number of aspects to think about deciding which collocation points
to use, such as the nature of the problem and the desired numerical solution properties.
We should perform a comparison analysis with the numerical solutions computed to de-
termine which of these choices is better. Applying both sets of collocation points to the
investigated problems and evaluating them according to accuracy, convergence, and com-
puting efficiency will shed light on the relative merits of the two options for the problem
class in consideration.

5.2 Nonhomogeneous ICs

An essential part of creating the suggested algorithm is changing the nonhomogeneous
conditions (1.3) and equations (5.1) and (5.2) into equivalent versions with homogeneous
conditions. The following transformation makes these changes possible:

n-1
¥3) =36) - anG) @) =) Sy (5.12)

i
i!
i=0

As a result, the current problems can be simplified by solving the following modified

equations:
Y 6 =216), 5€00.£], (5.13)
q=0
k+2
Y vl PyG) =26), 3€10,£], (5.14)
i=0
subject to
720)=0, j=0,1,...,n-1, (5.15)
where
26)=I"AG) = Y 1" q.6), (5.16)
gq=0
k+2
26)=I"H6) - )_ vl Piq.;), (5.17)

i=0
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Algorithm 1 MSJCOMIM algorithm to solve ODE (1.1)

Action 1. Given n, a, b, £, N, oz,, ngpi=0,1,...,n-1,and¢g=0,1,.

Action 2. Define ﬁ & b)(3) A, ﬁ & b)(;,) and compute the elements of],, .

Action 3. Compute gl(g) and AT],, nN+q(3) q=0,1,.

Action 4. Define R, 5 (3) as in Eq. (5.8).

Action 5. List R, n(3i) =0,i=0,1,...,N, defined in Eq. (5.10).

Action 6. Use Mathematica built-in numerical solver to solve the system in [Output 5].

Action 7. Compute yx(3) given by Eq. (5.3) (in the case of homogeneous ICs).
Action 8. Compute g,(3) and yn(3) given by Eq. (5.18) (in the case of nonhomogeneous
ICs).

Algorithm 2 MSJCOMIM algorithm to solve MTFDE (1.2)

Action 1. Given n, a, b, &, N, v, &, B, ¥, i=0,1,...,n—1,j=0,1,...,k + 2.

Action 2. Define Rﬁ;b)(g), A, 8% (5) and compute the elements of Iy ™ j=0,1,..,k+2.
Action 3. Compute g»(3) and ATlf,% (a, h)(3) j=0,1,...,k +2.

Action 4. Define R, x(3) as in Eq. (5.9).

Action 5. List R, n(3i) =0,i=0,1,...,N, defined in Eq. (5.11).

Action 6. Use Mathematica’s built-in numerical solver to solve the system in [Output 5].

Action 7. Compute yy(3) given by Eq. (5.3) (in the case of homogeneous ICs).
Action 8. Compute ¢q,(3) and yn(3) given by Eq. (5.18) (in the case of nonhomogeneous
ICs).

and then

N (3) = In(3) + g4 (3). (5.18)

Remark 5.1 In Sect. 7, we use MSJCOMIM to solve numerous numerical problems.
A computer system with 3.60 GHz Intel(R) Core(TM) i9-10850 CPU, 10 cores, and 20
logical processors ran the calculations using Mathematica 13.3. The algorithmic steps for
solving the ODE and MTEFDE using MSJCOMIM are expressed in Algorithms 1 and 2,

respectively:

6 Convergence and error analysis
In this section, we examine the convergence and error estimates of suggested method. The

space G, y is defined as follows:

S, = Span{ &% (), &5 G), ..., A% ()]

Additionally, we define the error between y(3) and its approximation yy(3) as

EnG;) = yG) - nG)|- (6.1)
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In the paper, the error of the numerical scheme is analyzed by using the estimate of the L,

norm error,

£ 1/2
2
I€xll2=ly—ynla= (/ () = 7n )] dz) , (6.2)
0
and the estimate of the L., norm error,
I@xlloe = lly =y llow = max [y(3) = on(3)]- (63)

Theorem 6.1 [36] suppose that y(3) = 3"u(3) and yn(3) is presented by (5.3) and represents
the best possible approximation for y(3) out of S, . In that case, there exists a constant K

such that
K&l e\ N S N—1
||€N||MST(Z> (N+1) (6.4)
and
KLn+312 /o N
el < < (z) (N + 1N, 65)

where s = max{a, b, —1/2} and K = max;c[o,¢] |% [, n €[0, L]

The following conclusion demonstrates that the obtained error converges at a fairly
rapid rate.

Corollary 6.1 Forall N >s— 1, we have the estimates

I€x oo = O((eL/4)NN*N1) (6.6)
and

I€xnlla = O((eL/HNN*NT). (6.7)

An estimate for error propagation is the focus of the next theorem, which stresses the

stability of error.

Theorem 6.2 For two iterative approaches to y(3), we have
i — vl S O((eL/4)NNNT), N>s-1, (6.8)

where < indicates that there exists a generic constant d such that |yn.1 —yn| < d(eL/4)N x
Ns—N—l.

Note 6.1 AsefL/4 goes down, the error estimates in this section show that the rate of con-

vergence changes from an inverse polynomial to an exponential one.
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Table 1 Errors obtained for Example 7.2 using £ =1

a b Errors N =1 N=3 N =5 N=7 N =9 N =11

0 0 lEallo 1.15x7072 173 %10 422x10% 314 %107 318x107™ 221 x107'0
lEallz 701 x1073 221 x10°  313x10°% 216x107"" 213 %107 208 x107'°

1 0 lEamllso 301 %1072 221 x10% 317x107 611 %107 212x103 421 x107'°
lEarllz 213 %7073 3.05x10™ 243 x10%  232x107"" 322107 521 %1070

0 1 lEallo 321 %7072 332x10% 121107 352x107'0 260x107"3 526 x107'°

lEallz 221 x1072 823 %10  278x107 272x107'0 223x1073  432x107'°

17212 lEnlleo 223 %1072 412x10° 671 x10°8 441 x107"" 292 x107 827 x1071®
lEarll, 6221073 421 x10™ 581 x10% 381 x107"" 361 %10 491 x107'°

1 1 lEalloo 213 x107% 274 %1074  332x107  419x1070 391 x107" 381 %1070
lEallz 311 %1073 341 x10% 421 x107 341 %1070 432x10%  1.15x107'°

Table 2 Errors obtained for Example 7.2 using £ =4

a b Errors N =5 N =8 N=11 N =14 N=17 N=20

0 0 lEalloo 225 %1072 313 x10° 531 x10® 424 %107 478 107 433 x107'0
lEallz 511 %1073 344 x10° 463 x10° 646 x107"" 723 x107 318 x10710

1 0 lEalloo 411 %7072 391 x10% 421 x107 771 x107"" 39210 129 x107"°
lEarllz 1.24x7073  415x10™  342x10% 541 x107"" 562x1071% 111 %1071

0 1 lEalloo  5.12x1072 492 x10% 271 x107  292x107'0 310x107"% 591 x107"®

lEallz 2011 %1072 743 %10 418 %107 513 %1070 133 %107 451 x1071°

“1/2 12 Enllee 132 %1072 48010 502x10%  592x107"" 41210 877 x107'0
lEarllz 510x107 444 x10™  472x10% 323 x107"" 523 %107 401 x107'°

1 1 lEalloo 273 %1072 101 x10™  482x10% 520x107""  422x107" 357 x107'°
lEalls 422 %1073 352x10° 593x10°% 481 x107"" 233 %107  225x107'®

7 Numerical simulations

To demonstrate that the method given in Sect. 5 is effective and efficient, we give sev-
eral examples. To measure precision, we display the MAE between the exact and approx-
imate solutions. In particular, we demonstrate in Examples 7.1 and 7.4 that the suggested
method MSJCOMIM produces the exact solution for problems with a polynomial solu-
tion of degree N. We also show the calculated errors for numerical solutions yn(3) ob-
tained with MSJCOMIM for N = 1,...,20. We can see the excellent computational accu-
racy in the findings summarized in Tables 1, 2, 4, 6, and 7. In addition, Tables 3, 5, and 7
compare MSJCOMIM with other techniques provided in [37—-41]. The results show that
MSJCOMIM is the best method, giving more accurate predictions than the others. Fig-
ures la, 2a, 3a, 3b, and 4a show that the approximate and exact solutions for Examples
7.2,7.3,and 7.5 are highly congruent with each other. Furthermore, the log-errors for dif-
ferent a and b values are shown in Figs. 1b, 2b, and 4b. This demonstrates that the solutions
for Problems 7.2 and 7.5 when employing MSJCOMIM are stable and converge.

7.1 Numerical simulations for handling ODE (1.1) with ICs (1.3)

Problem 7.1 Consider the differential equation

D%y(3) —D*y(3) + Dy() -¥(3) =g(3), 0<3;<¢&,
y0)=2,  y(0)=0, and »'(0)=0,

(7.1)



Ahmed Boundary Value Problems

(2024) 2024:75

Table 3 A comparison of approaches [38] and MSJCOMIM for Example 7.2

a b £ N MSICOMIM N Methodin[38] £ N MSICOMIM N Method in [38]

2 1 T 10 422x107® 10 854 x107 4 10 532x107 10 418 x10°

1 1 3.00 x107"° 154 x107° 519 x107/ 414 x10°

172 =172 510 x1071° 828 x1078 453 x107 1.15 x10°

12 12 402 x107"° 1.18 x107° 6.25 x107 266 x 107

2 1 111 210x107'% 20 832x107'° 4 20 455x107% 20 752x10°®

1 1 1.78 x1071° 9.15 x 10710 3.57 x10716 133 x107

172 =172 217 x10716 8.04 x10716 514 x10710 230 x107°

-1/2 172 2.70 x 10710 392 x1071° 877 x 10716 6.51 x1078

Table 4 Errors obtained for Example 7.3

a b Errors N=1 N=3 N =5 N=7 N=9 N=10

0 0 lEallo  115%x1072 283 x10°  512x10% 429 x107"" 288107 120x107'°
lEarlz 911107 111 x10°  223x10% 336 x107"" 123 x107™* 118 %107

1 0 lEalloe 271 x1072 101 x10% 227 x107 781 %1077 132x107"% 516 x%x1071°
lEallz 153 %1073 215x10™ 353 x10®  322x107""  182x107"* 436 x107'°

0 lEalloo 2411072 12610 241 x107 331 x107'% 251 x1073 616 x107'°
lEal; 213102 913 x10° 189 x107 171 x107'% 113 x103  512x107'°

172 172 |Enllee  1.12x1072  228x10™°  692x108  542x107"" 281 %1071 787 x107'°
lEallz 812x1073 381 x10™ 531 x10% 370107 271 x107* 421 x107'°

1 2 lEalloo  282x1072 214 %10 431 x107  402x107'% 387 x107°  372x107'°
lEall; 366 x1073 251 x10%  3.12x107  337x107'0  330x107"® 133 x107'°

Table 5 A comparison of approaches [39] and MSJCOMIM for Example 7.3 usinga=3,b=1

N CPU MSJCOMIM Method in [39] Method in [40]
10 21.12 1.15 x 10716 1.82 x 107! 1.6 x1071°
12 2525 1.13 10710 215 x1078 115 x1071°
15 29.21 112 x 10716 3.65 x107° 1.16 x1071°

where g(3) is chosen such that y(3) = 3* + 2. The application of the proposed method

MSJCOMIM gives

¥(3) = 1)

_ (b + 1)2ﬁ(a'b)

A+l 030

£
(3)+m

ﬁ(;l’b)(g) +2.

Problem 7.2 Consider the differential equation [38]

D?y(3) — 2D*y(3) — 3Dy(3) + 10y(3)

= (343 — 16)e™® — 1032 + 63 + 34,

J’(O) =3,

}’/(0) =0,

¥"(0) =0,

0<3=<g

(7.2)

where y(3) = 32¢7% — 32 + 3. This solution agrees perfectly with the numerical solutions

obtained with accuracy of 10716 when £ = 1,4 and N = 11, 20, respectively, as shown in
Tables 1 and 2.

Page 14 of 19
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a b Errors N =1 N =4 N=7 N =10 N =13 N =16
0 0 lEalloe 116 x1072 283 x10% 318 x107  419x107'0 198 %1071 466 x107"°
lEallz 271 x1073 111 %10 313 x108 31610717 123 %107 422 x107'°
1 0 lEalloe 119 %1072 101 x10% 217 x107  722x1070 144 x107"° 566 x107"°
lEallz 753 %1073 215x10™° 413 x108  323x107"" 151 x107™* 346 x107'°
0 1 lEalloo 318 %1072  155x10% 249 x107 287 %1070  155x107" 616 x107"°
lEallz 240 x1072 871107 219 x107  265x10719 123 %1073  555x%x107'°
172172 |Enlleo 1.19%x1072 398 x107° 491 x10® 541 x107"" 344 x1071% 818 x107'0
lEall,  815x1073 277 %107  454x108  310x107"" 218 %107 451 x107'°
1 2 IEalloo 281 x1072  1.14x10%  432x107  552x107'0 2771071 311 x107"°
lEallz 256 x107° 113 x10%  355x107 4371070 125x%x107"® 133 x107'°
Table 7 Errors obtained for Example 7.5 (o = 47r)
a b Errors N =1 N =4 N=7 N =10 N =13 N =16
0 0 lEalloe 206 x1072 173 x10% 228 x107  229x1070 821 %107  3.15x107'°
NEA 2 111 %1072 122x10™ 223 %108 526 x107"" 213 x107%  332x107'°
1 0 lEalloe 209 x1072 221 x10™* 327 x107  632x10710 214 %107 456 x107"°
lEall; 813 %1073 32110  253x108  233x107"" 321 %107  416x107'°
0 1 lEalloe 378 %1072  215x10%  3.19x107  312x107'0  295x%x107"®  515x%x107"°
NEA 2 141 1072 572107 310x107  215x107'9  225x107'3 495 x107'°
172 172 lEnlleo 329 %1072 418x10™ 601 x108 451 x107"" 440 x107'* 628 x107'°
lEall  725x1073 317 %107 534x108  413x107""  328x107™*  352x107'°
1 2 lEalloe 272 %1072  120x10% 451 x107  212x1070 287 x107"® 391 x107"°
lEallz 316 %1073 113 x10%  215x107 117 %1070 221 %107 183 x107"°
0
4x107'°F
N 3x107'6 § -5
: 5
l:; 2x107'6 é.? _10
E
1x107'61
-15
o L L
0 2 6 8 10 12

0.0 0.2

0.4 0.6
3

0.8 1.0

(a) Error plots for V"= 11,12.

(b) Graph of Logio(||En|lo) against N.

Figure 1 Figures of obtained errors Exr using various A and a =3/2,b=1/2, £ =1 for Example 7.2

Problem 7.3 Consider the seventh-order linear IVP [39]

D7y(3) - y(3) = ~7€*(25 +5),

yD(0) =1,

0:

0<3=1,
7*(0) =

-15,  y9(0) =24,

y0)=-3,

(7.3)

where y(3) = 3(1 — 3)e®. According to Table 4, this solution is in perfect agreement with the

numerical solutions produced with an accuracy of 10716 for N = 10.

Page 15 0f 19
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0
2.0x107'6F
L =5
S
S 1.5x107'°F 5
% 1.0x10716f § -10
<
5.0x107'7}
-15
ok . .
o ] > 3 4 0 5 10 15 20
3 N
(a) Error plots for N = 19, 20. (b) Graph of Logio(||Ex|lec) against N.
Figure 2 Figures of obtained errors Exr using various A and a =3/2, b =1/2, £ = 4 for Example 7.2

¥(3)
0.4L T n(3)
----- ¥3(3) -
0.3+ y¥(3) “‘ _ 10 /N — N=1
L : ] — x=3
0.2} % 2 o s
‘.‘ 2 — N=T
01" N — xeo
X =10
1 1 1 L 3 0.001 0.0050.010 0.0500.100 0.500 1
0.2 0.4 0.6 0.8 1.0 3
(a) Exact and approximate solutions y1(3), y3(3)- (b) Error plots for N =1,3,5,7,9, 10.

Figure 3 Figures of obtained errors and approximate solutions for Example 7.3 using various A" and a =0,
b=0

oF
. . -5
e g
s g
5 =)
—g S -10
3
<

-15

0 5 10 15
3 N
(a) Error plots for a = 1, 47 using N = 16. (b) Graph of Logio(||Ex|loc) against N.

Figure 4 Figures of obtained errors for Example 7.5 at & = 1,47 using various N and a =3/2, b =5/2

7.2 Numerical simulations for handling MTFDE (1.2) with ICs (1.3)
Problem 7.4 Consider the Bagley—Torvik equations [37]

D*y(3) +D*y(3) +y(3) =g(3), k=1,2,0<3;<¢,

¥(0)='(0) =0,

(7.4)

where g;(3) and g(3) are chosen such that the exact solutions are y(3) = 3> and y(3) = 3*(3 —
1), respectively.
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Table 8 Comparison of MAE between the methods [37, 41] and MSJCOMIM(a = 2,b = 3) for

Example 7.5
N CPU a=1 o =4m

MSJCOMIM FTM [37] CSM [41] MSJCOMIM FTM [37] CSM [41]
4 15.21 1.1 x107™ 2.7 x1074 34 x107* 26 x107 25 %1072 3.9 x10°
8 27.65 57 x107° 35 %1077 43 %1077 42 x107° 35 %107 47 x107
16 36.32 5.1 x1071° 42 x10710 18 x1078 23 x1071° 42 %107 35 %107
32 62.11 1.1 x10716 58 %1072 7.1 x10710 14 x10716 84 %1072 14 %107

The application of MSJCOMIM give the exact solution y(3) = y1(3) = 3° in the form

b+1)L
A+l

(a,b) £ (@b
29 —R 7.5
2,0 (3)+ PR (3) (7.5)

y1(3) =

and the exact solution y(3) = y3(3) = 3*(3 — 1) in the form

3

73() = sy Q) (7.6)
i=0
where
_(b+1)(b+2)(-A + (b +3)L - 3)L2 _(6+2)(3(b+3)L-2() +4))£?
= O+ DA +2)(A +3) o as O+ DA +3) (A +4) ’
~ 2(A-3(b+3)L+5)L? ~ 683
2T T )0+ +5) . T 430+ M +5)

Remark 7.1 It is worth noting that the exact solutions (7.5) and (7.6) are obtained using
N =1,3,a, b > -1, respectively, whereas these exact solutions are obtained in [37, Exam-
ple 3] using £ =2 and \V = 4, 6, respectively.

Problem 7.5 Consider the Bagley—Torvik equation [37, 41]

D*(3) + D*?y(3) +y(3) =g(3),  0<j3<1,
y(0)=0, ¥y (0)=a,

(7.7)

where g(3) is chosen such that y(3) = sin(«3).

The numerical solutions at A" = 16 agree precisely with this solution and are presented in
Tables 6 and 7, and their accuracy is 1071°. In Table 8 the comparison results of MAE using
MSJCOMIM significantly outperform those of [37, 41]. Additionally, the CPU (seconds) of
MSJCOMIM was found to be faster compared to the corresponding method [37, Table 1].

8 Conclusions

In this research, we have introduced a kind of shifted JPs that satisfy homogeneous ICs.
We have also developed a new method for approximating the ODE and MTFDE solutions
specified in Sect. 4 using the SCM in conjunction with the derived OMs. Using five dif-
ferent cases, MSJCOMIM has proven to be incredibly accurate and efficient in resolving
these issues. Based on the promising results obtained in this research, we envision several
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potential directions for future work. Firstly, an interesting avenue would be to investigate
the extension of MSJCOMIM to handle higher-dimensional problems, such as systems of
ODEs and MTFDEs. This expansion would require the development of suitable multidi-
mensional OMs and the adaptation of the spectral collocation framework. Furthermore, it
could be valuable to explore the applicability of MSJCOMIM to other classes of FDEs be-
yond those considered in this study. Various types of FDEs exist in different scientific and
engineering fields, and investigating their solutions using MSJCOMIM could provide valu-
able insights and contribute to advancing the field. Additionally, the theoretical findings
presented in this paper open up possibilities for further research in the area of numerical
methods for DEs. Exploring alternative modifications of shifted JPs or investigating the
use of different OPs could lead to the development of even more accurate and efficient
approximation techniques. In conclusion, the introduced MSJCOMIM has shown great
potential in solving ODEs and FDEs with high accuracy. We believe that the knowledge
and techniques presented in this work can serve as a foundation for addressing a broader
range of DEs and inspire further advancements in the field of numerical methods for DEs.
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